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Multistep effect in 16O + 16O inelastic scattering

M. Takashina1,* and Y. Sakuragi2,3

1Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan
2Department of Physics, Osaka City University, Osaka 558-8585, Japan
3RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan

(Received 9 June 2009; published 9 July 2009)

We have analyzed 16O + 16O inelastic scattering to the single 2+
1 and 3−

1 channels at incident energies of
Elab = 350 and 1120 MeV by a microscopic coupled-channel calculation. We have found that the strong rotational
coupling among the channels of the α + 12Cg.s. type cluster states plays an important role in reproducing the
angular distribution of the 2+

1 channel for both energies. We have also found that the coupling with the 0+
2 , 2+

1 , and
4+

1 channels as well as those among the shell channels has a large effect on the 3−
1 channel cross sections at Elab =

350 MeV. However, their absolute values could not be reproduced by our calculation, unless we assumed that the
strengths of the 3−

1 → 0+
2 , 2+

1 , 4+
1 transitions were unphysically strong.
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I. INTRODUCTION

The double folding model (DFM) is known to be a
useful tool for obtaining the internucleus potential. Indeed,
DFM analyses using density-dependent-type nucleon-nucleon
potentials, such as the DDM3Y [1] and CDM3Y6 [2], with
a phenomenological imaginary potential have successfully
reproduced the nuclear rainbow phenomena observed in
16O + 16O elastic scattering [3,4]. Since the nuclear rainbow
pattern in the angular distribution is sensitive to the shape and
depth of the real part of the optical potential, these results
indicate that the DFM gives a precise real optical potential.

Because of these successful results for elastic scattering, it
is natural to expect that the coupled-channel (CC) or DWBA
calculation based on the DFM can also precisely reproduce
the 16O + 16O inelastic angular distribution. However, it was
shown in Refs. [4,5] that the magnitude of the inelastic
scattering cross section to the single excitation channels of the
2+

1 (Ex = 6.92 MeV) and 3−
1 (6.13 MeV) states could not be

reproduced by DFM analyses simultaneously with the elastic
angular distribution. The calculation gives order-of-magnitude
larger cross sections than the experimental data, as long as the
imaginary potential of the inelastic channels is assumed to be
the same as that of the elastic one (and the coupling potential
is complex), even though the transition densities used gave the
correct electric transition strengths B(E2) and B(E3).

In Ref. [5], the authors pointed out that one needed to arti-
ficially increase the imaginary-potential strength to reproduce
the absolute values of the experimental cross sections for these
channels. This may suggest that a large portion of flux induced
in these inelastic channels from the elastic channel may have
leaked out into other reaction channels, which must be strongly
connected to these inelastic channels. In fact, the calculation
of Ref. [5] included only the ground, 2+

1 and 3−
1 states. The

validity of this limited model space can be justified only when
the coupling with other channels is sufficiently weak.

It is well known [6] that the 2+
1 state in 16O is a member of

the rotational band consisting of the 0+
2 (6.05 MeV), 2+

1 , and

*takasina@rcnp.osaka-u.ac.jp

4+
1 (10.36 MeV) states (with the 0+

2 state being the bandhead),
which have a well-developed α +12 Cg.s. type cluster structure,
and the intraband transitions among the states are very strong.
Therefore, it is expected that coupling with the 0+

2 and 4+
1

channels has a large effect on the inelastic cross section in the
2+

1 channel. Furthermore, 1−
2 (9.59 MeV), 3−

2 (11.60 MeV),
and 5−

1 (14.68 MeV) states are known to form a negative-parity
rotational band, which is interpreted to be the inversion doublet
[7] of the positive-parity rotational band with 0+

2 , 2+
1 , and 4+

1
states and, hence, the couplings among the states belonging
to the positive-parity band and those to the negative-parity
bands are also expected to be important. Similarly, since the
3−

1 state has a shell-model-like structure, the coupling with
the channels including other low-lying shell states as well as
the ground state may be important. Indeed, in the CC analysis
of Ref. [4], the 1−

1 and mutual-3−
1 channels are included,

although the resultant cross sections of the 3−
1 channel still

overestimates the experimental data, as already mentioned.
Another candidate would be the 2−

1 (8.87-MeV) state, which
also has a shell-model-like structure [6] and is expected to
have a non-negligible transition strength to the 3−

1 state.
In this paper, we investigate the multistep effect on the

2+
1 and 3−

1 single excitation channels of 16O + 16O inelastic
scattering by the CC calculation including the single excitation
channels of all the states in 16O below the excitation energy
Ex = 10.5 MeV and the 3−

2 and 5−
1 states, and we discuss the

possibility of resolving the overestimation problem of the 2+
1

and 3−
1 channel cross sections.

