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Multiplicity fluctuations and correlations in limited momentum space bins in relativistic gases
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Multiplicity fluctuations and correlations are calculated within thermalized relativistic ideal quantum gases.
These are shown to be sensitive to the choice of statistical ensemble as well as to the choice of acceptance window
in momentum space. It is furthermore shown that global conservation laws introduce nontrivial correlations
between disconnected regions in momentum space, even in the absence of any dynamics.
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I. INTRODUCTION

Fluctuations of, and correlations between, various exper-
imental observables are believed to have the potential to
reveal new physics. The growing interest in event-by-event
fluctuations in strong interactions is motivated by expected
anomalies in the vicinity of the onset of deconfinement
[1–4] and in the case when the expanding system goes
through the transition line between quark-gluon plasma and
hadron gas [5]. In particular, a critical point of strongly
interacting matter may be accompanied by a characteristic
power-law pattern in fluctuations [6]. Recently, it has been
suggested that correlations across a large interval of rapidity
arise from a color glass condensate [7,8]. In recent years
a wide range of experimental measurements of fluctuations
of particle multiplicities [9,10], transverse momenta [11],
and multiplicity correlations in rapidity [12–14] have been
reported, leading to a lively discussion regarding their physical
interpretation [8,12,15,16].

To get a reliable indication of new physics, it is important to
note that most fluctuation and correlation observables are also
sensitive to some “baseline” contributions that, nevertheless,
can have nontrivial behavior. For instance, most fluctuation and
correlation observables are sensitive to the global characteris-
tics (e.g., the distribution of the number of colliding nucleons)
of a sample of events, which can in turn be nontrivially
constrained by centrality bin construction [15]. Similarly,
conservation laws can provide a “trivial” correlation between
observables. The effects of such correlations depend on the
scale at which these conservation laws become important.
This scale could be anything, from microscopic (mean free
path, diffusion scale) to the macroscopic size of the system.

The purpose of this article is to study these baseline
correlations in a limiting case: that of a thermalized relativistic
ideal (no interparticle interactions) quantum gas for which we
want to assess the importance of globally applied conservation
laws for particle multiplicity fluctuations and correlations. In
this case, all observables are calculable simply using statistical
mechanics techniques. Such an approach has a long and
distinguished history of calculating particle multiplicities in
hadronic collisions [17–28].

Conventionally in statistical mechanics three standard
ensembles are discussed; the micro canonical ensemble

(MCE), the canonical ensemble (CE), and the grand canonical
ensemble (GCE). In the MCE1 one considers an ensemble of
micro states with exactly fixed values of extensive conserved
quantities (energy, momentum, electric charge, etc.), with
“a priori equal probabilities” of all micro states (see e.g.
Ref. [29]). The CE introduces the concept of temperature by
introduction of an infinite thermal bath, which can exchange
energy (and momentum) with the system. The GCE introduces
further chemical potentials by attaching the system under
consideration to an infinite charge bath.2 Only if the experi-
mentally accessible system is only a small fraction of the total,
and all parts have had the opportunity to mutually equilibrate,
can the appropriate ensemble be the grand canonical one.

In the limit of very large volume and constant density (the
thermodynamic limit), average values of intensive quantities
are the same for all ensembles. However, even in this limit,
these ensembles have different properties with respect to
fluctuations and correlations [30]. In the MCE, energy and
charge are exactly fixed. In the CE, charge remains fixed,
while energy is allowed to fluctuate about some average
value. Finally in the GCE the requirement of exact charge
conservation is dropped, too. One may also consider isobaric
ensembles [31], or even more general “extended Gaussian
ensembles” [32,33]. In previous articles [30,31,33–41] it
was shown that these differences mean that multiplicity
fluctuations are ultimately ensemble specific.

In this article we extend these results to fluctuations and
correlations between particle multiplicities in limited bins
of momentum space (rapidity y, transverse momentum pT ,
and azimuthal angle φ). In Sec. II we present details of
the calculation of correlations within statistical mechanics.
The following two sections present calculated fluctuations
and correlations within the same momentum space bin for
a stationary (Sec. III A) and boosted (Sec. III B) system. In
Sec. IV we discuss long-range correlations between momen-
tum space bins. A discussion Sec. V, summarizing our results

1The term MCE is also often applied to ensembles with energy but
not momentum conservation.

2Note that a system with many charges can have some charges
described via the CE and others via the GCE.
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and discussing their phenomenological implications within the
context of heavy-ion collisions closes the article.

II. CORRELATIONS AND FLUCTUATIONS WITHIN
DIFFERENT ENSEMBLES

In a recent article [41] we have shown that GCE joint
distributions of extensive quantities converge to multivariate
normal distributions (MND) in the thermodynamic limit (TL).
MCE or CE multiplicity distributions could then be defined
through conditional GCE distributions. In general one may
write for the multiplicity distribution Pce(N ) of a CE with
conserved electric charge Q:

Pce(N ) = number of all states with Q and N

number of all states with Q
. (1)

Likewise one can write for the CE joint multiplicity distribu-
tion of particle species A and B:

Pce(NA,NB) = number of all states with Q,NA and NB

number of all states with Q
.

(2)

The number of all micro states with electric charge Q,
and multiplicities NA and NB of a system with temperature
T and volume V is given by the CE partition function
ZCE(V, T ,Q,NA,NB ). Similarly, ZCE(V, T ,Q) denotes the
number of micro states with fixed electric charge Q, but
arbitrary multiplicities NA and NB , for the same physical
system.

The strategy to calculate joint multiplicity distributions
could thus be the following (in principle also valid at finite
volume):

Pce(NA,NB ) = ZCE(V, T ,Q,NA,NB )

ZCE(V, T ,Q)
, (3)

= eQ
µ

T ZCE(V, T ,Q,NA,NB )

ZGCE(V, T , µ)

× ZGCE(V, T , µ)

eQ
µ

T ZCE(V, T ,Q)
, (4)

= Pgce(Q,NA,NB ) P −1
gce (Q)

= Pgce(NA,NB |Q). (5)

To get from Eq. (3) to Eq. (5) both canonical partition functions
ZCE(V, T ,Q,NA,NB ) and ZCE(V, T ,Q) are divided by their
GCE counterpart ZGCE(V, T , µ) and multiplied by eQ

µ

T . The
first term on the right-hand side of Eq. (4) then equals the
GCE joint distribution Pgce(Q,NA,NB ), while the second term
is just the inverse of the GCE charge distribution Pgce(Q).
Their ratio is the (normalized) GCE conditional distribu-
tion of particle multiplicities NA and NB at fixed electric
charge Q,Pgce(NA,NB |Q), and equals the CE distribution
Pce(NA,NB ) at the same value of Q. This result is independent
of the choice of chemical potential µ.

