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Hard breakup of two nucleons from the 3He nucleus
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We investigate a large angle photodisintegration of two nucleons from the 3He nucleus within the framework
of the hard rescattering model (HRM). In the HRM a quark of one nucleon knocked out by an incoming
photon rescatters with a quark of the other nucleon leading to the production of two nucleons with large relative
momentum. Assuming the dominance of the quark-interchange mechanism in a hard nucleon-nucleon scattering,
the HRM allows the expression of the amplitude of a two-nucleon breakup reaction through the convolution of
photon-quark scattering, NN hard scattering amplitude, and nuclear spectral function, which can be calculated
using a nonrelativistic 3He wave function. The photon-quark scattering amplitude can be explicitly calculated in
the high energy regime, whereas for NN scattering one uses the fit of the available experimental data. The HRM
predicts several specific features for the hard breakup reaction. First, the cross section will approximately scale
as s−11. Second, the s11 weighted cross section will have the shape of energy dependence similar to that of s10

weighted NN elastic scattering cross section. Also one predicts an enhancement of the pp breakup relative to the
pn breakup cross section as compared to the results from low energy kinematics. Another result is the prediction
of different spectator momentum dependencies of pp and pn breakup cross sections. This is due to the fact that
the same-helicity pp-component is strongly suppressed in the ground state wave function of 3He. Because of this
suppression the HRM predicts significantly different asymmetries for the cross section of polarization transfer
NN breakup reactions for circularly polarized photons. For the pp breakup this asymmetry is predicted to be
zero while for the pn it is close to 2

3 .
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I. INTRODUCTION

Two-body breakup processes involving nuclei at high
momentum and energy transfer play an important role in
studies of nuclear QCD. The uniqueness of these processes
is in the effectiveness by which large values of invariant
energy are produced at rather moderate values of beam energy.
The kinematics of two-body photodisintegration provide the
relation

sγNN ≈ 4m2
N + 4Eγ mN, (1)

in which the produced invariant energy grows with the energy
of the probe twice as fast as compared, for example, to
hard processes involving two protons, in which case sNN =
2m2

N + 2E · mN . As it follows from Eq. (1), already at photon
energies of 2 GeV the produced invariant mass on one nucleon,

M ∼
√

SγNN

2 , exceeds the threshold at which deep-inelastic
processes become important, M >∼ 2 GeV.

Combining the above property with a requirement that the
momentum transfer in the reaction exceeds the masses of
the particles involved in the scattering (−t,−u � m2

N ) one
sets into a hard scattering kinematic regime, in which case
we expect that only minimal Fock components dominate in
the wave function of the particles involved in the scattering.
Assuming that all the constituents of the minimal Fock
component participate in a hard scattering one arrives at the
constituent-counting rule [1,2]. According to this rule we are
able to predict the energy dependence of any hard processes at
fixed and large center of mass (c.m.) scattering angles. For
example, for the A + B → C + D hard scattering process
the constituent-counting rule predicts the following energy

dependence for the scattering amplitude:

M ≈ s− nA+nB +nC+nD−4
2 , (2)

with

dσ

dt
∼ |M|2

s2
. (3)

In Eq. (2) ni is the number of constituents in the minimal
Fock component of the wave function of particle i involved
in the scattering. These predictions were confirmed for a wide
variety of hard processes involving leptons and hadrons.

One of the most interesting aspects of the constituent-
counting rule is that its application allows us to check the
onset of quark degrees of freedom in hard reactions involving
nuclei [3,4]. This is essential for probing the quark-gluon
structure of nuclei. For example if quarks are involved in hard
photodisintegration of the deuteron then according to Eqs. (2)
and (3) one expects that dσ

dt
∼ s−11 [3].

During the last decade there were several experiments in
which 90◦ c.m. photodisintegration of the deuteron had been
studied at high photon energies [5–12]. These experiments
clearly demonstrated the onset of s−11 scaling for the differen-
tial cross section at 90◦ c.m., starting at Eγ � 1 GeV. Also, the
polarization measurements [9,12] were generally in agreement
with the prediction of the helicity conservation—a precursor
of the dominance of the mechanism of hard gluon exchange
involving quarks.

Even though two-body scattering experiments demonstrate
clearly an onset of quark degrees of freedom in the reac-
tion, they do not affirm the onset of the perturbative QCD
(pQCD) regime. Indeed it has been argued that the validity
of constituent-counting rule does not necessarily lead to the
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validity of pQCD (see, e.g., Refs. [13,14]). In several mea-
surements in which the constituent quark rule works pQCD
still underestimates the observed cross sections sometimes
by several orders of magnitude (see, e.g., Refs. [15,16]).
The latter may indicate a substantial contribution due to
nonperturbative effects, although one still may expect sizable
contributions from pQCD due to generally unaccounted hidden
color components in the hadronic and nuclear wave functions
[17].

A similar situation also exists for the case of hard pho-
todisintegration of the deuteron. Even though experiments
clearly indicate the onset of s−11 scaling for the cross section
of these reactions at 90◦ c.m., one still expects sizable
nonperturbative effects. Theoretical methods of calculation of
these effects are very restricted. They use different approaches
to incorporate nonperturbative contributions in the process of
hard photodisintegration of the deuteron. The reduced nuclear
amplitude (RNA) formalism includes some of the nonpertur-
bative effects through the nucleon form factors [18,19], while
in the quark-gluon string model (QGS) [20] nonperturbative
effects are accounted for through the reggeization of scattering
amplitudes. Also recently, large c.m. angle photodisintegration
of the deuteron for photon energies up to 2 GeV was
calculated within point-form relativistic quantum mechanics
approximation [21] in which the strength of the reaction was
determined by short range properties of the NN interaction
potential.

In the QCD hard rescattering model (HRM) [22,23] it is
assumed that the energetic photon knocks out a quark from one
nucleon in the deuteron that subsequently experiences hard
rescattering with a quark of the second nucleon. The latter
leads to the production of two nucleons with large relative
momentum. The summation of all the relevant rescattering
diagrams results in a scattering amplitude in which the hard
rescattering is determined by the large-momentum transfer pn

scattering amplitude, which includes noncalculable nonertur-
bative contributions. Experimental data are used to estimate the
hard pn scattering amplitude. The HRM allows us to calculate
the absolute cross section of 90◦ c.m. hard photodisintegration
of the deuteron without using additional adjustable parameters.

Also, within the QGS [24] approximation and the HRM
[25,26] rather reasonable agreement has been obtained for
polarization observables [12].

Although all the above-mentioned models describe the ma-
jor characteristics of hard photodisintegration of the deuteron
they are based on very different approaches in the calculation
of the nonperturbative parts of the photodisintegration reac-
tion. To investigate further the validity of these approaches it
was suggested in Ref. [27] to extend the studies of high energy
two-body photodisintegration to the case of large angle c.m.
breakup of two protons from the 3He target. In this case not
only do the predictions of the above-described models (RNA,
QGS, HRM) for absolute cross section diverge significantly
but also the two-proton breakup reaction from 3He provides
additional observables such as spectator-neutron momentum
distributions that can be used to check further the validity
of the models. The analysis of the first experimental data on
pp photodisintegration of the 3He nucleus at high momentum
transfer is currently in progress at Jefferson Lab [28]. It may

significantly advance our understanding of the mechanism of
hard breakup reactions involving nuclei.

In the present work we carry out detailed studies of reactions
involving hard breakup of both pp and pn pairs from the 3He
target. We demonstrate that comparative study of pp and pn

breakup processes allows us to gain new insight into the nature
of large c.m. angle scattering. One of the observations is that
the relative strength of pp to pn breakup is larger than the one
observed in low energy reactions. This is related to the onset of
quark degrees of freedom in hard breakup reactions in which
effectively more charges are exchanged between two protons
than between proton and neutron.

Another signature of the HRM is that the shapes of the
energy dependencies of s11-scaled differential cross sections
of pp and pn breakup reactions mirror the shapes of the energy
dependencies of s10-scaled differential cross sections of hard
elastic pp and pn scatterings.

Within the HRM one observes also that pp and pn hard
breakup processes are sensitive to different components of
the 3He ground state wave function. This results in different
spectator-nucleon momentum dependencies for pp and pn

hard breakup cross sections.
Because of the different ground state wave function com-

ponents involved in pp and pn breakup reactions, the HRM
also predicts significantly different magnitudes for transferred
longitudinal polarizations for these two processes.

The article is organized as follows: In Sec. II, within
HRM, we present a detailed derivation of the differential
cross section of the reaction of hard breakup of two-nucleons
from a 3He target. In Sec. III we apply the formulas
derived in the previous section to calculate the differential
cross section of a proton-neutron breakup reaction, while in
Sec. IV calculations are done for a two-proton breakup
reaction. Section V considers the relative contribution of two-
and three-body processes for hard breakup reactions involving
A � 3 nuclei. In Sec. VI we present numerical estimates for
differential cross sections of pn and pp breakup reactions.
In Sec. VII we discuss the polarization transfer mechanism
of the HRM and estimate the asymmetry of the cross section
with respect to the helicity of the outgoing proton. Results
are summarized in Sec. VIII. In Appendix A the details of
the derivation of the hard rescattering amplitude are given. In
Appendix B we discuss the quark-interchange contribution
to hard NN elastic scattering. Appendix C discusses the
method of calculation of quark-charge factors within the
quark-interchange mechanism of NN hard elastic scattering.
In Appendix D we present the complete list of the HRM
helicity amplitudes for high energy two-nucleon breakup of
the 3He nucleus.

II. HARD PHOTODISINTEGRATION OF TWO NUCLEONS
FROM 3He

A. Reference frame and kinematics

We are considering a hard photodisintegration of two
nucleons from the 3He target through the reaction

γ + 3He → (NN ) + Ns, (4)
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FIG. 1. Typical hard rescattering diagram for the NN photodis-
integration from the 3He target.

in which two nucleons (NN ) are produced at large angles
in the “γ -NN” center of mass reference frame with mo-
menta comparable to the momentum of the initial photon,
q (>1 GeV/c). The third nucleon, Ns , is produced with very
small momentum ps � mN . (Definitions of four-momenta
involved in the reaction are given in Fig. 1.)

We consider “γ -NN” in a “q+ = 0” reference frame, where
the light-cone momenta1 of the photon and the NN pair are
defined as follows:

qµ ≡ (q+, q−, q⊥) =
(

0,

√
s ′
NN, 0

)
,

p
µ

NN ≡ (pNN+, pNN−, pNN⊥) =
(√

s ′
NN,

M2
NN√
s ′
NN

, 0

)
, (5)

where p
µ

NN = p
µ
3He − p

µ
s ,M2

NN = p
µ

NNpNN,µ, and s ′
NN =

sNN − M2
NN . Here the invariants, sNN and tNN , are defined

as follows:

sNN = (q + pNN )2 = (pf 1 + pf 2)2

tNN = (q − pf 1)2 = (pf 2 − pNN )2. (6)

As it follows from Eq. (5) in the limit of M2
NN

s ′
NN

→ 0 the
“q+ = 0” reference frame coincides with the center of mass
frame of the γ -NN system. As such it is maximally close
to the reference frame used for the γ d → p + n reaction in
Refs. [22] and [25].