II. FORMALISM

A. Microscopic coupled-channel method

In the present study, we perform microscopic coupled-
channel (MCC) calculations, where the real parts of the
diagonal and coupling potentials are given by the DFM:

Vα(ij ),β(k�)(R) =
∫

ρ
(a)
ik (ra)ρ(A)

j� (rA)

× vNN (ra + R − rA)dradrA, (1)
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where ρ
(a)
ik (ρ(A)

j� ) represents the transition density of the
projectile (target) nucleus between the state i(j ) in channel
α and the state k(�) in channel β. For vNN , we adopt the
DDM3Y interaction [1] with the zero-range exchange term.
To reproduce the elastic data precisely, we will introduce
the normalization factor close to the unity for the real folded
potential.

Because DDM3Y has no imaginary part, we add the
imaginary potential, for which we consider the following two
assumptions:

(i) The shape of the imaginary potential is the same as that
of the real potential for all the diagonal and coupling
terms. Then, the generalized optical potential is written
as

Uα,β(R) = (NR + ıNI )Vα,β (R), (2)

where NR and NI are the normalization factor for the real
and imaginary parts, respectively, and are determined so
as to reproduce the elastic angular distribution. NR is
restricted to be close to unity as previously mentioned.

(ii) The diagonal part of the imaginary potential is assumed
to be of Woods-Saxon shape;

Wdiag.(R) = −W0

[
1 + exp

(
R − RW

aW

)]−1

. (3)

The parameters W0, RW , and aW are determined so as to
reproduce the elastic angular distribution and are taken
to be common to all the channels. In this case, the real
folded potential is again multiplied by the normalization
factor NR , and its value is determined simultaneously
with the Woods-Saxon imaginary parameters. Since the
coupling potential would be complex, we assume the
deformed optical potential model type form factor [5]

W
(γ )
coupl.(R) = −δγ

dWdiag.(R)

dR
(4)

for the coupling term of the imaginary potential. In
Eq. (4), γ represents the pair of the channels and δγ is the
deformation length of the corresponding transition. In the
analysis of the inelastic scattering to the 2+

1 and 3−
1 chan-

nels, the values of δ2+
1 →g.s. and δ3−

1 →g.s. are important.
We take them from Ref. [5]: δ2+

1 →g.s. = 1.038 fm and
δ3−

1 →g.s. = 1.825 fm. However, we assume that δγ = 0
for the other transitions to avoid the ambiguity from
the choice of the deformation length. This assumption
would be justified because the coupling terms other than
the 16Og.s. + 16Og.s. → 16Og.s. + 16O(2+

1 , 3−
1 ) transitions

have just an indirect effect on the 2+
1 and 3−

1 channels as
the distortion.

It should be noted that no adjustable parameters for the 2+
1

and 3−
1 channels are included in either (I) or (II).

The coupled-channel equations are solved by the Stormer
method with the mesh �R = 0.01 fm, and the matching
radius is Rmax = 15.0 fm. We include the partial waves

TABLE I. The states of 16O included in the present calculation
classified into the shell-model type, α + 12Cg.s. type, and α +
12C(2+

1 ) type structures based on the results in Ref. [6] (see also the
text). The excitation energies (in MeV) are also given in parentheses.

Shell model α + 12Cg.s. α + 12Cg.s.(2
+
1 )

SH
CL-A CL-B

CL-C

0+
1 (0.0) 0+

2 (6.05) 1−
2 (9.59) 2+

2 (9.84)

3−
1 (6.13) 2+

1 (6.92) 3−
2 (11.60)

1−
1 (7.12) 4+

1 (10.36) 5−
1 (14.68)

2−
1 (8.87)

up to Jmax = 150 for Elab = 350 MeV and Jmax = 250 for
Elab = 1120 MeV.