The problem of finding a solution, or a (large volume)
approximation, to the CE distribution Pce(NA,NB ) is now
turned into the problem of finding a solution or approximation

to the GCE distribution of multiplicities NA and NB and charge
Q. The role of chemical potential (or Lagrange multiplier) µ

will be discussed in Sec. III.
From the assumption that the GCE distribution

Pgce(Q,NA,NB ) converges to a trivariate normal distribution,
it also follows that the marginal distribution Pgce(Q), as
well as the conditional distribution Pgce(NA,NB |Q), are
normal distributions. Hence, Pce(NA,NB) should have a good
approximation in a bivariate normal distribution (BND) in the
large volume limit (where the large particle numbers can be
appropriately treated as continuous):

PBND(NA,NB ) = 1

2πV

√
σ 2

Aσ 2
B(1 − ρ2)

× exp

{
− 1

2V

[
(�NA)2

σ 2
A(1 − ρ2)

−2ρ
(�NA)(�NB)

σAσB(1 − ρ2)
+ (�NB)2

σ 2
B(1 − ρ2)

]}
, (6)

where �NX = NX − 〈NX〉, with X = A,B and:

V σ 2
A ≡ 〈

N2
A

〉 − 〈NA〉2, (7)

V σ 2
B ≡ 〈

N2
B

〉 − 〈NB〉2, (8)

V σAB ≡ 〈NANB〉 − 〈NA〉〈NB〉. (9)

Here V σ 2
A and V σ 2

B are the variances of the marginal
multiplicity distributions of particles NA and NB . The term
V σAB is called the covariance. Additionally we define the
scaled variance ωX:

ωX =
〈
N2

X

〉 − 〈NX〉2

〈NX〉 , (10)

which measures the width of the marginal distribution P (NX).
Last,

ρ ≡ σAB

σAσB

, (11)

is the correlation coefficient between particle numbers NA and
NB .

The distribution Eq. (6) hence has five parameters: Mean
values 〈NA〉 and 〈NB〉, variances of marginal distributions V σ 2

A

and V σ 2
B , and the correlation coefficient ρ. Loosely speaking,

the correlation coefficient ρ defines how the BND, Eq. (6), is
tilted. In the case where ρ > 0, the distribution is elongated
along the main diagonal, and measuring a larger (smaller)
number of particles NA implies that it is also more likely
to measure a larger (smaller) number of particles NB . The
distribution is tilted the other way, if ρ < 0. In this case,
multiplicities NA and NB are anticorrelated, and measuring
NA > 〈NA〉 implies that it is now more likely to measure
NB < 〈NB〉. Particle numbers NA and NB are uncorrelated,
if ρ = 0.

Similarly, we define MCE multiplicity distributions in terms
of conditional GCE distributions of extensive quantities. For
this we will first find a suitable approximation to the GCE joint
distribution of extensive quantities [electric charge, energy,
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momentum, particle number(s), etc.] by Fourier analysis of
the GCE partition function. The MCE multiplicity distribution
is then given by a slice along a surface of constant values of
extensive quantities.

A. GCE partition function

The GCE partition function of a relativistic gas with volume
V , local temperature T = 1/β, chemical potentials �µ, and
collective four velocity �u reads (the system four-temperature
[42] is �β = β �u):

ZGCE(V, β, �µ, �u) = exp[V �(β, �µ, �u)], (12)

where �(β, �µ, �u) is a sum over the single-particle partition
functions ψl(β, �µ, �u) of all particle species “l” considered in
the model:

�(β, �µ, �u) =
∑

l

ψl(β, �µ, �u). (13)

The single-particle partition function ψl(β, �µ, �u) of particle
species “l” is given by a Jüttner distribution:

ψl(β, �µ, �u) = gl

(2π )3

∫
d3p ln

(
1 ± e−β p

µ

l uµ+β q
j

l µj
)±1

,

(14)

where p
µ

l are the components of the four-momentum q
j

l are
the components of the charge vector and gl is the degeneracy
factor. The upper sign refers to Fermi-Dirac statistics (FD),
while the lower sign refers to Bose-Einstein statistics (BE).
The case of Maxwell-Boltzmann (MB) statistics is analogous.

In the following we restrict ourselves to systems moving
along the z axis and use variables y, pT , and φ. For a boost
in rapidity of y0 one finds for the four-velocity �u , the four-
momentum �pl , and the integral measure d3p, respectively:

�u = (cosh y0, 0, 0, sinh y0), (15)

�pl = (√
m2

l + p2
T cosh y, pT cos φ, pT sin φ,√

m2
l + p2

T sinh y
)
, (16)

d3p = pT

√
m2

l + p2
T cosh(y − y0) dy dpT dφ, (17)

where ml is the mass of a particle of species l. The single-
particle partition function Eq. (14) now reads:

ψl(β, �µ, �u) = gl

(2π )3

∫ π

−π

dφ

∫ ∞

0
dpT

∫ ∞

−∞
dy

×pT

√
m2

l + p2
T cosh(y − y0)

× ln
(
1 ± e−β p

µ

l uµ+β q
j

l µj
)±1

. (18)

For the examples in the following sections we chose a simple
gas with only one conserved charge, denoted as a “pion gas.”
The presented formulas are, however, also readily applicable
to a hadron resonance gas (HRG). Depending on what system
one may want to study, one introduces chemical potentials �µ

and the “charge” vector �ql of particle species l:

�µ = (µB,µS, µQ,µNA
, µNB

)
(19)

�ql = [bl, sl, ql, nA(
), nB(
)] for a HRG,

�µ = (µQ,µNA
, µNB

)
(20)

�ql = [ql, nA(
), nB(
)] for a pion gas,

where µB,µS , and µQ are the baryon, strangeness, and electric
charge chemical potentials, respectively. µNA

and µNB
are

particle-specific chemical potentials and could denote out-of-
chemical-equilibrium multiplicities of species “A” and “B,”
similar to phase-space occupancy factors γS [43] and γq [44].
Throughout this article we neglect finite density effects, so
µNA

= µNB
= 0.

In addition, bl, sl , and ql are the baryonic charge, the
strangeness, and the electric charge of particle species “l.”

 is the momentum space bin in which we wish to measure
particle multiplicity. nA(
) = 1 if the momentum vector of
the particle is within the acceptance, nA(
) = 0 if not. The
charge vector �ql also contains, to maintain a common notation
for all particle species considered in Eq. (13), the “quantum”
number nB(
).

One may also be interested in correlations of, for instance,
baryon number B and strangeness S, as e.g. in Refs. [45,46].
In this case, the � particle, with q� = (1,−1, 0, 1, 1), would
be counted in groups A and B, provided the momentum vector
is within the acceptance 
.