B. Hard rescattering model

The hard rescattering model is based on the assumption
that, in the hard two-nucleon photodisintegration reaction, two

1The light-cone four-momenta are defined as (p+, p−, p⊥), where
p± = E ± pz. Here the z axis is defined in the direction opposite to
the incoming photon momentum.

nucleons with large relative momenta are produced because of
the hard rescattering of a fast quark from one nucleon with a
quark from the other nucleon. In this scenario the fast quark
is knocked out from a low-momentum nucleon in the nucleus
by an incoming photon. This approach is an alternative to the
models in which it is assumed that the incoming photon breaks
the preexisting two-nucleon state, which has very large relative
momentum in the nucleus.

The validity of the HRM is based on the observation that
the ground state wave functions of light nuclei peak strongly
at small momenta of bound nucleons, p ∼ 0. Thus, diagrams
in which an energetic photon interacts with bound nucleons of
small momenta will strongly dominate the diagrams in which
the photon interacts with bound nucleons that have relative
momenta p � mN .

The resulting scenario that the HRM sketches out is as
follows (see, e.g., Fig. 1): first, the incoming photon will
knock out a quark from one of the nucleons in the nucleus
and then the struck quark that now carries almost the whole
momentum of the photon will share its momentum with a
quark from the other nucleon through the exchanged gluon.
The resulting two energetic quarks will recombine with
the residual quark-gluon systems to produce two nucleons
with large relative momentum (∼q). This recombination will
contain gluon exchanges and also incalculable nonperturbative
interactions.

Note that for the quark-gluon picture discussed above to
be relevant the intermediate masses mint produced after the
photon absorption should exceed the mass scale characteristic
for deep inelastic scattering, W ∼ 2.2 GeV. Using the relation
mint ≈

√
m2

N + 2Eγ mN , from the requirement that mint � W

one obtains the condition Eγ � 2 GeV. Additionally, to ensure
the validity of quark degrees of freedom in the final state
rescattering, one requires krel � 1 GeV/c for the relative
momentum krel, of two outgoing nucleons. All of these imposes
a restriction on the incoming photon energy, Eγ � 2 GeV,
and for transferred momenta −t,−u � 2 GeV2. Note that
provided a smooth transition from hadronic to quark-gluon
degrees of freedom in nuclei one expects the validity of the
HRM to extend to even lower values of Eγ (>∼1 GeV). This
expectation was confirmed in recent measurements of angular
dependencies of the γ d → pn cross section for a wide range
of incoming photon energies [11].

To calculate the differential cross section of the hard
photodisintegration reaction of Eq. (4) within the HRM one
needs to evaluate the sum of hard rescattering diagrams similar
to the one presented in Fig. 1. We start with analyzing
the scattering amplitude corresponding to the diagrams of
Fig. 1. Using Feynman rules and applying the light-cone wave
function reduction described in Appendix A, we obtain

〈λ1f , λ2f , λs |A|λγ , λA〉

=
∑

(η1f ,η2f ),(η1i ,η2i ),(λ1i ,λ2i )

∫ {
ψ

†λ2f ,η2f

N (p2f , x ′
2, k2⊥)

1 − x ′
2

ūη2f

× (p2f − k2)
[−igT F

c γ ν
] i[/p1i − /k1 + /q + mq]

(p1i − k1 + q)2 − m2
q + iε
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× [−iQieε
λγ

⊥ γ ⊥]
uη1i

(p1i − k1)
ψ

λ1i ,η1i

N (p1i , x1, k1⊥)

(1 − x1)

}
1

×
{

ψ
†λ1f ,η1f

N (p1f , x ′
1, k1⊥)

1 − x ′
1

ūη1f
(p1f − k1)

× [−igT F
c γ µ

]
uη2i

(p2i − k2)
ψ

λ2i ,η2i

N (p2i , x2, k2⊥)

(1 − x2)

}
2

×Gµ,ν(r)
dx1

x1

d2k1⊥
2(2π )3

dx2

x2

d2k2⊥
2(2π )3

× 	
λA,λ1i ,λ2i ,λs
3He (α, p⊥, ps)

(1 − α)

dα

α

d2p⊥
2(2π )3

− (p1f ←→ p2f ),

(7)

where the (p1f ←→ p2f ) part accounts for the diagram in
Fig. 1(b). Here the four-momenta, p1i , p2i , ps, k1, k2, r, p1f ,
and p2f , are defined in Fig. 1. Note that k1 and k2 define the
four-momenta of residual quark-gluon system of the nucleons
without specifying their actual composition. We also define
x1, x

′
1, x2, and x ′

2 as the light-cone momentum fractions of
initial and final nucleons carried by their respective residual
quark-gluon systems: x1(2) = k1(2)+

p1(2)i+
and x ′

1(2) = k1(2)+
p1(2)f +

. For the
3He wave function, α = p2+

pNN+
is the light-cone momentum

fraction of the NN pair carried by one of the nucleons in
the pair, and p⊥ is their relative transverse momentum. The
scattering process in Eq. (7) can be described through the com-
bination of the following blocks: (a) 	

λA,λ1i ,λ2i ,λs
3He (α, p⊥, ps),

is the light-cone 3He wave function that describes a transition
of the 3He nucleus with helicity λA into three nucleons
with λ1i , λ2i , and λs helicities, respectively. (b) The term in
{· · ·}1 describes the “knocking out” of an η1i-helicity quark
from a λ1i-helicity nucleon by an incoming photon with
helicity λγ . Subsequently, the knocked-out quark exchanges
a gluon, ([−igT F

c γ ν]), with a quark from the second nucleon
producing a final η2f -helicity quark that combines into the
nucleon “2f ” with helicity λ2f . (c) The term in {· · ·}2

describes the emerging η2i-helicity quark from the λ2i-helicity
nucleon that then exchanges a gluon, ([−igT F

c γ µ]), with the
knocked-out quark and produces a final η1f -helicity quark
that combines into the nucleon “1f ” with helicity λ1f . (d) The
propagator of the exchanged gluon is Gµν(r) = dµν

r2+iε
with

polarization matrix, dµν (fixed by the light-cone gauge), and
r = (p2 − k2 + l) − (p1 − k1 + q), with l = (p2f − p2i). In
Eq. (7) the ψ

λ,η

N represents everywhere an η-helicity single
quark wave function of a λ-helicity nucleon as defined in
Eq. (A14) and uτ is the quark spinor defined in the helicity
basis.

We now consider the denominator of the struck quark’s
propagator, which can be represented as follows:

(p1i − k1 + q)2 − m2
q + iε = (1 − x1)s ′

NN (αc − α + iε), (8)

where

αc = 1 + 1

s ′
NN

[
m̃2

N − m2
s (1−x1) + m2

qx1 + (k1−x1p1)2

x1(1−x1)

]
.

(9)

Here m2
s and m̃2

N ≈ m2
N are defined in Eqs. (A8) and (A11), and

mq represents the current quark mass of the knocked-out quark.
Our further discussion is based on the use of the fact that the
3He wave function strongly peaks at α = 1

2 , which corresponds
to the kinematic situation in which two constituent nucleons
have equal share of the NN pair’s light-cone momentum. Thus
one expects that the integral in Eq. (7) is dominated by the value
of the integrand at α = αc = 1

2 . This allows us to perform
α-integration in Eq. (7) through the pole of the denominator
(8) at α = αc (i.e., keeping only the −iπδ(α − αc) part
of the relation 1

αc−α+iε
= −iπδ(α − αc) + P 1

αc−α
) and later

replacing αc by 1
2 . Using this relation to estimate the propagator

of the struck quark at its on-mass shell value (α = αc) allows
us to represent (/p1i − /k1 + /q)on shell + mq = ∑

ζ uζ (p1 − k1 +
q)ūζ (p1 − k1 + q). Then for the scattering amplitude of
Eq. (7) one obtains

〈λ1f , λ2f , λs |Ai |λγ , λA〉

=
∑

(η1f ,η2f ),(η1i ,η2i ),(λ1i ,λ2i ),ζ

∫ {
ψ

†λ2f ,η2f

N (p2f , x ′
2, k2⊥)

1 − x ′
2

ūη2f

× (p2f − k2)
[−igT F

c γ ν
]

× i · uζ (p1 − k1 + q)ūζ (p1 − k1 + q)

(1 − x1)s ′

× [−iQieε
λγ

⊥ γ ⊥]
uη1i

(p1i − k1)
ψ

λ1i ,η1i

N (p1i , x1, k1⊥)

(1 − x1)

}
1

×
{

ψ
†λ1f ,η1f

N (p1f , x ′
1, k1⊥)

1 − x ′
1

ūη1f
(p1f − k1)

× [−igT F
c γ µ

]
uη2i

(p2i − k2)
ψ

λ2i ,η2i

N (p2i , x2, k2⊥)

(1 − x2)

}
2

×Gµ,ν(r)
dx1

x1

d2k1⊥
2(2π )3

dx2

x2

d2k2⊥
2(2π )3

× 	
λA,λ1i ,λ2i ,λs
3He (αc, p⊥, ps)

(1 − αc)αc

d2p⊥
4(2π )2

− (p1f ←→ p2f ).

(10)

Next we evaluate the matrix element of the photon-quark
interaction using on-mass shell spinors for the struck quark.
Taking into account the fact that (p1i − k)+ � |k⊥|,mq , for
this matrix element we obtain

ūζ (p1i − k1 + q)[−iQieε
λγ

⊥ γ ⊥]uη1i
(p1i − k1)

= ieQi2
√

2E2E1(λγ )δλγ ζ δλγ η1i , (11)

where E1 = (1 − α)(1 − x1)
√

s ′
NN

2 and E2 = (1 − (1 −
α)(1 − x1))

√
s ′
NN

2 .
Further explicit calculations of Eq. (10) require the knowl-

edge of quark wave functions of the nucleon. Also, one needs to
sum over the multitude of the amplitudes representing different
topologies of quark knock-out rescattering and recombinations
into two final nucleon states.