B. States of 16O

In addition to the ground, 2+
1 and 3−

1 states, we consider the
1−

1 , 2−
1 , 0+

2 , 4+
1 , 1−

2 , 3−
2 , 5−

1 , and 2+
2 states in 16O as mentioned

in the introduction. Their structure type (shell-model type
or α + 12C cluster type) and the excitation energies are
summarized in Table I. For the later analysis, we classify the
states into four groups according to the results described in
Ref. [6]. The 0+

2 , 2+
1 , and 4+

1 states in 16O form the rotational
band with an α + 12Cg.s. type cluster structure, and the 1−

2 , 3−
2 ,

and 5−
1 states are the inversion doublet of them. Hence, we

refer to the former three states as CL-A and to the latter
three states as CL-B. The 2+

2 state has an α + 12C(2+
1 ) type

structure and is referred to as CL-C. The ground, 3−
1 , 1−

1 , and
2−

1 states are usually called the shell-model-like states (SH),
because their main configurations are the Pauli allowed states
with the minimum number of oscillator quanta in the shell
model.

For the diagonal and transition densities of the ground,
2+

1 , 3−
1 , 1−

1 , 0+
2 , and 2+

2 states, we use the ones obtained by the
α + 12C orthogonality-condition-model (OCM) calculation
[8] with some modifications: The transition density between
the ground and 2+

1 (3−
1 ) states is normalized so as to reproduce

the experimental electric transition strength B(E2)[B(E3)].
We also normalize the transition density between 0+

2 and 2+
1

states to give the correct B(E2) value. Since some transition
densities are not available in the OCM calculation, we add the
missing transition densities that are expected to be important
with several assumptions. We assume that the transition
density between the 3−

1 and 1−
1 states can be represented by

a derivative form of the average of the diagonal densities of
the 3−

1 and 1−
1 states, whose strength is adjusted with the

deformation length to reproduce the electric transition strength
as done in Ref. [4]. The λ = 1 components (where λ represents
the multipolarity) of the transition densities from the 3−

1 state
to the CL-A and CL-C states are assumed to be the same as that
between the ground and 1−

1 states. Transition density strengths
that are too large might have been assigned in the present
prescription than what we expect from the actual 3−

1 → CL-A,
CL-C strengths. However, since no experimental information
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for these transition strengths are so far available, we adopt the
prescription mentioned here for these transitions. The λ = 3
components are made in the same manner as the 1−

1 → 3−
1

case with the deformation lengths determined in the following
assumption: These transitions are the ones between the cluster
states and the shell-model-like state (referred to as the cluster-
shell transition). When we see the electric transition strengths
of the other cluster-shell transitions, namely 2+

1 , 4+
1 → g.s.,

we find that their experimental values B(E2) and B(E4)
are 3–4 Weisskopf units (W.u.) [9]. Therefore, we assume
that B(E3) values of the CL-A, CL-C →3−

1 transitions are
B(E3) = 3.5 W.u. for all the cases, and the deformation
lengths are determined so as to give this value.

The 4+
1 , 1−

2 , 3−
2 , and 5−

1 states are known to have the
α + 12Cg.s. type cluster structure [6] and are expected to have
an important effect on the 2+

1 channel. Therefore, we calculate
the transition densities from these states to the 0+

2 and 2+
1

states as well as their diagonal densities in the following
procedure. We assume that the relative wave function between
α and 12Cg.s. can be obtained by a simple potential model
calculation, namely the separation energy method, in which the
potential geometry is assumed to be of Woods-Saxon type with
a range parameter R0 = 1.25 × 121/3 fm and a diffuseness
parameter a0 = 0.65 fm. The depth of the potential is adjusted
to reproduce the separation energy for the bound state and the
resonance energy for the unbound state, with the appropriate
oscillator quantum number of the intercluster motion for each
state assumed to take account of the Pauli principle between
the α and 12Cg.s. clusters. For the resonance state, we use
the momentum-bin prescription in the continuum-discretized
coupled-channel (CDCC) method [10] to make a wave packet.
Using the obtained relative wave function ψIM (r′), we can
write the diagonal or transition density as