B. Generating function

To introduce the generating function of the charge dis-
tribution ZGCE(V, β, �µ, �u; �φ, �α) in the GCE we substitute in
Eq. (14):

β µj → β µj + iφj , (21)

β uµ → β uµ − iαµ. (22)

The yet un-normalized joint probability distribution of exten-
sive quantities �Q, �P in the GCE is then given by the Fourier
transform of Eq. (12) after substitutions Eqs. (21) and (22):

Z �Q, �P (V, β, �µ, �u) =
∫ π

−π

dJ φ

(2π )J
e−iQj φj

∫ ∞

−∞

d4α

(2π )4
e−iP µαµ

× exp[V �(β, �µ, �u; �φ, �α)]. (23)

More details of the calculation, in particular on the connection
between the partition functions Z �Q, �P (V, β, �µ, �u) and the
conventional version ZMCE(V, �Q, �P ) [42,47], can be found
in Appendix A. Depending on the system under considera-
tion, we introduce the vector of extensive quantities �Q and
corresponding Wick rotated fugacities �φ:

�Q = (B, S,Q,NA,NB )
(24)�φ = (φB, φS, φQ, φNA

, φNB
) for a HRG,

�Q = (Q,NA,NB)
(25)�φ = (φQ, φNA

, φNB
) for a pion gas.
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Here B is the baryon number, S is the strangeness, and Q is the
electric charge of the system. Together with particle numbers
NA and NB this would be a five-dimensional distribution
in the case of a CE HRG. Additionally for four-momentum
conservation, yielding a nine-dimensional Fourier transform
Eq. (23) for a MCE HRG, we write:

�P = (E,Px, Py, Pz) �α = (αE, αPx
, αPy

, αPz
), (26)

where E is the energy and Px, Py , and Pz are the components
of the collective momentum of the system, while �α are the
corresponding fugacities.

The integrand of Eq. (23) is sharply peaked at the origin
�φ = �α = �0 in the TL [41]. The main contribution therefore
comes from a very small region. To see this, a second derivative
test can be done on the integrand of Eq. (23) taking into account
the first two terms of Eq. (29). The limits of integration can
hence be extended to ±∞. The distinction between discrete
(Kronecker δ) and continuous quantities (Dirac δ) is not
relevant for the TL approximation, where particle number is
a continuous variable to be integrated over. We thus proceed
by Taylor expansion of Eq. (13). For this it is convenient to
include everything into a common vector notation:

�Q = ( �Q, �P ) and �θ = ( �φ, �α). (27)

The dimensionality of the vector �Q is denoted as J = 2 +
3 + 4 = 9 for a MCE HRG. We now expand the cumulant-
generating function, �(β, �µ, �u; �θ ), in a Taylor series:

�(β, �µ, �u; �θ ) �
∞∑

n=0

in

n!
κj1,j2,...,jn

n θj1 θj2 · · · θjn
, (28)

where the elements of the cumulant tensor, κ
j1,j2,...,jn
n , are

defined by:

κj1,j2,...,jn

n = (−i)n
∂n�

∂θj1∂θj2 · · · ∂θjn

∣∣∣∣∣�θ=�0
. (29)

Generally cumulants are tensors of dimension J and order n.
The first cumulant is then a vector, while the second cumulant
is a symmetric J × J matrix. A good approximation to
Eq. (23) around the point �Qeq = ( �Qeq, �Peq), can be found in
terms of a Taylor expansion of Eq. (13) in �θ = ( �φ, �α), if:

∂Z �Q(V, β, �µ, �u)

∂ �Q

∣∣∣∣∣ �Qeq

= 0. (30)

Implicitly, Eq. (30) does not define chemical potentials �µ
and four-temperature �β = β �u, but corresponding Lagrange
multipliers that maximize the amplitude of the Fourier spec-
trum of the generating function for a desired value of �Qeq and
�Peq. Their values generally differ from the GCE set (β, �µ, �u);

however, they coincide in the TL. Lagrange multipliers can be
used for finite volume corrections [41]. In the following we
restrict ourselves to the large volume approximation.

C. Joint distributions

In the large volume limit, i.e., V → ∞, one may use the
asymptotic solution and consider only the first two cumulants,

Eq. (29). Substituting Eq. (28) into Eq. (23) yields a standard
J -dimensional Gaussian integral with solution:

Z �Q(V, T , �µ, �u) � ZGCE(V, β, �µ, �u)
1

(2πV )J/2

× 1

det σ
exp

[
−1

2
ξ j ξj

]
, (31)

where the elements of the new variable �ξ are defined by:

ξ j = (�Q)k (σ−1)jk V −1/2. (32)

The elements of the vector (� �Q) measure the distance of the
charge vector �Q to the GCE mean V �κ1:

(�Q)k ≡ (
Qk − V κk

1

)
, (33)

and (σ−1) is the inverse square root of the second-order
cumulant κ2:

σ−1 ≡ κ
−1/2
2 . (34)

The GCE joint distribution of extensive quantities �Q is a
MND3:

Pgce( �Q) = Z �Q(V, β, �µ, �u)

ZGCE(V, β, �µ, �u)

� 1

(2πV )J/2

1

det σ
exp

[
−1

2
ξ j ξj

]
. (35)

Mean values in the TL are given by the first Taylor expan-
sion terms, 〈NA〉 = V κ

NA

1 , 〈Q〉 = V κ
Q
1 , 〈E〉 = V κE

1 , etc., and
converge to GCE values. To obtain a joint (two-dimensional)
particle multiplicity distribution one has to take a two-
dimensional slice of the (J -dimensional) GCE distribution,
Eq. (35), around the peak of the extensive quantities that one
is considering fixed. The covariance tensor κ2 will be spelled
out explicitly and discussed in Sec. III B. Further details of the
calculation can be found in Appendix B.

III. FLUCTUATIONS AND CORRELATIONS WITHIN A
MOMENTUM BIN

A. Static system

Let us start by discussing properties of a static thermal
system. We want to measure joint distributions of multiplicities
NA and NB in limited bins of momentum space (of width �pT

for transverse-momentum bins and �y for rapidity bins). De-
pending on the size and positions of the bins, one finds different
fluctuations and correlations. Results will, in particular, be
compared to the acceptance scaling approximation employed
in Refs. [30,36,37], which assumes random observation of
particles with a certain probability q, regardless of particle
momentum (see also Appendix C). Corresponding results for
scaled variance in MB statistics can also be found in Ref. [34].

For our examples we chose a gas with three degenerate
massive particles (with positive, negative, and zero charge)
with mass m = 0.140 GeV in three different statistics (MB,

3Finite volume corrections to Eq. (35) converge like V −1/2 in the
TL [41].
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FIG. 1. (Color online) Differential particle spectra for a “pion
gas” at T = 160 MeV. Transverse-momentum spectrum (top) and
rapidity spectrum (bottom). Both curves are normalized to unity. The
bins are constructed such that each bin contains 1/9 of the total yield.

FD, BE). The momentum spectra are assumed to be ideal
GCE spectra, due to the large volume approximation. In Fig. 1
transverse-momentum and rapidity spectra are shown for MB
statistics. BE and FD statistics yield similar spectra, unless
chemical potentials are large.