We attempt to solve this problem by using the above
observation that the 3He wave function strongly peaks at
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α = 1
2 . We evaluate Eq. (10) setting everywhere αc = 1

2 . Such
approximation significantly simplifies further derivations. As
it follows from Eq. (9) the αc = 1

2 condition restricts the

values of x1 of the recoil quark-gluon system to x1 ∼ k2
1⊥

s ′
NN

,
thereby ensuring that the quark-interchange happens for the
valence quarks with xq = 1 − x1 ∼ 1. The latter allows us

to simplify Eq. (11) setting E1 = E2 =
√

s ′
NN

4 . Using these
approximations and substituting Eq. (11) into Eq. (10) one
obtains

〈λ1f , λ2f λs |Ai |λγ , λA〉
= i[λγ ]e

∑
(η1f ,η2f ),(η2i ),(λ1i ,λ2i )

∫
Qi√
2s ′

×
[{

ψ
†λ2f ,η2f

N (p2f , x ′
2, k2⊥)

1 − x ′
2

ūη2f
(p2f −k2)

[−igT F
c γ ν

]

× uλγ
(p1 − k1 + q)

ψ
λ1i ,λγ

N (p1i , x1, k1⊥)

(1 − x1)

}

×
{

ψ
†λ1f ,η1f

N (p1f , x ′
1, k1⊥)

1 − x ′
1

ūη1f
(p1f − k1)

× [−igT F
c γ µ

]
uη2i

(p2i − k2)
ψ

λ2i ,η2i

N (p2i , x2, k2)

(1 − x2)

}

× Gµ,ν(r)
dx1

x1

d2k1⊥
2(2π )3

dx2

x2

d2k2⊥
2(2π )3

]
QIM

	
λA,λ1i ,λ2i
3He

×
(

α = 1

2
, p2⊥

)
d2p2⊥
(2π )2

− (p1f ↔ p2f ). (12)

Note that due to the δ factors in Eq. (11) the helicity of
the knocked-out quark in Eq. (12) is equal to the helicity of
incoming photon, that is, η1i = λγ .

To proceed, we observe that the kernel [. . .]QIM rep-
resenting the quark-interchange mechanism (QIM) of the
rescattering in Eq. (12) can be identified with the quark-
interchange contribution in the NN scattering amplitude (see
Appendix B). Such identification can be done by observing
that, in the chosen reference frame, q+ = 0, and the quark
wave function of the nucleon depends on the quark’s light-cone
momentum fraction and transverse momentum only, which are
the same in both Eqs. (12) and (B4). For our derivation we
also use the above-discussed observation that the α = αc = 1

2
condition ensures that the quark-interchange happens for the
valence quarks with xq = 1 − x1 ∼ 1. This justifies our next
assumption, that valence quarks carry the helicity of their
parent nucleon (i.e., η1i = λi). The last assumption allows
us to perform the summation of Eq. (12) over the helicities
of the exchanged quarks (η2i , η1f , η2f ) and to use Eq. (B4) to
express the QIM part in Eq. (12) through the corresponding
QIM amplitude of NN scattering. Summing for all possible
topologies of quark-interchange diagrams we arrive at

〈λ1f , λ2f , λs |A|λγ , λA〉

= ie[λγ ]

{∑
i∈N1

∑
λ2i

∫
Q

N1
i√
2s ′ 〈λ2f ; λ1f |T QIM

NN,i(s, l
2)

× |λγ ; λ2i〉	λA
3He(p1, λγ ; p2, λ2i , ps, λs)

d2p⊥
(2π )2

+
∑
i∈N2

∑
λ1i

∫
Q

N2
i√
2s ′ 〈λ2f ; λ1f |T QIM

NN,i(s, l
2)|λ1i ; λγ 〉

×	
λA
3He(p1, λ1i ; p2, λγ , ps, λs)

d2p⊥
(2π )2

}
, (13)

where nucleon momenta p1 and p2 have half of their
c.m. momentum fractions and p⊥ is their relative trans-
verse momentum with respect to the direction of the pho-
ton momentum [see Eq. (20)]. Here, for example, QN

i ·
〈λ2f ; λ1f |T QIM

NN,i(s, l
2)|λ1; λ2〉 represents the quark-interchange

amplitude of NN interaction weighted with the charge of those
interchanging quarks QN

i that are struck from a nucleon N

by the incoming photon. The sum (
∑

i∈N ) can be performed
within the quark-interchange model of NN interaction, which
allows us to represent the NN scattering amplitude as follows
[29]:

〈a′b′|T QIM
NN |ab〉 = 1

2
〈a′b′|

∑
i∈a,j∈b

[IiIj + �τi�·τj ]Fi,j (s, t)|ab〉,

(14)

where Ii and τi are the identity and Pauli matrices defined in the
SU(2) flavor (isospin) space of the interchanged quarks. The
kernel Fi,j (s, t) describes an interchange of i and j quarks.2

Using Eq. (14) one can calculate the quark-charge weighted
QIM amplitude, Qi · 〈a′b′|T QIM

NN,i |ab〉, as follows:∑
i∈N

QN
i 〈a′b′|T QIM

NN,i |ab〉

= 1

2
〈a′b′|

∑
i∈a,j∈b

[IiIj + �τi�·τj ](Qi)Fi,j (s, t)|ab〉

= QN
F · 〈a′b′|T QIM

NN |ab〉, (15)

where QN
F are the charge factors that are explicitly calculated

using the method described in Appendix C. These factors
can be expressed through the combinations of valence quark
charges Qi of nucleon N and the number of quark interchanges
for each flavor of quark, NQi

, necessary to produce a given
helicity NN amplitude, as follows,

QN
F = Nuu(Qu) + Ndd (Qd ) + Nud (Qu + Qd )

Nuu + Ndd + Nud

. (16)

Next we discuss the light-cone wave function of 3He
that enters in Eq. (13). The important result that allows us
to evaluate the wave function is the observation that two
nucleons that interact with the photon share equally the NN

pair’s c.m. momentum (pNN ), i.e., α = 1
2 . If we constrain the

2The additional assumption of helicity conservation allows us to ex-
press the kernel in the form [29]Fi,j (s, t) = 1

2 [IiIj + �σi�·σj ]F̃i,j (s, t),
where Ii and σi operate in the SU(2) helicity (H -spin) space
of exchanged (i, j ) quarks [29]. However, for our discussion the
assumption of helicity conservation is not required.
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third nucleon’s light-cone momentum fraction αs = 3·ps+
p3He+

=
3(Es+pz

s )
E3He+pz

s +pz
NN

≈ 1 and transverse momentum ps⊥ � mN , then
the momenta of all the nucleons in the nucleus are nonrel-
ativistic. In this case one can use the calculation of triangle
diagrams, which provides the normalization of nuclear wave
functions based on baryonic number conservation to relate LC
and nonrelativistic nuclear wave functions, as follows [30,31]

	3He(α, p⊥, αs, ps,⊥)

=
√

2(2π )3mN	3He,NR(α, p⊥, αs, ps,⊥), (17)

where for 	3He,NR we can use known nonrelativistic 3He wave
functions (see, e.g., Ref. [32]).

Substituting Eqs. (15) and (17) into Eq. (13) for the two-
nucleon photodisintegration amplitude we obtain

〈λ1f , λ2f , λs |M|λγ , λA〉

= i[λγ ]e
√

2(2π )3√
2S ′

NN

×
{

Q
N1
F

∑
λ2i

∫
〈λ2f ; λ1f |

× T
QIM
NN (sNN, tN )|λγ ; λ2i〉	λA

3He,NR

× ( �p1, λγ ; �p2, λ2i ; �ps, λs)mN

d2p⊥
(2π )2

+Q
N2
F

∑
λ1i

∫
〈λ2f ; λ1f |T QIM

NN (sNN, tN )|λ1i ; λλ〉

×	
λA
3He,NR( �p1, λ1i ; �p2, λγ ; �ps, λs)mN

d2p⊥
(2π )2

}
,

(18)

where in the Lab frame of the 3He nucleus, defining the z

direction along the direction of qLab one obtains

α = E2 − p2z

MA − Es − psz

; p⊥ = p1⊥ − p2⊥
2

,

(19)

αs = Es + psz

MA/A
; �p1 + �p2 = − �ps,

with all the momenta defined in the Lab frame.
Equation (18) allows us to calculate the unpolarized

differential cross section of two nucleon breakup in the form

dσ

dtd3ps/(2Es(2π )3)
= |M̄|2

16π
(
s − M2

A

)(
sNN − M2

NN

) , (20)

where s = (kγ + pA)2 and

|M̄|2 = 1

2
· 1

2

∑
λ1f ,λ2f ,λs ,λγ ,λA

|〈λ1f , λ2f , λs |M|λγ , λA〉|2.

(21)

As follows from Eq. (18) the knowledge of quark-
interchange helicity amplitudes of NN elastic scattering will
allow us to calculate the differential cross section of hard
NN breakup reaction without introducing any adjustable
parameter.

Because the assumption of αc = 1
2 plays a major role in the

above derivations we attempt now to estimate the theoretical

error introduced by this approximation. This approximation
by its nature is a “peaking” approximation that is used in loop
calculations involving Feynman diagrams (one such example
is the calculation of radiative effects in electroproduction pro-
cesses; see, e.g., Ref. [33]). One way to estimate the accuracy
of the approximation is to identify the main dependence of the
integrand in Eq. (10) on αc, which can be evaluated exactly,
and compare with its evaluation at αc = 1

2 . Using Eq. (11) as
well as Eq. (9) that allows us to relate dx1

x1
to dαc

αc
, and assuming

that the quark wave functions of nucleons at αc ∼ 1
2 are less

sensitive to αc, one arrives at

R(ps) = 4	
λA,λ1i ,λ2i ,λs
3He

(
αc = 1

2 , p⊥, ps

)
∫

dαc

αc

	
λA,λ1i ,λ2i ,λs
3He

(αc,p⊥,ps )√
(1−αc)αc

. (22)

This ratio depends on the kinematics of the spectator nucleon,
and for the case of ps � 100 MeV/c, R(ps) ≈ 1.1, which
corresponds to ∼20% of uncertainty in the cross section of
the reaction calculated with the αc = 1

2 approximation. The
uncertainty increases with an increase of the momentum of
the spectator nucleon. This can be understood qualitatively
because, for large center of mass momenta of the NN

pair, the α = 1
2 peak of the nuclear wave function is less

pronounced.

C. Quark-interchange and hard NN elastic scattering
amplitudes

The possibility of using NN elastic scattering data to
calculate the cross section in Eqs. (20) and (21) is based
on the assumption that the quark-interchange mechanism
provides the bulk of the NN elastic scattering strength
at high energies and large c.m. angles. This is a rather
well-justified assumption. Experiments on exclusive large −t

two-body reactions [34] demonstrated clearly the dominance
of the quark-interchange mechanism for the scattering of
hadrons that share common quark flavors. The analysis of
these experiments indicate that contributions from competing
mechanisms such as pure gluon exchange or quark-antiquark
annihilation are on the level of a few percent. This justifies
our next approximation, to substitute quark-interchange NN

amplitudes in Eq. (18) with actual NN helicity amplitudes as
follows:

〈+,+|T QIM
NN |+,+〉 = φ1

〈+,+|T QIM
NN |+,−〉 = φ5

〈+,+|T QIM
NN |−,−〉 = φ2 (23)

〈+,−|T QIM
NN |+,−〉 = φ3

〈+ − |T QIM
NN | − +〉 = −φ4.