ρ
(16O)
IM,I ′M ′(r) = 〈ψIM (r′)|ρ(α)

0

(
r + 3

4 r′)
+ ρ

(12C)
0

(
r − 1

4 r′)|ψI ′M ′(r′)〉r′ , (5)

where r′ represents the relative coordinate between α and
12Cg.s., and I and M (I ′ and M ′) are the relative angular
momentum and its z-component of the final (initial) state. In

Eq. (5), ρ
(α)
0 and ρ

(12C)
0 are the ground-state densities of the α

particle and 12C. We normalize the transition densities made by
this potential model so as to reproduce the experimental data
when the corresponding transition strength is experimentally
available.

The transitions between the 3−
1 state and the CL-B states

are again the cluster-shell transitions with λ = 2. Therefore,
we assume that the transition densities between them are the
same as that for 2+

1 → g.s. without renormalization.
The 2−

1 state is known to have a shell-model-like structure
[6]. Hence, we assume that the diagonal density of 2−

1 is the
same as that of 3−

1 and that the transition density for 2−
1 → 3−

1
can be obtained by the same manner as the 1−

1 → 3−
1 case.

In the CC calculation, we consider the elastic channel, the
single excitation channels of all the states listed in Table I,
and the mutual excitation channel of 3−

1 . We call the single
excitation channel of 2+

1 the 2+
1 channel, and similarly for the
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FIG. 1. (Color online) The angular distributions for the 16O +
16O elastic, 2+

1 and 3−
1 channels at an incident energy of Elab =

350 MeV. The solid circles are the experimental data [5]. The solid
curves represent the results of the full CC calculations, and the dashed
curves represent the results of the three-channel calculations. The left
and right panels show the results with imaginary potentials (I) and
(II), respectively.

other case; the mutual excitation channel of 3−
1 is called the

mutual-3−
1 channel.

III. RESULTS

The left and right panels of Fig. 1 show the results of the CC
calculations with imaginary potentials (I) and (II), respectively,
at an incident energy of Elab = 350 MeV. The solid curves
are for the full CC calculation, and the dashed curves are
for the three-channel calculation where only the elastic,
2+

1 and 3−
1 channels are included. The normalization factor

NR and the imaginary potential parameters are determined
so as to reproduce the elastic angular distribution in each
calculation separately, and their values are listed in Table II.
It is found that the result of the three-channel calculation
largely overestimates the experimental cross sections of both
the 2+

1 and 3−
1 channels, which is consistent with the results

in Refs. [4,5]. However, when we include the coupling with
the other channels, the calculated cross sections (solid curve)
are reduced and excellently reproduce the absolute value of
the experimental data for the 2+

1 channel in both (I) and (II).

TABLE II. The parameter values obtained by the optimum fits
with the CC calculations.

Elab (I) (II)
(MeV)

NR NI NR W0 RW aW

(MeV) (fm) (fm)

350 full 1.1 0.45 1.1 27.0 5.4 0.73
3 ch. 1.1 0.35 1.1 17.0 5.4 0.73

1120 full 1.176 0.6 1.1 26.0 5.4 0.787
3 ch. 1.176 0.6 1.1 26.0 5.4 0.787
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FIG. 2. (Color online) Same as Fig. 1, but for Elab = 1120 MeV.

The 3−
1 channel cross sections of the full-channel calculation

in (I) are also found to be largely improved compared with the
three-channel case, although they still slightly overestimate the
experimental values. In calculation (II), the multistep effect on
the 3−

1 channel is visible, but it is not sufficient to reproduce
the experimental data.

We also perform the same calculations for Elab =
1120 MeV, for which one might think that the multistep
coupling effect is negligible. The results are shown in Fig. 2.
In spite of the high incident energy, the multistep coupling
effect is considerable for the 2+

1 channel in both (I) and (II)
because of the strong multistep coupling effect as is the case for
Elab = 350 MeV. Calculation (II) reproduces the experimental
cross sections of this channel fairly well, whereas calculation
(I) slightly overestimates. For the 3−

1 channel, the coupling
effect is visible in calculation (I), but it is negligible in
calculation (II). This means that the estimation of the multistep
effect on the 3−

1 channel in (II) is weaker than that in (I), and
this tendency has also been seen in the Elab = 350 MeV case
shown in Fig. 1.