We can then define bins by requiring each bin to hold the
same fraction of the total multiplicity. Note that in this case
the width and position of bins �pT and �y will strongly
depend on the underlying momentum spectra. Our examples,
in particular the FD case, are a little academic in the sense
that there is no fermion of this mass. In a HRG, often applied
to heavy-ion collisions, the lightest fermion is the nucleon for
which quantum effects are probably negligible.

In Fig. 2 we present the scaled variance ω, calculated
using Eq. (10), within different transverse-momentum bins
�pT (top) and rapidity bins �y (bottom). The scaled variance
in limited bins of momentum space is more sensitive to the
choice of particle statistics than the spectra would suggest.
BE and FD effects are particularly strong in momentum space
bins in which occupation numbers are large. Hence, at the
low-momentum tail one finds suppression of fluctuations for
FD and enhancement for BE, while at the high-momentum
tail one finds ωBE � ωMB � ωFD [Fig. 2 (top)]. The rapidity
dependence [Fig. (2) (bottom)], has a different behavior. The
reason is that in any �y bin there is some contribution
from a low-pT tail of the differential momentum spectrum

y
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FIG. 2. (Color online) Transverse-momentum (top) and rapidity
dependence (bottom) of the MCE scaled variance of negatively
charged particles at T = 160 MeV for a MB (blue), FD (green),
BE (red) “pion gas” at zero charge density. Momentum bins are
constructed such that each bin contains the same fraction q of the
average π− yield. The horizontal bars indicate the width of the �pT

or �y bins, while the marker indicates the position of the center of
gravity of the corresponding bin. Dashed lines indicate acceptance
scaling results, Eq. (C6).

dN/dy/dpT where quantum statistics effects are pronounced.
This leads to a clear separation of the curves and one finds
ωBE > ωMB > ωFD. In contrast to this, the 4π integrated (all
particles observed) scaled variance is rather insensitive to the
choice of statistics [39] (unless chemical potentials are large).
Please note that there are in fact three different “acceptance
scaling” lines in Fig. 2, which extrapolate the 4π integrated
scaled variance to limited acceptance. The differences are,
however, very small and all three lines lie practically on top of
each other.

In Fig. 3 we present the correlation coefficient ρ, calculated
using Eq. (11), between positively and negatively charged
particles in transverse-momentum bins �pT (top) and rapidity
bins �y (bottom). The 4π integrated correlation coefficient
between positively and negatively charged particles would
be ρ4π = 1 in the CE and MCE. In the GCE it would be
0. In the MB CE it would not show any momentum space
dependence and would always be ρ > 0. In the MCE the
situation is qualitatively different: in low-momentum bins
particles are positively correlated, while in high-momentum
bins they can even be anticorrelated. Horizontal lines again
indicate acceptance scaling (Appendix C). Quantum effects for
the correlation coefficient remain small as there is no explicit
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FIG. 3. (Color online) Same as described in the caption to
Fig. 2 but for the MCE correlation coefficient between positively
and negatively charged particles. Dashed lines indicate acceptance
scaling results, Eq. (C9).

local (quantum) correlations between particles of different
charge.

It should be stressed that the �pT dependence in Figs. 2
and 3 is a direct consequence of energy conservation. The �y

dependence of ω and ρ, however, is due to joint energy and
longitudinal-momentum (Pz) conservation. Disregarding Pz

conservation leads to a substantially milder �y dependence,
see Fig. 4.

This behavior can be intuitively explained: in a low-
momentum bin it is comparatively easy to balance charge, as
each individual particle carries little energy and momentum. In
contrast to this, in a high-momentum bin with, say, an excess
of positively charged particles, it is unfavorable to balance
charge, as one would also have to have more than on average
negatively charged particles, and each particle carries large
energy and momentum. This leads to suppressed fluctuations
and correlations in high-momentum bins when compared to
low-momentum bins.

In a small midrapidity window, with |y| < 0.3, the effects
of globally applied motional conservation laws cease to be
important (see Fig. 5). Local correlations due to BE and
FD statistics begin to dominate, and MCE deviations from
the GCE results, Eq. (36), are relevant only for the highest-
momentum bins. In BE or FD statistics we find for vanishing
bin size (δy, δpT ):

ωGCE
δ = κ

Nδ,Nδ

2

κ
Nδ

1

� 1

1 ± e−βmT cosh y+βµ
. (36)
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FIG. 4. (Color online) Rapidity dependence of the scaled variance
of positively charged particles (top) and of the correlation coefficient
between positively and negatively charged particles (bottom). Calcu-
lations are done for the same system as in Figs. 2 and 3; however,
disregarding momentum conservation.

BE and FD effects are strongest around midrapidity y = 0.
MCE calculations in Fig. 5 are close to the GCE estimate
Eq. (36). In MB statistics we find only a weak �pT dependence
in a small midrapidity window. Please note that the acceptance
scaling procedure predicts a Poisson distribution with ω → 1
and ρ → 0 for all three statistics in the limit of very small
acceptance.

B. Collectively moving system

As established long time, to properly define the thermo-
dynamics of a system with collective motion, the partition
function needs to be Lorentz invariant [48,49]. The expectation
values of observables need hence to transform according to
the Lorentz transformation properties of these observables.
In particular, the temperature T is promoted to a four-vector
βµ (combining local temperature with collective velocity).
The entropy, as well as particle multiplicities, remain Lorentz-
scalars.

These requirements are in general not satisfied unless
momentum conservation is put on an equal status with energy
conservation. If the system is described by a MCE, then
momentum should be conserved as well as energy [48,49].
If the system is exchanging energy with a bath, the bath needs
to exchange momentum as well.

For ensemble averages, neglecting these rules and treating
momentum differently from energy is safe as long as the
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FIG. 5. (Color online) Transverse-momentum dependence of
MCE scaled variance of negatively charged particles (top) and
the MCE correlation coefficient between positively and negatively
charged particles (bottom). Only particles in a midrapidity window
|y| < 0.3 are measured. Dashed lines denote the GCE result,
Eq. (36).

system is close to the thermodynamic limit, because there
ensembles become equivalent. The same is not true for fluc-
tuation and correlation observables, which remain ensemble
specific [30].

For a system at rest, these requirements are not apparent
because the net momentum is zero. Statistical mechanics
observables in a collectively moving system, however, lose
their Lorentz invariance if this is not maintained in the
definition of the partition function.

To illustrate this point, we consider the properties of a
system moving along the z axis with a collective velocity
given by Eq. (15). The total energy of the fireball is then
E = M cosh(y0), while its total momentum is given by Pz =
M sinh(y0). The mass of the fireball in its rest frame is
M = P µuµ. The system four-temperature is �β = β �u. Local
temperature and chemical potentials remain unchanged. We
will use this section for a discussion of the second rank tensor
(or covariance matrix) κ2, Eq. (29).