All other helicity combinations can be related to the above
amplitudes through the parity and time-reversal symmetry. The
minus sign in the last equation above is due to the Jackob-Wick
phase factor (see, e.g., Ref. [35]), according to which one
gains a phase factor of (−1) if two quarks that scatter by
π − θ angle in c.m. have opposite helicities [36]. Note that
φi’s are normalized in such a way that the cross section for
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NN scattering is defined as

dσNN→NN

dt
= 1

16π

1

s
(
s − 4m2

N

) 1

2
(|φ1|2

+ |φ2|2 + |φ3|2 + |φ4|2 + 4|φ5|2). (24)

Because in the hard breakup regime the momentum transfer
−tN � m2

N , one can factorize the helicity NN amplitudes
from Eq. (18) at sNN and tN values defined as follows:

sNN = (q + pNN )2 = (pf 1 + pf 2)2,

tN = (pf 2 − pNN/2)2 = tNN

2
+ m2

N

2
− M2

NN

4
. (25)

Using this factorization in Eq. (18) for the spin averaged square
of the breakup amplitude one obtains

¯|M|2 = (e22(2π )6

2s ′
NN

1

2

{
2Q2

F |φ5|2S0 + Q2
F (|φ1|2 + |φ2|2)S12

+ [(
Q

N1
F φ3 + Q

N2
F φ4

)2 + (
Q

N1
F φ4 + Q

N2
F φ3

)2
)
]
S34

}
,

(26)

where QF = Q
N1
F + Q

N2
F and S12, S34, and S0 are partially

integrated nuclear spectral functions:

S12(t1, t2, α, �ps)

= NNN

1
2∑

λ1=λ2=− 1
2

1
2∑

λ3=− 1
2

∣∣∣∣
∫

	
1
2

3He,NR

× ( �p1, λ1, t1; �p2, λ2, t2; �ps, λ3)mN

d2p⊥
(2π )2

∣∣∣∣
2

, (27)

S34(t1, t2, α, �ps)

= NNN

1
2∑

λ1=−λ2=− 1
2

1
2∑

λ3=− 1
2

∣∣∣∣
∫

	
1
2

3He,NR

× ( �p1, λ1, t1; �p2, λ2, t2; �ps, λ3)mN

d2p⊥
(2π )2

∣∣∣∣
2

(28)

and
S0 = S12 + S34. (29)

In the above equations t1 and t2 are the isospin projections of
nucleons in 3He. The wave function is normalized to 2

3 for
proton and 1

3 for neutron. The normalization constants, NNN ,
renormalize the wave function to one pp and two np effective
pairs in the wave function with Npp = 1

2 and Npn = 4.
Equations (20) and (26) together with Eqs. (24), (27), and

(28) allow us to calculate the differential cross section of both
pp and pn breakup reactions off the 3He target. Notice that, on
the qualitative level, as it follows from Eqs. (20) and (26) in the
limit of s � M2

3He and sNN � m2
N , the HRM predicts an s−11

invariant energy dependence of the differential cross section
provided that the NN cross section scales as s−10. However,
the numerical calculations of Eq. (26) require a knowledge
of the NN helicity amplitudes at high energy and momentum
transfers. Our strategy is to use Eq. (24) to express NN breakup
reactions directly through the differential cross section of pn

and pp elastic scatterings rather than to use helicity amplitudes
explicitly.

III. HARD BREAKUP OF PROTON AND
NEUTRON FROM 3He

We consider now the reaction

γ + 3He → (pn) + p, (30)

in which one proton is very energetic and produced at large c.m.
angles with the neutron, while the second proton emerges with
low momentum <∼ 100 MeV/c. In this case the hard rescattering
happens in the pn channel. Using the φ3 ≈ φ4 relation for
hard pn scattering amplitude (see, e.g., Refs. [29,35,37]) for
breakup amplitude of Eq. (26) one obtains

¯|M|2 =
(
Q

pn

F e
)2

2(2π )6

2s ′
NN

1

2
{2|φ5|2S0 + (|φ1|2 + |φ2|2)S12

+ (|φ3|2 + |φ4|2)S34}, (31)

where Q
(pn)
F = Q

p

F + Qn
F can be calculated using Eqs. (15)

and (16). Based on SU(6) flavor-spin symmetry of nucleon
wave functions, for the helicity amplitudes of Eq. (24) using
the method described in Appendix C one obtains

Q
pn

F = 1
3 . (32)

We can further simplify Eq. (31) noticing that for the pn pair
in 3He one has S12 ≈ S34 ≈ S0

2 . This is due to the fact that
in the dominant S state two protons have opposite spins and
therefore the probability of finding one proton with a helicity
opposite to that of the neutron is equal to the other proton
having the same helicity as the neutron’s. Using this relation
and Eq. (24) for the pn breakup reaction one obtains

|M̄|2 = (eQF,pn)2(2π )6

s ′
NN

16πsNN

(
sNN − 4m2

N

)

× dσpn→pn(sNN, tN )

dtN

S
pn

0

2
. (33)

Inserting it in Eq. (20) for the differential cross section one
obtains

dσγ 3He→(pn)p

dt
d3ps

Es

= αQ2
F,pn16π4 S

pn

0

(
α = 1

2 , �ps

)
2

× sNN (sNN − 4m2)(
sNN − p2

NN

)2
NN

(
s − M2

3He

)
× dσpn→pn(sNN, tN )

dtN
, (34)

where α = 1
137 and dσpn→pn

dtN
is the differential cross section of

hard pn scattering evaluated at values of sNN and tN defined
in Eq. (25). The spectral function S

pn

0 is defined in Eq. (29)
and corresponds to

S
pn

0 (α, �ps) = 4

1
2∑

λ1,λ2,λ3=− 1
2

∣∣∣∣
∫

	
1
2

3He,NR

×
(

�p1, λ1,
1

2
; �p2, λ2 − 1

2
; �ps, λ3

)
mN

d2p⊥
(2π )2

∣∣∣∣
2

.

(35)
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IV. HARD BREAKUP OF TWO PROTONS FROM 3He

We now consider the reaction

γ + 3He → (pp) + n, (36)

in which two protons are produced at large c.m. angles while
the neutron emerges as a spectator with small momentum
(ps � 100 MeV/c).

We observe now that the relation between S12 and S34 is
very different from that of the pn case. Due to the fact that
two protons cannot have the same helicity in the S state one
has S12 � S34. The estimates of the spectral functions based
on the realistic 3He wave function [32] gives S12

S34
∼ 10−4.

Therefore one can neglect the S12 term in Eq. (26). The next
observation is that for pp scattering the helicity amplitudes φ3

and φ4 have opposite signs due to the Pauli principle (see, e.g.,
Refs. [35,36]). Using the above observations and neglecting
the helicity-nonconserving amplitude φ5 for the pp breakup
amplitude we obtain

¯|M|2 = (e22(2π )6

2s ′
NN

1

2

{
2
(
Q

p

F |φ3| − Q
p

F |φ4|
)2

S34
}
. (37)

The charge factor Q
p

F depends on the helicity amplitude it
couples; therefore one estimates it for the combination of
(Qp

F |φ3| − Q
p

F |φ4|). Using SU(6) symmetry for the distribu-
tion of given helicity-flavor valence quarks in the proton and
through the approach described in Appendix C we obtain(

Q
p

F |φ3| − Q
p

F |φ4|
) = Q

pp

F (|φ3| − |φ4|), (38)

with

Q
pp

F = 5
3 . (39)

It is worth noticing that due to explicit consideration of quark
degrees of freedom the effective charge involved in the breakup
is larger for the case of two protons than for proton and
neutron [see Eq. (32)]. This is characteristic of the HRM
model in which a photon couples to a quark and more charges
are exchanged in the pp case than in the pn case. This is
rather opposite to the scattering picture considered based on
hadronic degrees of freedom in which case the photon will
couple to an exchanged meson and pp contribution will be
significantly suppressed because no charged mesons can be
exchanged within the pp pair.

To be able to estimate the cross section of the pp breakup
reaction through the elastic pp scattering cross section we
introduce a parameter

C2 = φ2
3

φ2
1

≈ φ2
4

φ2
1

, (40)

which allows to express the differential cross section of the
reaction (36) in the following form:

dσγ 3He→(pp)n

dt
d3ps

Es

= αQ2
F,pp16π4S

pp

34

(
α = 1

2
, �ps

)
2β2

1 + 2C2

× sNN

(
sNN − 4m2

N

)
(
sNN − p2

NN

)2(
s − M2

3He

)
× dσpp→pp(sNN, tN )

dt
, (41)

where we also introduced a factor β,

β = |φ3| − |φ4|
|φ1| , (42)

which accounts for the suppression due to the cancellation
between φ3 and φ4 helicity amplitudes of elastic pp scattering.3

The spectral function S
pp

34 in Eq. (41) is expressed through the
3He wave function according to Eq. (28) as follows:

S
pp

34 (α, �ps) = 1

2

1
2∑

λ1=−λ2=− 1
2

1
2∑

λ3=− 1
2

∣∣∣∣
∫

	
1
2

3He,NR

×
(

�p1, λ1,
1

2
; �p2, λ2,

1

2
; �ps, λ3

)
mN

d2p2,⊥
(2π )2

∣∣∣∣
2

.

(43)

V. TWO- AND THREE-BODY PROCESSES IN NN
BREAKUP REACTIONS

For a two-body hard NN breakup mechanism to be
observed it must dominate the three-body/two-step processes.
This is especially important for pp breakup processes (36),
because according to Eqs. (41) and (42) the two-body
contribution is suppressed because of a cancellation between
φ3 and φ4 helicity amplitudes.

At low to intermediate range energies (Eγ ∼ 200 MeV) it is
rather well established that the pp breakup reaction proceeds
overwhelmingly through a two-step (three-body) process
[38–43] in which the initial breakup of the pn pair (dominated
by π± exchange) is followed by a charge-interchange final
state interaction of the neutron with the spectator proton. Other
two-step processes include the excitation of intermediate �

isobars in the pn system with the subsequent rescattering off
the spectator neutron, which produces two final protons.

The dominance of three-body processes at low energies
is related mainly to the fact that the two-body pp breakup
is negligible because of the impossibility of charged-pion
exchanges between two protons that absorb an incoming
photon.

At high energy kinematics within the HRM the interaction
between protons is carried out by exchanged quarks because
of which the relative strength of pp breakup is larger.

To estimate the strength of three-body processes at high
energy kinematics, one needs to calculate the contribution
of diagrams similar to Fig. 2. Because the charge-exchange
rescattering at the final stage of the process in Fig. 2 takes
place at proton momenta p′

f > mN , one can apply an eikonal
approximation [44,45] to estimate its contribution.

For Eγ � 2 GeV assuming that the HRM is valid for the
first (pn breakup) stage of the reaction, for the amplitude of
three-body/two-step process within the eikonal approximation

3This cancellation was overlooked in our early estimate of the
cross section of pp photodisintegration from 3He target (see, e.g.,
Ref. [27]).
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q

FIG. 2. Diagram corresponding to three-body processes in which
the hard breakup of the pn pair is followed by a soft charge-exchange
rescattering of the neutron off the spectator proton.