To investigate the reaction mechanism, we analyze these
results for Elab = 350 MeV with imaginary potential (I) by
performing various types of CC calculations. In the following
calculations, we use the imaginary potential parameter NI =
0.45, which was obtained in the full channel calculation. The
coupling scheme that will be considered in the following is
summarized in Table III.

TABLE III. Excited channels included in the CC calculations.
CL-A, CL-B, CL-C, and SH represent the group of states (see
Table I). The states are for the single excitation channels, except for
the mutual-3−

1 one. In this table, SH includes the mutual-3−
1 channel.

Case 1 = 2+
1

Case 2 = CL-A
Case 3 = CL-A + CL-B + CL-C
Case 4 = 3−

1

Case 5 = SH
Case 6 = CL-A + SH
Full = CL-A + CL-B + CL-C + SH

0 10 20 30
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102

104
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dσ
/d

Ω
 (m

b/
sr

)

16O+16O(21
+) (I)

full

case 1
case 2
case 3

FIG. 3. (Color online) Angular distributions of the 2+
1 channel at

an incident energy of Elab = 350 MeV by the CC calculations with
the coupling scheme of cases 1–3 (see Table III) as well as the full
channel calculation using imaginary potential (I).

We first see the 2+
1 channel. The dot-dashed curve in

Fig. 3 represents the CC calculation where only the elastic
and 2+

1 channels are included (case 1), and it is found to
largely overestimate the full CC result (solid). However, when
we include the coupling with the CL-A channels (case 2,
dotted), the cross sections in the backward angles are dras-
tically reduced and are close to the solid curve. Therefore,
it can be said that the coupling effect on the 2+

1 channel is
almost exhausted by the 0+

2 and 4+
1 channels. Since the small

difference is seen between the dotted and solid curves, we
further add the other cluster channels, CL-B and CL-C (case 3).
The result is shown by the dashed curve, and it is found that the
coupling effect by the CL-B and CL-C channels is negligible.
This result implies that the remaining SH channels also have
a non-negligible effect on the 2+

1 channel.
We also investigate the coupling effect on the 3−

1 channel.
The dot-dashed curve in Fig. 4 represents the result of a two-
channel calculation including only the elastic and 3−

1 channels
(case 4). We first add the other shell channels (case 5). The
dotted curve is the result of case 5, the model space of which
is larger than the CC calculation of Ref. [4]. It is found that the

0 10 20 30

100

102

104
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θc.m. (deg)

dσ
/d

Ω
 (m

b/
sr

)

16O+16O(31 ) (I)

full

case 4

case 5

case 6

FIG. 4. (Color online) Angular distributions of the 3−
1 channel at

an incident energy of Elab = 350 MeV by the CC calculations with
the coupling scheme of cases 4–6 (see Table III) as well as the full
channel calculation using imaginary potential (I).
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coupling effect by the SH channels is smaller than expected,
and the dotted curve still disagrees with the result of the full
channel calculation. This result indicates that the coupling
effect on the 3−

1 channel is not exhausted by the SH channels.
Hence, we further add the CL-A channels (case 6), and the
result is shown by the dashed curve. It is found that the dashed
curve is close to the full channel calculation and that the effect
of the coupling with the CL-A channels for the 3−

1 channel
is comparable with that with the SH channels, although the
3−

1 state has a shell-model-like structure. The small difference
between the dashed and solid curves is due to the effect of the
remaining CL-B and CL-C channels.