The second-order cumulant κ2, Eq. (29), is given by the
second derivatives of the cumulant-generating function with
respect to the fugacities. Essentially this is the Hessian matrix
[50] of the function Eq. (13), encoding the structure of its
minima. The diagonal elements κ

X,X
2 are the variances of the

GCE distributions of extensive quantities X. For example,
κ

NA,NA

2 measures the GCE variance of the distribution of
particle multiplicity of species A, while κ

Q,Q
2 denotes the

GCE electric charge fluctuations, etc. The off-diagonal κ
X,Y
2

elements give GCE covariances of two extensive quantities X

and Y .
For a boost along the z axis the general covariance matrix

for a pion gas reads:

κ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ
NA,NA

2 κ
NA,NB

2 κ
NA,Q
2 κ

NA,E
2 κ

NA,Px

2 κ
NA,Py

2 κ
NA,Pz

2

κ
NB,NA

2 κ
NB,NB

2 κ
NB,Q
2 κ

NB,E
2 κ

NB,Px

2 κ
NB,Py

2 κ
NB,Pz

2

κ
Q,NA

2 κ
Q,NB

2 κ
Q,Q
2 κ

Q,E
2 0 0 0

κ
E,NA

2 κ
E,NB

2 κ
E,Q
2 κ

E,E
2 0 0 κ

E,Pz

2

κ
Px,NA

2 κ
Px,NB

2 0 0 κ
Px,Px

2 0 0
κ

Py,NA

2 κ
Py,NB

2 0 0 0 κ
Py,Py

2 0
κ

Pz,NA

2 κ
Pz,NB

2 0 κ
Pz,E

2 0 0 κ
Pz,Pz

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

Off-diagonal elements correlating a globally conserved charge
with one of the momenta, i.e., κ

Q,Px

2 , as well as elements

denoting correlations between different momenta, i.e., κ
Px,Py

2 ,
are equal to zero due to antisymmetric momentum integrals.
The values of elements correlating particle multiplicity and
momenta, i.e., κ

NA,Px

2 , depend strongly on the acceptance cuts
applied. For fully phase-space integrated (4π ) multiplicity
fluctuations and correlations these elements are equal to 0,
again due to antisymmetric momentum integrals.

It is instructive to review the transformation properties of
κ under the Lorentz group: κ

X,Y
2 contains the correlations

between four-momenta P µ and, in general, (scalar) conserved
quantities and particle multiplicities Qj . Hence, the elements
κ

P µ,P ν

2 , i.e., 〈�P µ�P ν〉, will transform as a tensor of rank 2

under Lorentz transformations; κ
P µ,Qj

2 , i.e., 〈�P µ�Qj 〉, will
transform as a vector (the rapidity distribution will simply

shift); and the remaining κ
Qj ,Qk

2 will be scalars.
For a static system one finds for the covariances κ

E,Px

2 =
κ

E,Py

2 = κ
E,Pz

2 = 0. Under these two conditions, a static system
and full particle acceptance, the eigenvalues of the matrix
Eq. (37) factorize, and momentum conservation can be shown
to drop out of the calculation [34].
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FIG. 6. (Color online) Same as described in the caption to Fig. 2
(bottom) and Fig. 3 (bottom) but for a system moving with y0 = 2.

For a boost along the z axis (and arbitrary particle
acceptance) it is the appearance of nonvanishing elements
κ

Pz,E

2 = κ
E,Pz

2 �= 0 that make the determinant of the matrix
κ2, Eq. (37), invariant against such a boost. Please note that
still κ

Px,E
2 = κ

Py,E

2 = 0.
In Fig. 6 we show multiplicity fluctuations (top) and

correlations (bottom) for a system with boost y0 = 2. The
rapidity spectrum of Fig. 1 (bottom) is simply shifted to the
right by two units. The construction of the acceptance bins
is done as before. Multiplicity fluctuations and correlations
within a bin transform as a vector (i.e., its z component
shifts in rapidity) as inferred from their Lorentz-transformation
properties provided both energy and momentum along the
boost direction are conserved.

This last point deserves attention because usually (starting
from Ref. [17]) micro canonical calculations conserve only
energy and not momentum. Imposing exact conservation for
energy, and only average conservation of momentum, will
make the system non-Lorentz invariant, because in a different
frame from the comoving one energy and momentum will
mix, resulting in micro state-by-micro state fluctuations in
both momentum and energy.4

4This result is somewhat confusing, because energy momentum
is a vector of separately conserved currents. It is therefore natural
to assume that these currents can be treated within different
ensembles; they are, after all, conserved separately. It must be kept
in mind, however, that it is not energy momentum but particles
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FIG. 7. (Color online) Same as described in the caption to Fig. 6
but without Pz exact conservation.

This situation is explicitly shown in Fig. 7. Here, we have
calculated multiplicity fluctuations and correlations in the
same system as in Fig. 6 but with exact conservation of only
energy (and charge). In the comoving frame of the system, the
fluctuations and correlations are identical to Fig. 4. When the
system is boosted, however, the distribution changes (not only
by a shift in rapidity, as required by Lorentz invariance) and
loses its symmetry around the system’s average boost.

This last effect can be understood from the fact that
momentum does not have to be conserved event by event,
but energy does. It is easier, therefore, to create a particle
with less rapidity than average (having less momentum than
the boost and parametrically less energy) than with more

that are exchanged between the system and any canonical or grand
canonical bath. The amounts of energy and momentum carried by
each particle are strictly correlated by the dispersion relation [49].
In the situation examined here (unlike in a Cooper-Frye formalism
[51], where the system is “frozen” at the freeze-out hypersurface,
a space-time four-vector correlated with four-momentum) all time
dependence within the system under consideration is absent due
to the equilibrium assumption. Furthermore, the system is entirely
thermal: the correlation between particle numbers when the system
is sampled “at different times” is a δ function that stays a δ function
under all Lorentz transformations. Hence, unlike what happens in a
Cooper-Frye freeze-out, energy momentum and space-time do not
mix in the partition function. Together with the constraint from the
particle dispersion relations, this means that different components
of the four-momentum need to be treated by the same ensemble, as
explicitly demonstrated in this section.

014907-8



MULTIPLICITY FLUCTUATIONS AND CORRELATIONS IN . . . PHYSICAL REVIEW C 80, 014907 (2009)

rapidity than average (having more momentum than the boost
and parametrically more energy) and still conserve energy
overall. This leads to suppressed multiplicity fluctuations and a
negative correlation coefficient for rapidity bins in the forward
direction in comparison to rapidity bins in the backward
direction. In Fig. 6, where the system also needs to conserve
momentum exactly, this enhancement is balanced by the fact
that it will be more difficult to conserve momentum when
particles having less momentum than the boost are created.

A situation such as that in Fig. 7 is impossible to be realized
physically. It could, however, be realized within “system in a
box”-type calculations with nonequilibrium models: e.g., a
transport model inside an infinitely heavy box (that absorbs
momentum but not energy event by event) would end up
exhibiting micro canonical correlations similar to those in
Fig. 7. A similar box with “periodic” walls, however, would
conserve energy as well as momentum inside the box and
should therefore behave as in Fig. 6. Thus, correlations
within boosted sources provide a sensitive test of the Lorentz
invariance of such transport models.