[44,45] one obtains

M3body ≈ eQF,pn(2π )3

2
√

2s ′
NN

T hard
pn→pn(tN )

∫
	

λA
3He,NR( �p1, t1; �p2, t2;

× �ps − �k⊥)mN

T chex
pn→np(k⊥)

sNN

d2p⊥
(2π )2

d2k⊥
(2π )2

, (44)

where we suppressed helicity indices for simplicity and
choose the isospin projections, t1 = −t2 = 1

2 , corresponding
to the initial pn pair that interacts with the photon. Here
T hard

pn→pn(tN ) is the hard elastic pn scattering amplitude and
T chex

pn→np represents the amplitude of the soft charge-exchange
pn scattering. Because of the pion-exchange nature of the latter
it is rather well established that this amplitude is real and can be
represented as ∼√

sAe
B
2 t , where A and B are approximately

constants [46].
Two main observations follow from Eq. (44) and the

above-mentioned property of the charge-exchange amplitude:
First, three-body and two-body amplitudes [see, e.g., Eq. (18)]
will not interfere, because one is real and the other is imaginary.
The fact that these two amplitudes differ by order of i follows
from the general structure of rescattering amplitudes (see, e.g.,
Ref. [45]). Equation (18) corresponds to a single rescattering
amplitude, while Eq. (44) corresponds to a double rescattering
amplitude. Second, because of the energy dependence of the
charge-exchange scattering amplitude at small angles, the
three-body contribution will scale like s−12 as compared to
the two-body breakup contribution.

Using Eq. (44) one can estimate the magnitude of the
contribution of three-body processes in the pp breakup cross
section as follows:

dσ
γ 3He→(pp)n
three−body

dt
d3ps

Es

≈ dσ
γ 3He→(pn)p
two−body

dt
d3ps

Es

Spnp(ps),

S
pn

0 (ps)
(45)

where S
pn

0 (ps) is defined in Eq. (35) and for Spnp(ps) based
on Eq. (44) one obtains

Spnp(ps) = Npn

16s2
NN

∣∣∣∣
∫

	
λA
3He,NR( �p1, �p2, �ps − �k⊥)mN

× T chex
pn→np(k⊥)

d2p⊥
(2π )2

d2k⊥
(2π )2

∣∣∣∣
2

. (46)

Here both spectral functions are defined at α = 1
2 .

Using Eqs. (45) and (46) and the parametrization of T chex
pn→np

from Ref. [46] one can estimate the relative contribution of
three-body processes numerically. Note that this contribution
is maximal at αs = 1 and increases with an increase of the
momentum of ps . However because of the charge-exchange
nature of the second rescattering, this contribution decreases
linearly with an increase of s.4

VI. NUMERICAL ESTIMATES

For numerical estimates we consider the center of mass
reference frame of the γ -NN system, for which according to
Eq. (6) one obtains

tN,N = −
(
sNN − M2

NN

)
2
√

sNN

× (√
sNN −

√
sNN − 4m2

Ncos(θc.m.)
) + m2

N, (47)

where M2
NN = p

µ

NNpNN,µ and p
µ

NN = p
µ
3He − p

µ
s . Using the

above equation we obtain for tN [Eq. (25)], which defines the
effective momentum transfer in the NN scattering amplitude,
the following relation:

tN = −
(
sNN − M2

NN

)
4
√

sNN

(√
sNN −

√
sNN − 4m2

Ncos(θc.m.)
)

+m2
N − M2

NN

4
. (48)

One can also calculate the effective c.m. angle that enters in
the NN scattering amplitude as follows:

cos
(
θN

c.m.

)
= 1 −

(
sNN − M2

NN

)
2
(
sNN − 4m2

N

)
(√

sNN −
√

sNN − 4m2
Ncos(θc.m.)

)
√

sNN

+ 4m2
N − M2

NN

2
(
sNN − 4m2

N

) . (49)

The above equations define the kinematics of hard NN

rescattering.

A. Energy dependence and the magnitude of the cross sections

We are interested in energy dependences of the hard
breakup reactions of Eqs. (30) and (36) at fixed and large
angle production of two fast nucleons in the γ -NN center of
mass reference frame. Particularly interesting is the case of
θc.m. = 90◦ for which, as it follows from Eq. (49), cos(θN

c.m.) =
0.5. This means that the cross sections of hard breakup
reactions at these kinematics will be defined by the NN elastic
scattering at θN

c.m. = 60◦. In Fig. 3 the Eγ and s dependencies of
the s11

NN weighted differential cross sections are presented for
the cases of the pp and pn breakup reactions. In the calculation
we integrated over the spectator nucleon’s momentum in
the range of (0–100) MeV/c and over the whole range of
its solid angle. Also for the parameter C in Eq. (40) we

4Notice that for the case of diagonal pn → pn rescattering
Tpn→np(k⊥) = sσtote

B
2 t and as a result the probability of the rescatter-

ing is energy independent.
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FIG. 3. (Color online) Energy dependence of s11 weighted dif-
ferential cross sections at 90◦ c.m. angle scattering in the γ -NN

system. In these calculations one integrated over the spectator nucleon
momenta in the range of 0–100 MeV/c.

used C = 1
2 , consistent with an estimate obtained within

the quark-interchange model of pp scattering (see, e.g.,
Refs. [29,35]). The estimation of the factor β, which takes
into account the cancellation between φ3 and φ4 helicity
amplitudes in Eq. (41), requires the knowledge of the angular
dependence for helicity amplitudes. For this we used the
helicity amplitudes calculated within the quark-interchange
model [29,35] with phenomenological angular dependencies
estimated using F (θc.m.) = 1

sin2(θc.m.)(1−cos(θc.m.))2 (see, e.g., Refs.
[29,37]) which describes reasonably well the data at hard
scattering kinematics.

Several features of HRM calculations are worth discussing
in Fig. 3: First, the breakup cross sections in average scale like
s−11
NN . Note that the absolute (nonscaled) values of the cross

sections drop by five orders of magnitude in the 2–8 GeV
photon energy range. Next, the shapes of the s11 weighted
differential cross sections reflect the shapes of the s10 weighted
differential cross sections of pp and pn scattering at θc.m. =
60◦ [see Figs. (4) and (5)]. It is worth noting that as follows
from Figs. (4) and (5) the fits used in the calculation of pp

and pn breakup reactions contain uncertainties on the level
of 10% for pp breakup (for sNN � 24 GeV2) and up to 30%
for pn breakup reactions. Based on this, one can conclude
that the calculated shape of the energy dependence of the pn

breakup reaction in Fig. (3) does not have much predictive
power. However, for the pp breakup the calculated shape, for
up to sNN � 24 GeV2, is not obscured by the uncertainty of the
pp data and can be considered as a prediction of the HRM. It
is worth mentioning that considered features of the HRM are
insensitive to the choice of the above-discussed parameters of
C and β, because they only define the absolute magnitude of
the pp breakup cross section.

The next feature of the calculations in Fig. 3 is the
magnitude of the pn and pp breakup cross sections. The
pn breakup cross section [Eq. (34)] does not contain any
free parameter and, similar to the HRM prediction for the
breakup of the deuteron [22], it is expressed through the
rather well-defined quantities. For the estimate of pp breakup,
however, one needs to know the relative strength of the φ3

and φ4 amplitudes as compared to φ1 as well as the extent

0.02
0.04
0.06
0.08

10 15 20 25 30 35 40 45
s  (GeV2)

0.1
0.2
0.3
0.4
0.5
0.6

10 15 20 25 30 35 40 45
s (GeV2)

θc.m.= 90o

θc.m.= 60o

(s
/1

0)
10

dσ
/d

t 
(m

b/
 G

eV
8 )

pp → pp

FIG. 4. (Color online) Invariant energy dependence of s10

weighted differential cross sections of elastic pp scattering at θc.m. =
90◦ and θc.m. = 60◦. Curves are the fits [47] of the available world
data [48].

of their cancellation at kinematics of sNN and tN defined in
Eqs. (25) and (48). Our calculation, based on phenomeno-
logically justified estimates of factors C and β in Eq. (41)
results in the pp breakup cross section which is about ten
times smaller than the cross section for the pn breakup. This
magnitude indicates, however, an increase of pp breakup cross
section relative to the pn breakup cross section as compared
to the results from the low energy breakup reactions. As it was
mentioned in Sec. V at low energies (∼200 MeV) the cross
section of pp photodisintegration from 3He is significantly
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FIG. 5. (Color online) Invariant energy dependence of s10

weighted differential cross sections of elastic pn scattering at θc.m. =
90◦ and θc.m. = 60◦. Curves are the fits [47] of the available world
data [48].
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FIG. 6. (Color online) Dependence of the ratio of the cross section
of three-body/two-step process discussed in Sec. V to the cross
section of the two-body pp breakup at Eγ = 2 GeV on (a) transverse
momentum of the spectator neutron pst at αs = 1 and on (b) αs at
pst = 0.

smaller (by almost two orders of magnitude according to
Ref. [38]) than the pn breakup cross section.

Note that the factors C and β introduce an additional un-
certainty in the estimation of the magnitude of the pp breakup
cross section. While the factor C can be evaluated in the
quark-interchange model thus staying within the framework
of the considered model, the factor β is not constrained by
the theoretical framework of the model. The latter is sensitive
to the angular dependence, F (θc.m.), of the helicity amplitudes.
To estimate the uncertainty due to F (θc.m.) we varied it around
the form F (θc.m.) = 1

sin2(θc.m.)(1−cos(θc.m.))2 in such a way that the
results were still in agreement with angular distribution of pp

scattering at −t,−u > 1 GeV2. We found that this variation
changes the HRM prediction for the magnitude of pp breakup
cross section as much as 40%.

Because the pp breakup cross section is still by a factor of
10 smaller than the pn cross section, one needs to estimate
the contribution due to three-body processes in which hard pn

breakup is followed by soft charge-exchange rescattering. The
estimate based on Eq. (45) is given in Fig. 6 where the ratio
of three-body to two-body breakup cross sections is evaluated
for different values of αs and transverse momentum of the
spectator neutron, ps⊥.

Because of the eikonal nature of the second rescattering
in three-body processes, one expects the cross section to be
maximal at αs = 1. As Fig. 6(a) shows in this case, the three-
body process is a correction to the two-body breakup process,
∼2% for ps⊥ = 100 MeV/c and ∼17% for ps⊥ = 200 MeV/c.
Then, starting at ps⊥ > 300 MeV/c the three-body process
dominates the two-body contribution. The latter can be verified
by observing an onset of s−12 scaling at large (�300 MeV/c)
transverse momenta of the spectator neutron in the case of hard
pp breakup reactions. Fig. 6(b) shows also that the three-body

contribution will be always small for ps⊥ ≈ 0 MeV/c, and for
a wide range of αs , which again reflects the eikonal nature of
the second order rescattering in which case the recoiling of
the spectator nucleons happens predominantly at ∼90◦ (see,
e.g., Ref. [49]). Note that one expects the above estimate of
the three-body contribution to contain an uncertainty of 10–
15%, representing the general level of accuracy of eikonal
approximations.