The result of this analysis indicates that the coupling
between the 3−

1 channel and the CL-A channels plays an
important role in reducing the 3−

1 channel cross sections. From
further analysis, we find that the λ = 3 components of these
transitions have a dominant contribution, whereas the λ = 1
components do not affect the 3−

1 channel cross sections. In the
present study, because of the lack of the experimental data, the
λ = 3 strengths of the CL-A →3−

1 transitions are assumed to
be B(E3) = 3.5 W.u., as described in Sec. II B. To investigate
the relation between the strengths of these transitions and the
absolute value of the 3−

1 channel cross sections, we make
another assumption: The deformation lengths of the CL-A
→3−

1 transitions are assumed to be the same as the one
that reproduces the 3−

1 → g.s. electric transition strength.
The transition densities made with this deformation length
may give transition strengths that are too strong for the
cluster-shell transition, because both the ground and 3−

1 states
have a shell-model-like structure. We refer to these transition
densities as modified transition densities, whereas those made
in Sec. II B are referred to as original transition densities. In
Fig. 5, the result of the full channel CC calculation using the
modified transition densities (solid curve) is compared with
the experimental data (solid circles). We also show the result
using the original transition densities by the dashed curve,
which is the same as the lowest solid curve in the left panel
of Fig. 1. It is found that the solid curve well reproduces the
angular distribution of the larger angles θ > 15◦, although

0 10 20 30

100

102

104

Elab=350 MeV

θc.m. (deg)

dσ
/d

Ω
 (m

b/
sr

)

16O+16O(31 ) (I)

modified
original

FIG. 5. (Color online) Angular distributions of the 3−
1 channel

at an incident energy of Elab = 350 MeV by the full channel CC
calculations using imaginary potential (I). The solid curve represents
the result using the modified transition densities, whereas the dashed
curve represents the result using the original transition densities (see
text for details).

the cross sections at forward angles are less improved. This
result indicates that the 3−

1 channel cross sections at backward
angles can be reproduced if the strengths of the CL-A →3−

1
transitions are as strong as that of 3−

1 → g.s, but some unknown
effects that are not considered in the present calculation will
be necessary to reproduce the whole angular distribution.

IV. SUMMARY

We have analyzed 16O + 16O inelastic scattering to the
16O + 16O (2+

1 , 3−
1 ) final channels at incident energies of

Elab = 350 and 1120 MeV by the microscopic coupled-
channel calculation using the two types of imaginary potential
(I) and (II).

We showed that the cross sections of the 2+
1 channel

can be well reproduced by our calculation without any
artificial parameters, although the calculated cross sections
slightly overestimate the experimental data only in the case of
imaginary potential (I) for Elab = 1120 MeV. We found that
the rotational coupling among the 0+

2 , 2+
1 , and 4+

1 channels
plays a decisive role in reducing the cross sections of the 2+

1
channel, despite the high incident energy Elab = 1120 MeV
(E/A = 70 MeV). This is because these three states have
an α + 12Cg.s. type cluster structure, and the strengths of the
transitions 2+

1 → 0+
2 , 4+

1 are very strong owing to the large
deformation. From this result, it can be said that the analysis of
the nuclear reactions of unstable nuclei with a heavy ion target
should be carefully done, because many molecule-type cluster
structures are expected to exist in the ground and excited states
in light unstable nuclei. However, the coupling effect with the
other cluster channels (1−

2 , 3−
2 , 5−

1 , and 2+
2 ) are found to be

negligible. We also found that the coupling with the shell
channels has a non-negligible effect on the 2+

1 channel cross
sections.

For inelastic scattering to the 3−
1 channel at Elab =

350 MeV, we found that the cross sections are reduced by
the coupling not only with the shell channels but also with the
0+

2 , 2+
1 , and 4+

1 channels (referred to as CL-A), although the 3−
1

state has a shell-model-like structure. However, the absolute
values of the cross sections of this channel still overshoot the
experimental data even by the full channel calculation. For the
Elab = 1120 MeV case, the coupling effect is very weak in (I)
and is negligible in (II).

We further investigated the relation between the CL-A →3−
1

transition strengths and the 3−
1 channel cross sections in the

Elab = 350 MeV case, because electric transition strengths
of these transitions are not available experimentally. We
found that if the strengths of the CL-A →3−

1 transitions
are comparable with that of 3−

1 → g.s., the absolute value
of the 3−

1 channel cross sections at backward angles can be
reproduced by our calculation. However, these strengths may
be unphysically strong given the structures of the 3−

1 state
and CL-A states. Therefore, combined with the fact that the
cross sections at forward angles cannot be reproduced by this
prescription, the puzzle of the 3−

1 channel still remains an
open question, and more experimental information is needed
for 16O.
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