IV. CORRELATIONS BETWEEN BINS DISCONNECTED IN
MOMENTUM SPACE

“Long-range correlations” between bins well disconnected
in momentum have been suggested to arise from dynamical
processes. Examples include color glass condensate [7,8],
droplet formation driven hadronization [52], and phase tran-
sitions within a percolation-type mechanism [53,54]. The
elliptic flow measurements, widely believed to signify the
production of a liquid at the Relativistic Heavy Ion Collider
(RHIC) [55–58], are also, ultimately, correlations between
particles disconnected in phase space (here the azimuthal
angle).

As we will show, however, conservation laws will also
introduce such correlations between any two (connected or
not) distinct regions of momentum space. No dynamical effects
are taken into consideration (only an isotropic thermal system).

Let us first consider correlations between the multiplicities
of particles A and B within two bins centered around yA and
yB with (constant) widths �yA = �yB = 0.2. In Fig. 8 (top)
we show the correlation coefficient, calculated using Eq. (11),
between positive and negative particles as a function of yA

and yB . In Fig. 8 (bottom) we show the correlation coefficient
between like-charge, unlike-charge, and all charged particles
as a function of ygap = yA − yB.

Energy conservation always leads to anticorrelation be-
tween different momentum space bins. Charge conservation
leads to a positive correlation of unlike charged particles and
anticorrelation of like-sign particles. Longitudinal-momentum
conservation, however, is responsible for the structure visible
in Fig. 8 (top). Having a small (large) number of particles in
a bin with positive average longitudinal momentum leads to a
larger (smaller) number of particles in a bin with different
but also positive Pz (blue dips). This makes also a state
with smaller (larger) particle number with opposite average
longitudinal momentum −Pz more likely (red hills). At large
values of yA the correlation coefficient ρ � 0 for any yB ,
because the yield 〈NA〉 in �yA is asymptotically vanishing.
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FIG. 8. (Color online) (Top) The correlation coefficient ρ be-
tween the multiplicity of positively charged particles in a bin located
at yA with negatively charged particles in a bin located at yB , both
with a 0.2 width in rapidity. (Bottom) The correlation coefficient
between multiplicities in two bins separated by ygap of like, unlike,
and all charged particles. Both plots show MCE MB results.

In Fig. 8 (bottom) we show the correlation coefficient
along the diagonal from top left to bottom right as a function
of separation. Unlike-sign particles are positively correlated.
Like-sign and all charged particles are negatively correlated
at small separation ygap. For large separation the correlation
becomes asymptotically zero, because the yield is zero. How-
ever, please note that in particular ρ(π±, π±) > ρ(π+, π−) at
large ygap. Pz conservation is dominant.

Disregarding Pz conservation would destroy the particular
structure in Fig. 8 (top) and lead to a single peak at the origin.
The correlation would then be insensitive to the momentum
direction and only be sensitive to the energy content of a
bin �y. The observables in Fig. 8 transform under boosts
(yA,B → yA,B − y0) provided momentum along the boost axis
is exactly conserved.

Angular correlations also arise due to conservation of
transverse momenta Px and Py . In Fig. 9 we show the
correlation coefficient between particles in different �φ bins.
The flat5 angular spectrum dN/dφ has been divided into 10
equal size bins and the correlation coefficient is presented as
a function of separation of the centers of the corresponding
bins.

5Because we consider globally equilibrated systems, elliptic flow is
disregarded here.
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FIG. 9. (Color online) The correlation coefficients of particles in
distinct �φ bins as a function of separation φgap in azimuth. (Top)
Integrated over all phase space. (Bottom) Only particles with |y| <

0.3 are observed. Both plots show MCE MB results. No elliptic flow
is considered.

To explain Fig. 9 we note, first, that when disregarding
exact conservation of Px and Py the correlation coefficients
are insensitive to the distance φgap of any two bins. Only the
correlations due to energy and charge conservation affect the
result. Charge conservation leads to correlation of unlike-sign
particles and to anticorrelation of like-sign particles. Energy
conservation always anticorrelates multiplicities in two bins.
For ρ(π±, π±) the effect of charge conservation cancels
for a neutral system, however, effects of energy-momentum
conservation are stronger, as a larger number of particles
(hence a larger part of the total system) is observed.

Conservation of transverse momenta Px and Py is now
responsible for the φgap dependence of ρ. The line of arguments
is similar to the ones before: Observing a larger (smaller)
number of particles in some bin at φ0 implies that, to balance
momenta Px = Py = 0, one should also observe a larger
(smaller) number of particles in the opposite direction π -φ0. A
larger (smaller) number of particles in a bin with φgap = π/2
would do little to help to balance momentum but conflict with
energy conservation.

V. DISCUSSION AND SUMMARY

We have presented multiplicity fluctuations and correlations
in limited momentum bins for ideal relativistic gases in the

MCE in the thermodynamic limit. For our examples we chose a
gas with three degenerate massive particles (positive, negative,
and neutral) in three different statistics (Maxwell-Boltzmann,
Fermi-Dirac, and Bose-Einstein).

For the width of multiplicity distributions in limited bins
of momentum space a simple and intuitive picture emerges.
In the Maxwell-Boltzmann approximation one finds a wider
distribution for momentum bins with low average momentum
when compared to bins with higher average momentum but
same average particle number. This qualitative behavior is a
direct consequence of energy and momentum conservation.
The results in Fermi-Dirac and Bose-Einstein statistics, fur-
thermore, show pronounced effects at the low-momentum tail
of the spectrum.

The correlation coefficient additionally shows a similar
qualitative behavior. In bins with low-average momentum
the correlation coefficient between positively and negatively
charged particles is indeed positive, as one would expect
from charge conservation. However, in bins with large av-
erage momentum the effects of joint energy and momentum
conservation can lead to anticorrelated distributions of unlike-
charged particles.

For boosted systems we found that the role of exactly
imposed motional conservation laws is particularly important.
Fluctuations and correlations transform under boosts, provided
momentum conservation along the boost direction is taken into
account. This ensures, in particular, that they become boost
invariant if the underlying system is boost invariant.

Last, we found that even in the thermodynamic limit
long-range correlations between disconnected regions in mo-
mentum space prevail. Multiplicities in different rapidity bins,
as well as different bins in azimuth, have a nonzero correlation
coefficient.

It is premature to use the model presented here for a
quantitative comparison with experimental data. First, the
inclusion of resonances will provide important corrections.
These can be implemented within our model using Monte
Carlo techniques and will be the subject of a subsequent
work [59].

An additional effect missing here that could change
results qualitatively is longitudinal flow. It can be seen, “by
symmetry,” that correlations and fluctuations in a perfectly
boost-invariant fluid would be, just like other physical ob-
servables, independent of rapidity. Reconciling this with the
calculations in Secs. III A and III B would require calculating
correlations of many independent sources, each centered
around a particular rapidity.