Based on Fig. 6 one can expect that, overall, for small values
of ps � 100–150 MeV/c in the high energy limit (Eγ > 2 GeV)
one expects two-body breakup mechanisms to dominate for
both pp and pn production reactions.

B. Spectator nucleon momentum dependence

The presence of a spectator nucleon in the hard two-nucleon
breakup reaction from 3He gives us an additional degree of
freedom in checking the mechanism of the photodisintegra-
tion. As follows from Eqs. (34) and (35) and Eqs. (41) and
(43) the pn and pp breakup cross sections within HRM
are sensitive to different components of the nuclear spectral
function. This is due to the fact that the pp component with
the same helicities for both protons is suppressed in the ground
state wave function of the 3He target. Thus one expects rather
different spectator-momentum dependencies for pp and pn

breakup cross sections.
The quantity that we consider for numerical estimates is

not the momentum of the spectator but rather the momentum
fraction of the target carried by the spectator nucleon, αs . This
quantity is Lorentz invariant with respect to boosts in the q

direction, which allows us to specify it in the Lab frame as
follows:

αs ≡ Es − ps,z

MA/A
= αA − α1f − α2f , (50)

where αi = Ei−pi,z

MA/A
for i = A, 1f, 2f and z axis in the Lab

frame is defined parallel to the momentum of incoming
photon q. Note that the photon does not contribute to the
above equation because αq = 0. In definition of αs we use
a normalization such that for a stationary spectator αs = 1.
The αs dependencies of the differential cross sections for
pp and pn breakup reactions normalized to their values at
αs = 1 are given in Fig. 7(a). One feature of αs dependence
is the asymmetry of the cross section around αs = 1 with
cross sections dominating at αs > 1. This property can be
understood from the fact that the momentum fraction of the
NN pair that breaks up is defined through αs as follows:

αNN = 3 − αs. (51)

The latter quantity defines the invariant energy of the NN pair
as follows:

sNN = M2
NN + Eγ mnαNN . (52)

Because the cross section within the HRM is proportional to
s−10
NN ,5 it will be enhanced at small values of sNN that will

correspond to smaller values of αNN or larger values of αs .

5An additional negative power of invariant energy is provided by
the 1

s−M2
A

factor in the differential cross section of the reaction [see

Eqs. (34), (41)].

014612-11



MISAK M. SARGSIAN AND CARLOS GRANADOS PHYSICAL REVIEW C 80, 014612 (2009)

10-610-510-410-310-210-1
1

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
αs

σ(
α σ)

/σ
(α

σ=
1)

0.6
0.7
0.8
0.9

1
1.1

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
αs

R
at

io
Eγ=4 GeV

(a)

(b)

FIG. 7. (Color online) Dependence of the s11 weighted
90◦ c.m. breakup differential cross section on the light-cone mo-
mentum fraction of the spectator nucleon, αs , calculated at Eγ =
4 GeV and ps⊥ = 0. (a) The solid line is for pp breakup reactions,
and the dashed line is for pn breakup reactions. Calculations are
normalized to the cross sections at αs = 1. (b) Ratio of the pn to pp

breakup cross sections normalized to their values at αs = 1.

The difference of the cross sections due to the different
composition of the nuclear spectral functions entering the pp

and pn breakup reactions can be seen in Fig. 7(b) in which
case one calculates the ratio of pn to pp breakup cross sections
normalized to their values at αs = 1. The drop of the ratio in
Fig. 7(b) at values close to αs = 1 is due to the suppression of
the same-helicity two-proton component in the ground state
nuclear wave function at small momenta. In this case the
spectral function is sensitive to the higher angular momentum
components of the ground state nuclear wave function. This
yields a wider momentum distribution for the pp spectral

function as compared to that for pn because no same-helicity
state suppression exits for the latter. The estimates indicate
that differences in αs dependencies of pp and pn breakup
cross sections are rather large and can play an additional role
in checking the validity of the HRM.

VII. POLARIZATION TRANSFER OF THE HARD
RESCATTERING MECHANISM

One of the unique properties of the hard rescattering
mechanism of two-nucleon breakup is that the helicity of
the nucleon from which a quark is struck is predominantly
defined by the helicity of the incoming photon λ1i = λγ [see
Eq. (18)]. This is based on the fact that in the massless quark
limit the helicity of the struck quark equals the helicity of
the photon, η1i = λγ , and assuming that at large x the quark
carries almost all the helicity of the parent nucleon one obtains
λ1i ≈ η1i = λγ .

Because within the HRM, the energetic struck quark shares
its momentum with a quark of the other nucleon through a
hard gluon exchange, it will retain its initial helicity when
it merges into the final outgoing nucleon. It will also have
x ′ ∼ x ∼ 1, which allows us to conclude that the final outgoing
nucleon will acquire the large part of struck quark’s (as well
as the photon’s) helicity. This mechanism will result in a
large (photon) polarization transfer for the hard two-nucleon
breakup reactions.

An observable that is sensitive to polarization transfer
processes is the quantity Cz′ , which for a circularly polarized
photon measures the asymmetry of the hard breakup reaction
with respect to the helicity of the outgoing proton.

A large value of Cz′ was predicted within the HRM for the
hard breakup of the deuteron in Ref. [25] that was observed in
the recent experiment of Ref. [12].

For the case of the 3He target an additional experimental
observation will be a comparison of Cz′ asymmetries for pp

and pn breakup channels. For the 3He target we define Cz′ as
follows:

Cz′ =
∑

λ2f ,λs ,λa
{|〈+, λ2f , λs |M|+, λA〉|2 − |〈−, λ2f , λs |M|+, λA〉|2}∑

λ1f λ2f ,λs ,λa
|〈λ1f , λ2f , λs |M|+, λA〉|2 . (53)

Using Eq. (18) and the definitions of Eq. (24) for Cz′ one
obtains

Cz′ = (|φ1|2 − |φ2|2)S++ + (|φ3|2 − |φ4|2)S+−

2|φ5|2S+ + (|φ1|2 + |φ2|2)S++ + (|φ3|2 + |φ4|2)S+− ,

(54)

where

S±,±(t1, t2, α, �ps) =
1
2∑

λA=− 1
2

1
2∑

λ3=− 1
2

∣∣∣∣
∫

	
λA
3He,NR

×
(

�p1, λ1 = ±1

2
, t1; �p2, λ2 = ±1

2
, t2; �ps, λ3

)

×mN

d2p2,⊥
(2π )2

∣∣∣∣
2

(55)

and S+ = S++ + S+−.
As follows from Eqs. (54) and (55), one predicts signif-

icantly different magnitudes for Cz′ for pp and pn breakup
cases.
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For the pp breakup, S++
pp � S+−

pp due to the smallness of
the nuclear wave function component containing two protons
in the same helicity state. As a result one expects

C
pp

z′ ≈ |φ3|2 − |φ4|2
|φ3|2 + |φ4|2 ∼ 0, (56)

while for the pn breakup case S++
pn ≈ S+−

pn , then one obtains

C
pn

z′ ≈ |φ1|2 + |φ3|2 − |φ4|2
|φ1|2 + |φ3|2 + |φ4|2 ∼ 2

3
, (57)

where in the last part of the equation we assumed that |φ3| =
|φ4| = 1

2 |φ1|.

VIII. CONCLUSIONS

The hard rescattering mechanism of a two-nucleon breakup
from the 3He nucleus at large c.m. angles is based on the
assumption of the dominance of quark-gluon degrees of
freedom in the hard scattering process involving two nucleons.
The model explicitly assumes that the photodisintegration
process proceeds through the knock-out of a quark from
one nucleon with a subsequent rescattering of that quark
with a quark from the second nucleon. While photon-quark
scattering is calculated explicitly, the sum of all possible
quark rescatterings is related to the hard elastic NN scattering
amplitude. Such a relation is found assuming that quark-
interchange amplitudes give the dominant contribution in the
hard elastic NN scattering.

The model allows one to calculate the cross sections of
the hard breakup of pn and pp pairs from 3He expressing
them through the amplitudes of elastic pn and pp scatterings,
respectively.

Several results of the HRM are worth mentioning: First, the
HRM predicts an approximate s−11 scaling consistent with the
predictions of the quark-counting rule. However, the model by
itself is nonperturbative because the bulk of the incalculable
part of the scattering amplitude is hidden in the amplitude of
the NN scattering that is taken from the experiment.

Second, because the hard NN scattering amplitude enters
into the final amplitude of the photodisintegration reaction, the
shape of the energy dependence of the s11 weighted breakup
cross section reflects the shape of the s10 weighted NN elastic
scattering cross section. Because of a better accuracy of pp

elastic scattering data for sNN � 24 GeV2, we are able to
predict a specific shape for the energy dependence of the hard
pp breakup cross section at photon energies up to Eγ � 5 GeV.

Another observations is that, when s−11 scaling is estab-
lished, the HRM predicts an increase of the strength of the pp

breakup cross section relative to the pn breakup as compared
to the low energy results. This is due to the feature that within
the quark-interchange mechanism of NN scattering one has
more charges flowing between nucleons in the pp pair than in
the pn pair. This situation is opposite in the low energy regime
when no charged meson exchanges exist for the pp pair. Even
though the large charge factor is involved in the pp breakup
its cross section is still by a factor of ten smaller than the
cross section of the pn breakup. Within the HRM, this is due

to cancellation between the helicity conserving amplitudes φ3

and φ4, which have opposite signs for the pp scattering.
Because of the smallness of the pp breakup cross section,

within the eikonal approximation, we estimated the possible
contribution of three-body/two-step processes in which the
initial two-body hard pn breakup is followed by the charge-
exchange rescattering of an energetic neutron off the spectator
proton. We found that this contribution has s−12 energy
dependence and is a small correction for spectator nucleon
momenta �150 MeV/c. However, the three-body/two-step
process will dominate the hard pp breakup contribution at
large transverse momenta of the spectator nucleon starting at
ps⊥ � 350 MeV/c.

The next result of the HRM is the prediction of different
spectator-momentum dependencies of breakup cross section
for the pp and pn pairs. This result follows from the fact
that the ground state wave function of 3He containing two
protons with the same helicity is significantly suppressed as
compared to the same component in the pn pair. Because
of this, the pp spectral function is sensitive to the higher
angular momentum components of the nuclear ground state
wave function. These components generate wider momentum
distribution as compared to say the S component of the wave
function. As a result the cross section of the pp breakup
reaction exhibits wider momentum distribution as compared
to the pn cross section. Additionally because of the strong
s dependence of the reaction, the cross section exhibits an
asymmetry in the light-cone momentum distribution of the
spectator nucleon, favoring larger values of αs .