It is, however, not currently clear whether experimental
data, even at highest RHIC and Large Hadron Collider (LHC)
energies at midrapidity, approximates this limit. At lower
Super Proton Synchrotron (SPS) energies, measurements [10]
of the rapidity and transverse-momentum dependence of
particle multiplicity fluctuations show qualitatively similar
results to those of our calculations (it should be noted that,
as shown in Ref. [60], this behavior for fluctuations also arises
in molecular dynamics models, where conservation laws are
included but equilibrium is not assumed). It has long been
noticed [61,62] that many observables binned in rapidity
obey “universal fragmentation,” suggesting that a “Landau
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hydrodynamics,” with negligible initial longitudinal flow even
away from midrapidity, might be more appropriate than boost
invariance to describe the initial state, even at ultrarelativistic
energies [63]. Experimentally, these measurements might be
nontrivial because the size of the bins must be large enough
for conservation laws to have an effect, but, because RHIC
has large-acceptance data [55,56] and the LHC is planning
a larger-acceptance detector [64], they are, in principle,
possible.

If boost invariance is not really there, then correlations
and fluctuations binned by rapidity should be qualitatively
similar to those calculated in Sec. III A even at RHIC and LHC
energies. We therefore suggest the experimental measurement
of such fluctuations (the right panels of Figs. 2 and 3) at these
energies as an experimental probe of the degree of boost-
invariance of the system.

Similarly, transverse flow should not change the correlation
and fluctuations within limited transverse-momentum bins (the
left panels of Figs. 2 and 3) beyond a trivial shift provided there
are no significant fluctuations in collective flow observables.
These fluctuations are widely expected to arise in an imperfect
fluid [65] but have remarkably not been observed, for example,
in elliptic flow measurements [66,67]. We suggest, therefore,
that a measurement of pT binned fluctuations and correlations
could provide a qualitative way to assess the magnitude of
event-by-event flow observables wrt to the thermal observables
presented here.

Finally, effects of the sort studied in Sec. IV will surely
appear in any measurement looking for correlations across
momentum space. Long-range rapidity correlations have, in
particular, been advocated as a signature of new physics [7,8].
Our work shows that correlations due to conservation laws
actually cover as wide a range in rapidity as those measured
in Refs. [12–14]. The magnitude of the correlations, however,
is significantly (as much as an order of magnitude) lower than
either the experimental result or any reasonable “new physics,”
suggesting that the origin of the experimentally observed
correlations lies elsewhere. In particular, correlations induced
by initial-state geometry are considerably larger than those
induced by conservation laws, as a comparison between Fig. 8
and the results in Ref. [15] will show.6 Nevertheless, energy-
momentum conservation does trigger correlations across a
wide rapidity interval and, as shown in Ref. [60], qualitatively
the magnitude of these correlations is independent of the
degree of equilibration of the system, so their presence in
experimental data is very plausible. Perhaps complementing
the rapidity correlations with azimuthal correlation measure-
ments, such as those in Fig. 9, might clarify their role, although
the latter are particularly susceptible to “nontrivial” physics
contributions, such as jet pairs and elliptic flow.

In conclusion, we have presented microcanonical ensemble
calculations of correlation and fluctuation observables within

6Note, however, that these results were obtained in the infinite
volume limit. Finite volume effects are likely to increase the strength
of correlations arising from conservation laws, though for realistic
nuclear volumes such corrections should not alter the results by an
order of magnitude.

and across bins within a range of rapidity and transverse
momenta. The calculations presented here provide qualitative
effects affecting multiplicity fluctuations and correlations.
These effects arise solely from statistical mechanics and con-
servation laws. It will be extremely important to see whether
these qualitative effects are visible in further experimental
measurements of the momentum dependence of multiplicity
fluctuations and correlations. If so, these effects might well
be of similar magnitude to the signals for new physics.
Disentangling them from dynamical correlations will then be
an important, and likely nontrivial, task.
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APPENDIX A: MCE PARTITION FUNCTION

This section serves to provide a connection between
Eqs. (3)–(5) and Eq. (23); namely to prove the following
relation:

Z �Q, �P (V, β, �µ, �u) = e−P µuµβeQj µj βZMCE(V, �P , �Q), (A1)

where ZMCE(V, �P , �Q) is the standard MCE partition function
for a system of volume V , collective four-momentum �P ,
and a set of conserved Abelian charges �Q, as worked out
in Refs. [42,47]. The MCE partition function ZMCE(V, �P , �Q)
counts the number of micro states consistent with this set
of fixed extensive quantities. Likewise one could interpret
the number Z �Q, �P (V, β, �µ, �u) as the number of micro states
with the same set of extensive quantities for a GCE with
local inverse temperature β, four-velocity �u, and chemical
potentials �µ.

The starting point for this calculation is our Eq. (23):

Z �Q, �P (V, β, �µ, �u) =
∫ π

−π

dJ φ

(2π )J
e−iQj φj

∫ ∞

−∞

d4α

(2π )4
e−iP µαµ

× exp[V �(β, �µ, �u; �φ, �α)]. (A2)

Let us take a closer look at the exponential of Eq. (A2). For
this we spell out Eq. (13) and use the substitutions Eqs. (21)
and (22):

exp

[∑
l

V gl

(2π )3

∫
d3p ln

(
1 ± e−p

µ

l (βuµ−iαµ)eq
j

l (βµj +iφj ))±1
]
.

(A3)
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Expanding the logarithm yields:

exp

[∑
l

V gl

(2π )3

∫
d3p

×
∞∑

nl=1

(∓1)nl

nl

e−nlp
µ

l (βuµ−iαµ)enlq
j

l (βµj +iφj )

]
. (A4)

Replacing now the momentum integration in Eq. (A4)
by the usual summation over individual momentum levels

V
(2π)3

∫
d3p → ∑

knl
gives:

exp

⎡
⎣∑

l

∞∑
nl=1

∑
knl

gl(∓1)nl

nl

e
−nlp

µ

knl
(βuµ−iαµ)

enlq
j

l (βµj +iφj )

⎤
⎦ .

(A5)

Finally, expanding the exponential yields:

Z �Q, �P (V, β, �µ, �u) =
∫ π

−π

dJ φ

(2π )J
e−iQj φj

×
∫ ∞

−∞

d4α

(2π )4
e−iP µαµ

∏
l

∞∏
nl=1

∏
knl

∞∑
cknl

=0

× 1

cknl
!

(
gl(∓1)nl

nl

)cknl

e
−cknl

nlp
µ

knl
(βuµ−iαµ)

× e
cknl

nlq
j

l (βµj +iφj )
. (A6)

Only sets of numbers {cknl
} which meet the requirements:

∑
l

∞∑
nl=1

∑
knl

cknl
nl p

µ

knl
= P µ

and ∑
l

∞∑
nl=1

∑
knl

cknl
nl q

j

l = Qj, (A7)

have a nonvanishing contribution to the integrals. Therefore
we can pull these factors in front of the integral:

Z �Q, �P (V, β, �µ, �u)

= e−P µuµβ eQj µj β

∫ π

−π

dJ φ

(2π )J
e−iQj φj

∫ ∞

−∞

d4α

(2π )4
e−iP µαµ

×
∏

l

∞∏
nl=1

∏
knl

∞∑
cknl

=0

1

cknl
!