The final result of the HRM is the strong difference in
prediction of the polarization transfer asymmetry for pp and
pn breakup reactions for circularly polarized photons. Because
of the suppression of the same helicity pp components in the
3He ground state wave function, the dominant helicity con-
serving φ1 component will not contribute to the polarization
transfer process involving two protons. Because of this effect,
the HRM predicts longitudinal polarization transfer Cz′, for the
pp breakup to be close to zero. Because no such suppression
exists for the pn breakup, the HRM predicts a rather large
magnitude for Cz′ ≈ 2

3 .
Even though the HRM model does not contain free

parameters, for numerical estimates we use the magnitude of
elastic NN cross sections as well as some properties of the
NN helicity amplitudes. This introduces certain error in our
prediction of the magnitudes of the breakup cross sections. For
the pn breakup this error is mainly related to the uncertainty
in the magnitude of the absolute cross section of hard elastic
pn scattering which is on the level 30%. For the pp breakup
the main source of the uncertainty is the magnitude of the
cancellation between φ3 and φ4, which is sensitive to the
angular distribution of helicity amplitudes. The uncertainty
due to the angular function is on the level of 40%. These
uncertainties should be considered on top of the theoretical
uncertainties that the HRM contains due to approximations
such as estimating the scattering amplitude at maximal value
of the nuclear wave function at α = 1

2 . The latter may introduce
an uncertainty of as much as 20% in the breakup cross section.

In conclusion we expect that experimental verification of
all the above-mentioned predictions may help us to verify the
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validity of the hard rescattering model. Also, the progress in
extracting the helicity amplitudes of the hard NN scattering
will allow us to improve the accuracy of HRM predictions.
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APPENDIX A: CALCULATION OF THE 3He(γ, NN)N
SCATTERING AMPLITUDE

Applying Feynman diagram rules for the scattering ampli-
tude corresponding to the diagram of Fig. 1(a) one obtains

〈λf 1, λf 2, λs |A|λγ , λA〉
= (N1) :

∫ −i�N1f
i[/p1f − /k1 + mq]

(p1f − k1)2 − m2
q + iε

iS(k1)

· · · [−igT F
c γµ] · · · i[/p1i − /k1 + mq](−i)�N1i

(p1i − k1)2 − m2 + iε

d4k1

(2π )4

× (γ q) :
i[/p1i − /k1 + q + mq]

(p1i − k1 + q)2 − m2
q + iε

[−iQieε
⊥γ ⊥]

(N2) :
∫ −i�N2f

i[/p2f − /k2 + mq]

(p2f − k2)2 − m2
q + iε

iS(k2)

· · · [−igT F
c γν]

i[/p2i − /k2 + mq](−i)�N2i

(p2i − k2)2 − m2 + ε

d4k2

(2π )4

(3He) :
∫ −i�3He · ūλs

(ps)i[/pNN − /p2i + mN ]

(pNN − p2i)2 − m2
N + iε

× i
[
/p2i + mN

]
p2

2i − m2
N + iε

d4p2i

(2π )4

(g) :
idµ,νδab

[(p2i − k2) − (p1i − k1) − (q − l)]2 + iε
, (A1)

where the momenta involved above are defined in Fig. 1. Note
that the terms above are grouped according to their momenta.
As such they do not represent the correct sequence of the
scattering presented in Fig. 1. To indicate this we separated
the disconnected terms by “. . .”.

The covariant vertex function �3He describes the transition
of the 3He nucleus to a three-nucleon system. The vertex
function �N describes a transition of a nucleon to one-
quark and a residual spectator quark-gluon system with total
momentum ki, (i = 1, 2). The function S(k) describes the
propagation of the off-mass shell quark-gluon spectator system
of the nucleon. As is shown below, this nonperturbative
function can be included in the definition of a nonperturbative
single quark wave function of the nucleon.

Using the reference frame and the kinematic conditions
described in Sec. II we now elaborate each labeled term of
Eq. (A1) separately.

(3He). Using the light-cone representation of four-momenta
and introducing the light-cone momentum fraction of the NN

pair carried by the nucleon 2i as α = p2i+
pNN+

, one represents
the nucleon propagators as well as the momentum integration
d4p2i in the following form:

p2
2i − m2

N + iε = α · pNN+

(
p2i− − m2

N + p2
2i⊥

αpNN+

)
+ iε

(pNN − p2i)
2 − m2

N + iε = pNN+(1 − α)

(
M2

NN

pNN+
− p2i−

)
− (

m2
N + p2

i⊥
) + iε

d4p2i = pNN+
1

2
dαdp2i−d2p2i⊥. (A2)

Using these relations in Eq. (A1) we can integrate over dp2i−
taking the residue at the pole of the (2i)-nucleon propagator,
i.e.,

∫
[· · ·]dp2i−

p2i− − m2
N +p2

2i⊥
αpNN+

+ iε
= −2πi[· · ·]|

p2i−= m2
N

+p2
2i⊥

αpNN+
. (A3)

After this integration one can use the following relations in
Eq. (A1):

/p2i + mN =
∑
λ2i

uλ2i
(p2i)ūλ2i

(p2i)

(pNN − p2i)
2 − m2

N = (1 − α)

(
M2

NN − m2
N + p2

2i⊥
α(1 − α)

)

/pNN − /p2i + mN =
∑
λ1i

uλ1i
(p1i)ūλ1i

(p1i)

+
M2

NN − m2
N+p2

2i⊥
α(1−α)

2pNN+
γ +. (A4)

Furthermore we use the condition p2
NN+ � 1

2 (M2
NN −

m2
N+p2

2i⊥
α(1−α) ) to neglect the second term of the right-hand part

of the third equation in Eq. (A4). This relation is justified for
the high energy kinematics described in Sec. II as well as from
the fact that in the discussed model the scattering amplitude is
defined at α ≈ 1

2 .
Introducing the light-cone wave function of 3He [30,31,50],

	
λA,λ1,λ2,λs
3He (α, p⊥) = �

λA
3Heūλ1 (pNN − p)ūλ2 (p)ūλs

(ps)

M2
NN − m2

N+p2
⊥

α(1−α)

,

(A5)
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and collecting all the terms of Eq. (A4) in the (3He:) part of
Eq. (A1) one obtains

(3He:) =
∑

λ1i ,λi2

∫
	

λA,λi1,λi2,λs
3He (α, pi⊥)

1 − α

× uλi1 (p1)uλi2 (p2)
dα

α

d2p2i⊥
2(2π )3

. (A6)

(N1:). To evaluate this term in Eq. (A1) we first introduce

x1 = k1+
p1i+

= k1+
(1 − α)pNN+

,

(A7)
x ′

1 = k1+
p1f +

= 1 − α

1 − α′ x1,

where α′ = p2f +
pNN+

. Furthermore we perform the k1− integration
such that it puts the spectator system of the N1 nucleon at its
on-mass shell. This results in∫

S(k1)dk1− = − 2πi

p1+x1

∑
s

ψs(k1)ψ†
s (k1)|

k1−= m2
s +k2

1⊥
p1+x1

,

(A8)

where ψs(k) represents the nucleon’s spectator wave function
with mass ms and spin s. Note that in the definition of ψs

one assumes an integration over all the internal momenta of
the spectator system. Using Eq. (A8) for the (N1) term one
obtains

(N1) :
∑

s

∫ −i�N1f
i(/p1f − /k1 + mq]

(p1f − k1)2 − m2
q + iε

ψs(k1) · · ·

· · · [ − igT F
c γµ

]
ψ†

s (k1)
i[/p1i − /k1 + mq](−i)�N1i

(p1i − k1)2 − m2 + iε

× dx1

x1

d2k1⊥
2(2π )3

. (A9)

Now we evaluate the propagator of the off-shell quark with
the momentum p1i − k1. This yields

/p1i − /k1 + mq

(p1i − k1)2 − m2
q

= (/p1i − /k1)on shell + mq

(1 − x1)
(
m̃2

N1 − m2
s (1−x1)+m2

qx1+(k1⊥−x1p1⊥)2

x1(1−x1)

)
+ γ +

2(1 − α)(1 − x1)pNN+
, (A10)

where the effective off-shell mass of the nucleon is defined as

m̃2
N = M2

NNα(1 − α) − m2
N (1 − α) − p2

⊥
α

. (A11)

As it follows from Eq. (A10) at the high energy limit, p2
NN+ �

m2
N , one can neglect the second term of the RHS (off-shell)

part of the equation if (1 − α)(1 − x1) ∼ 1. As is shown in
Sec. II [see discussion before Eq. (12)], the essential values
that contribute in the scattering amplitude correspond to α ≈ 1

2
and (1 − x1) ∼ 1. Therefore the second term in the right-hand
side of Eq. (A10) can be neglected. Using the closure relation

for the on-shell spinors for Eq. (A10) one obtains

/p1i − /k1 + mq

(p1i − k1)2 − m2
q

=
∑

η1i
uη1i

(p1i − k1)ūη1i
(p1i − k1)

(1 − x1)
(
m̃2

N1 − m2
s (1−x1)+m2

qx1+(k1⊥−x1p1⊥)2

x1(1−x1)

) . (A12)

Similar considerations yield the following expression for the
propagator of the quark entering the wave function of the final
nucleon “1f ”:

/p1f − /k1 + mq

(p1f − k1)2 − m2
q

=
∑

η1f
uη1f

(p1f − k1)ūη1f
(p1f − k1)

(1 − x ′
1)

(
m2

N − m2
s (1−x ′

1)+m2
qx ′

1+(k1⊥−x ′
1p1f ⊥)2

x ′
1(1−x ′

1)

) , (A13)

where x ′
1 is defined in Eq. (A7).

By inserting Eqs. (A12) and (A13) into Eq. (A9) and
defining the quark wave function of the nucleon as

	
λ,η

N (p, x, k⊥) = uλ
N (p)�Nūη(p − k)ψ†

s (k)

m2
N − m2

s (1−x)+m2
qx+(k⊥−xp⊥)2

x(1−x)

, (A14)

for the (N1 :) term we obtain

(N1 :)
∑

η1f ,η1i ,s1

∫
	†λ1f ,η1f (p1f , x ′

1, k1⊥)

(1 − x ′
1)

ūη1f
(p1f − k1) · · ·

· · · [−igT F
c γµ]uη1i

(p1i − k1)
	λ1i ,η1i (p1i , x1, k1⊥)

(1 − x1)

× dx1

x1

d2k1⊥
2(2π )3

. (A15)

(N2:). This term can be evaluated following similar con-
siderations used above in the evaluation of the (N1:) term.
Introducing light-cone momentum fraction of the spectator
system of the second nucleon as

x2 = k2+
p2i+

= k2+
αpNN+

,

(A16)
x ′

2 = k2+
p2f +

= α

α′ x2,

for the (N2:) term we obtain

(N2:)
∑

η2f ,η2i ,s2

∫
	†λ2f ,η2f (p2f , x ′

2, k2⊥)

(1 − x ′
2)

ūη2f
(p2f − k2) · · ·

· · · uη2i
(p2i − k2)

	λ2i ,η2i (p2i , x2, k2⊥)

(1 − x2)

× dx2

x2

d2k2⊥
2(2π )3

. (A17)

Collecting the expressions of Eqs. (A6), (A15), and (A17)
in Eq. (A1) and rearranging terms to express the sequence
of the scattering, we obtain the expression of the scattering
amplitude presented in Eq. (7).
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APPENDIX B: CALCULATION OF THE
NUCLEON-NUCLEON SCATTERING AMPLITUDE

In this section we consider a hard NN elastic scattering
model in which two nucleons interact through the QIM. The
typical diagram for such scattering is presented in Fig. 8.
Applying Feynman diagram rules for these diagrams one
obtains

A
QIM
NN

= (N1) :
∫ −i�N1f

i[/p1f − /k1 + mq]

(p1f − k1)2 − m2
q + iε

iS(k1)

· · · [−igT F
c γµ

] i[/p∗
1i − /k1 + mq](−i)�N1i

(p∗
1i − k1)2 − m2 + iε

d4k1

(2π )4

(N2) :
∫ −i�N2f

i[/p2f − /k2 + mq]

(p2f − k2)2 − m2
q + iε

S(k2)

· · · [−igT F
c γν

] i[/p2i − /k2 + mq](−i)�N2i

(p2i − k2)2 − m2 + ε

d4k2

(2π )4

(g) :
idµ,νδab

r2 + iε
− (p1f ↔ p2f ), (B1)

where definitions of the momenta are given in Fig. (8). The
procedure of reducing the above amplitude is similar to the one
used in the previous section. First we estimate the propagators
of each nucleon’s spectator system at their pole values, ki,− =
m2

s +k2
i,⊥

xip+ (i = 1, 2), by performing the ki,− integration, which
yields∫

[· · ·]S(ki)dki− = −2πi[· · ·]
xip+

∑
s

ψs(ki)ψ
†
s (ki)

∣∣∣∣
ki,−= m2

s +k2
i,⊥

xi p+

.

(B2)

Furthermore, because p2
+ � m2

N one can apply, similar to
Eqs. (A12) and (A13), approximations for propagators of
interchanging quarks leaving and entering the corresponding
nucleons. Then using the definition of single quark wave
function according to Eq. (A14) for the (N1) and (N2) terms,
one obtains similar expressions that can be presented in the

(a)

(b)

FIG. 8. Quark interchange contribution to nucleon-nucleon scat-
tering.

following form:

(N1:)
∑

η1,2f ,η2,1i ,s

∫
	†λ1f ,η1f (p1f , x ′

1, k1⊥)

(1 − x ′
1)

ūη1f
(p1f − k1) · · ·

· · · [−igT F
c γµ]uη1i

(p∗
1i − k1)

	λ1i ,ηi1 (p1i , x1, k1⊥)

(1 − x1)

× dx1

x1

d2k1⊥
2(2π )3

. (B3)

The (N2:) term is obtained from the above equation by
replacing 1 → 2. Regrouping (N1) and (N2) terms given by
Eq. (B3) into Eq. (B1), for the amplitude of nucleon-nucleon
scattering in QIM we obtain

A
QIM
NN =

∑
η1i η2i η1f η2f

∫ [{
ψ

†λ2f ,η2f

N (p2f , x ′
2, k2⊥)

1 − x ′
2

ūη2f

(p2f − k2)[−igT F
c γ ν]uη1i

(p∗
1i − k1)

× ψ
λ1i ,η1i

N (p∗
1i , x1, k1⊥)

(1 − x1)

}

×
{

ψ
†λ1f ,η1f

N (p1f , x ′
1, k1⊥)

1 − x ′
1

ūη1f
(p1f − k1)

× [−igT F
c γ µ

]
uη2i

(p2i − k2)
ψ

λ2i ,η2i

N (p2i , x2, k2⊥)

(1 − x2)

}

×Gµ,ν(r)
dx1

x1

d2k1⊥
2(2π )3

dx2

x2

d2k2⊥
2(2π )3

]
. (B4)

Note that in the above expression we redefined the initial
momentum of the “N1” nucleon to p∗

1i to emphasize its
difference from p1i , which enters in the photodisintegration
amplitude. In the latter case p1i is not independent and it is
defined by the momenta of the two remaining nucleons in the
3He nucleus.

APPENDIX C: CALCULATION OF QUARK-CHARGE
FACTORS IN QIM MODEL OF NN SCATTERING

We consider now the hard elastic NN scattering (described
through a + b → c + d reaction) within quark-interchange
approximation following the approach used in Ref. [35]. In
this case one can represent the scattering amplitude as follows:

〈cd|T |ab〉
=

∑
α,β,γ

〈ψ†
c |α′

2, β
′
1, γ

′
1〉〈ψ†

d |α′
1, β

′
2, γ

′
2〉

× 〈α′
2, β

′
2, γ

′
2, α

′
1β

′
1γ

′
1|H |α1, β1, γ1, α2β2γ2〉

· 〈α1, β1, γ1|ψa〉〈α2, β2, γ2|ψb〉, (C1)

where (αi, α
′
i), (βi, β

′
i), and (γiγ

′
i ) describe the spin-flavor

quark states before and after the hard scattering, H , and

C
j

α,β,γ = 〈α, β, γ |ψj 〉 (C2)

describes the probability amplitude of finding an α, β, γ

helicity-flavor combination of three valence quarks in the
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nucleon j . The C
j

α,β,γ terms can be calculated by representing
the nucleon wave functions on the helicity-flavor basis. For
SU(6) symmetric wave function such representation reads

ψi3
N ,hN = 1√

2

{(
χ

(23)
0,0 χ

(1)
1
2 ,hN

) · (
τ

(23)
0,0 τ

(1)
1
2 ,i3

N

)

+
1∑

i3
23=−1

1∑
h3

23=−1

〈
1, h23;

1

2
, hN − h23

∣∣∣∣1

2
, hN

〉

×
〈
1, i3

23;
1

2
, i3

N − i3
23

∣∣∣∣1

2
, i3

N

〉

× (
χ

(23)
1,h23

χ
(1)
1
2 ,hN−h23

) · (
τ

(23)
1,i3

23
τ

(1)
1
2 ,i3

N −i3
23

)}
, (C3)

where we separated the wave function into two parts with two
quarks (e.g., 2nd and 3rd) being in helicity zero-isosinglet and
helicity one-isotriplet states. Here χj,h is the helicity wave
function with total spin j and helicity h and τI,i3 is the isospin
wave function with total isospin I and third component i3.
Also, i3

N and hN are the isospin projection and helicity of the
nucleon, respectively.

Assuming helicity conservation in the hard kernel of quark
interactions,

H ≈ δα1α
′
1
δα1α

′
1
δβ1,β1′δγ1,γ

′
1
δβ2,β2′δγ2,γ

′
2

f (θ )

s4
, (C4)

one obtains a rather simple relation for NN scattering
amplitude in the form [35]

〈cd|T |ab〉 = T r(MacMbd ), (C5)

with

M
i,j

α,α′ = Ci
α,βγ C

j

α′,βγ + Ci
βα,βC

j

βα′,β + Ci
βγαC

j

βγα′ , (C6)

where one sums over all the possible values of β and γ .
Using the above equations for the helicity amplitudes

defined in Eq. (24) and normalized according to Eq. (24) [35]
for pp → pp one obtains

φ1 = 1
9 (31F (θ, s) + 31F (π − θ, s))

φ3 = 1
9 (14F (θ, s) + 17F (π − θ, s)) (C7)

φ4 = − 1
9 (17F (θ, s) + 14F (π − θ, s)),

and for pn → pn one obtains

φ1 = 1
9 (14F (θ, s) + 17F (π − θ, s))

φ3 = 1
9 (22F (θ, s) + 25F (π − θ, s)) (C8)

φ4 = 1
9 (8F (θ, s) + 8F (π − θ, s)),

with φ2 = φ5 = 0 due to helicity conservation.
The above-described formalism gives an explicit form for

calculation of the charge weighted NN amplitudes described
in Sec. II B. For example Eq. (15) can be calculated by
modifying Eq. (C5) in the following form:

Q
Na

F 〈cd|T |ab〉 =
∑
α,α′

QαMac(α, α′)Mbd (α′, α)), (C9)

where Qα is the charge of the quark α in |e| units.

APPENDIX D: HELICITY AMPLITUDES OF
TWO-NUCLEON BREAKUP REACTIONS OFF 3He

TARGET

Replacing QIM amplitudes in Eq. (18) by NN helicity am-
plitudes of Eq. (24) and using the antisymmetry of the ground
state wave function with respect to the exchange of quantum
numbers of any two nucleons one obtains the following
expressions for the helicity amplitudes of two nucleon breakup
reactions off the 3He nucleus, 〈λ1f , λ2f , λs |A|λγ , λA〉. For a
positive helicity photon,

〈+,+, λs |A|+, λA〉

= B

∫ [
QF φ5	

λA
3He(+,−, λs) + QF φ1	

λA
3He(+,+, λs)

]

×mN

d2p⊥
(2π )2

〈+,−, λs |A|+, λA〉

= B

∫ [(
Q

N1
F φ3 + Q

N2
F φ4

)
	

λA
3He(+,−, λs)

−QF φ5	
λA
3He(+,+, λs

)]
mN

d2p⊥
(2π )2

〈−,+, λs |A|+, λA〉

= B

∫ [ − (
Q

N1
F φ4 + Q

N2
F φ3

)
	

λA
3He(+,−, λs)

+QF φ5	
λA
3He(+,+, λs

)]
mN

d2p⊥
(2π )2

〈−,−, λs |A|+, λA〉

= B

∫ [
QF φ5	

λA
3He

(+,−, λs

) + QF φ2	
λA
3He(+,+, λs

)]

×mN

d2p⊥
(2π )2

, (D1)

and for a negative helicity photon,

〈+,+, λs |A|−, λA〉

= −B

∫ [ − QF φ5	
λA
3He(−,+, λs)

+QF φ2	
λA
3He(−,−, λs)

]
mN

d2p⊥
(2π )2

〈+,−, λs |A|−, λA〉

= −B

∫ [ − (
Q

N1
F φ4 + Q

N2
F φ3

)
	

λA
3He(−,+, λs)

−QF φ5	
λA
3He(−,−, λs)

]
mN

d2p⊥
(2π )2

〈−,+, λs |A|−, λA〉

= −B

∫ [(
Q

N1
F φ3 + Q

N2
F φ4

)
	

λA
3He(−,+, λs)

+QF φ5	
λA
3He(−,−, λs)

]
mN

d2p⊥
(2π )2
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〈−,−, λs |A|−, λA〉

= −B

∫ [ − QF φ5	
λA
3He(−,+, λs)

+QF φ1	
λA
3He(−,−, λs)

]
mN

d2p⊥
(2π )2

, (D2)

where B = ie
√

2(2π)3√
2s ′

NN

. Because the scattering process is con-

sidered in the “γ -NN” center of mass reference frame, where
z direction is chosen opposite to the momentum of incoming
photon, the bound nucleon helicity states correspond to the
nucleon spin projections 1

2 for positive and − 1
2 for negative

helicities.
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