(
gl(∓1)nl

nl

)cknl

× e
icknl

nlp
µ

knl
αµ

e
icknl

nlq
j

l φj . (A8)

Reverting the above expansions one returns to the definition
of ZMCE(V, �P , �Q) from Ref. [42,47] times the Boltzmann
factors:

Z �Q, �P (V, β, �µ, �u)

= e−P µuµβ eQj µj β

∫ π

−π

dJ φ

(2π )J
e−iQj φj

∫ ∞

−∞

d4α

(2π )4
e−iP µαµ

× exp

[∑
l

V gl

(2π )3

∫
d3p ln

(
1 ± eip

µ

l αµ eiq
j

l φj
)±1

]
,

(A9)

which proves Eq. (A1). Therefore we write for the GCE
distribution of extensive quantities:

Pgce( �Q, �P ) = e−P µuµβ eQj µj β ZMCE(V, �P , �Q)

ZGCE(V, β, �µ, �u)

= Z �Q, �P (V, β, �µ, �u)

ZGCE(V, β, �µ, �u)
, (A10)

which provides the promised connection between Eqs. (3)–(5)
and Eq. (23).

APPENDIX B: ASYMPTOTIC JOINT DISTRIBUTION

The MCE joint multiplicity distribution Pmce(NA,NB )
is conveniently expressed by the ratio of two GCE joint
distributions:

Pmce(NA,NB) = Pgce(NA,NB |B, S,Q,E, . . .), (B1)

= Pgce(NA,NB,B, S,Q,E, . . .)

Pgce(B, S,Q,E, . . .)
. (B2)

In the TL the distributions Pgce(NA,NB,B, S,Q,E, . . .)
and Pgce(B, S,Q,E, . . .) can be approximated by MND’s,
Eq. (31). The charge vector Eq. (33) for a MCE HRG with
three conserved charges would read:

(�Q) = (�NA,�NB,�B,�S,�Q,�E, . . .). (B3)

Evaluating the MND, Eq. (31), around its peak for
(B, S,Q,E, . . .) yields:

(�Q) = (�NA,�NB, 0, 0, 0, 0, . . .). (B4)

The vector Eq. (32) then becomes:

�ξ = V −1/2

⎛
⎜⎜⎜⎜⎜⎝

λ1,1 �NA + λ1,2 �NB

λ2,1 �NA + λ2,2 �NB

λ3,1 �NA + λ3,2 �NB

λ4,1 �NA + λ4,2 �NB

λ5,1 �NA + λ5,2 �NB

· · ·

⎞
⎟⎟⎟⎟⎟⎠ , (B5)

where λi,j are the elements of the matrix Eq. (34). Therefore:

ξj ξ j = V −1

[
(�NA)2

J∑
j=1

λ2
j,1 + 2(�NA)(�NB)

×
J∑

j=1

λj,1λj,2 + (�NB)2
J∑

j=1

λ2
j,2

]
, (B6)

with J = 2 + 3 + 4 = 9 for a MCE HRG with momentum
conservation. Using Eq. (B6), the micro canonical joint
multiplicity distribution of particle species A and B can thus
be written as:

Pmce(NA,NB ) = 1

(2πV )

det σN

det σ
exp

[
−1

2
ξj ξ j

]
, (B7)

where σN is the seven-dimensional inverse σ tensor of
the distribution Pgce(B, S,Q,E, . . .). Comparing this to a
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bivariate normal distribution Eq. (6), one finds:

J∑
j=1

λ2
j,1 = 1

σ 2
A(1 − ρ2)

= A, (B8)

J∑
j=1

λ2
j,2 = 1

σ 2
B(1 − ρ2)

= B, (B9)

J∑
j=1

λj,1λj,2 = − ρ

(1 − ρ2)σAσB

= −C. (B10)

After a short calculation one finds for the covariances:

σ 2
A = B

AB − C2
, (B11)

σ 2
B = A

AB − C2
, (B12)

σA,B = C

AB − C2
, (B13)

and additionally the correlation coefficient, Eq. (11):

ρ = σA,B

σA σB

= C√
AB

, (B14)

where the terms A,B, and C are given by Eqs. (B8)–(B10).
For the normalization in Eq. (B7) [from a comparison with
Eq. (6)] one finds:

det σN

det σ
= 1

σAσB

√
(1 − ρ2)

=
√

AB. (B15)

APPENDIX C: ACCEPTANCE SCALING

To illustrate the “acceptance scaling” procedure employed
in Refs. [30,36,37] we assume uncorrelated acceptance of
particles of species A and B. Particles are measured or
observed with probability q regardless of their momentum.
The distribution of measured particles nA, when a total number
NA is produced, is then given by a binomial distribution:

Pacc(nA|NA) = qnA (1 − q)NA−nA

(
NA

nA

)
. (C1)

The same acceptance distribution is used for particles of
species B. Independent of the original multiplicity distribution
P (NA,NB), we define the moments of the measured particle
multiplicity:〈

na
A · nb

B

〉 ≡
∑
nA,nB

∑
NA,NB

na
A nb

B

×Pacc(nA|NA) Pacc(nB |NB) P (NA,NB ). (C2)

For the first moment 〈nA〉 one finds:

〈nA〉 = q 〈NA〉. (C3)

The second moment 〈n2
A〉 and the correlator 〈nA · nB〉 are given

by: 〈
n2

A

〉 = q2
〈
N2

A

〉 + q(1 − q)〈NA〉, (C4)

〈nA · nB〉 = q2〈NA · NB〉. (C5)

For the scaled variance ωA
q of observed particles one now

finds [30]:

ωA
q =

〈
n2

A

〉 − 〈nA〉2

〈nA〉 = 1 − q + q ωA
4π , (C6)

where ωA
4π is the scaled variance of the distribution if all

particles of species A are observed. Last, the correlation
coefficient ρq is:

ρq = 〈�nA�nB〉√
〈(�nA)2〉 〈(�nB )2〉

, (C7)

with 〈�nA�nB〉 = 〈nA · nB〉 − 〈nA〉〈nB〉 and 〈(�nA)2〉 =
〈n2

A〉 − 〈nA〉2. Substituting the above relations, one finds after
a short calculation:

ρq = ρ4π q

√
ωA

4πωB
4π

[
q2ωA

4πωB
4π + q(1 − q)ωA

4π

+ q(1 − q)ωB
4π + (1 − q)2

]−1/2
. (C8)

In case ωA
4π = ωB

4π = ω4π , Eq. (C8) simplifies to:

ρq = ρ4π

q ω4π

1 − q + qω4π

. (C9)

Both lines are independent of the mean values 〈NA〉 and
〈NB〉.
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