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Break-up fragment topology in statistical multifragmentation models
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Break-up fragmentation patterns together with kinetic and configurational energy fluctuations are investigated
in the framework of a microcanonical model with fragment degrees of freedom over a broad excitation energy
range. As long as fragment partitioning is approximately preserved, energy fluctuations are found to be rather
insensitive to both the way in which the freeze-out volume is constrained and the trajectory followed by the
system in the excitation-energy–freeze-out volume space. Due to hard-core repulsion, the freeze-out volume is
found to be populated nonuniformly, its highly depleted core giving the source a bubble-like structure. The most
probable localization of the largest fragments in the freeze-out volume may be inferred experimentally from their
kinematic properties, largely dictated by Coulomb repulsion.
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I. INTRODUCTION

For more than two decades, nuclear multifragmentation
has benefited from a constant scientific interest whose main
motivation is the observation of a (liquid-gas-like) phase
transition at subatomic scale [1,2].

Relying on the presumptive existence of an equilibrated
break-up stage in the simultaneous multiparticle decay of
excited nuclei, statistical models with cluster degrees of
freedom [3–7] represent particularly useful tools for the
characterization of the equilibrated state of the source and, not
less importantly, the study of the associated thermodynamics.
The remarkable advantage of realistically incorporating most
properties of bound and continuum states via empirical
parametrizations of cluster energies or level densities explains
their ability to describe well a wealth of experimental data
produced over a broad energetic domain.

It was demonstrated that experimental data corresponding
to a well-defined equilibrated source may be described by
a unique solution of such a statistical model [8,9]. It is
nevertheless not true that the different statistical models
converge to the same equilibrated source if the analysis is
done by exclusively considering experimental (after-burner)
information [10]. This is partly due to the different thermo-
dynamical constraints imposed on the employed statistical
ensembles or mathematical tricks designed to simplify the
partition function or speed up the simulation and, to a much
larger extent, to the differences in the break-up fragment
definition.

The aim of the present work is to contribute to a deeper
understanding of the break-up stage of the multifragmentation
decay as ruled by statistical laws. For this reason, contributions
from dynamics (as radial collective flow) and sequential
particle evaporations from primary fragments will be referred
to only tangentially, despite that over an important region of
the considered energy domain they play an important role.
For the same reason we will ignore also eventual fragment
recombination subsequent to the break-up, thoroughly con-
sidered by some authors [11,12]. More precisely, we want
to see

(i) whether fluctuations of different energetic degrees of
freedom are mainly dictated by the localization of the
decay event into the phase diagram or, conversely, by
the dominant fragmentation modes,

(ii) whether break-up nuclear matter distribution is uni-
form, and, if not,

(iii) whether it is possible to trace the nonhomogeneities
from experimentally accessible data.

The paper is organized as follows: Sec. II offers a brief
review of the statistical models of multifragmentation with
a special focus on the microcanonical ones employed here;
Sec. III investigates the sharing of a system’s available energy
among different degrees of freedom and the sensitivity of
the energy fluctuations to the system phase properties and
fragment partition; Sec. IV focuses on break-up patterns and
the extent to which these may be inferred from kinetic energy
distributions. Modifications of fragment charge distributions
brought by considering that, at variance with the standard
break-up picture, primary fragments interact through nuclear
forces are also addressed in Sec. IV. Conclusions are drawn in
Sec. V.

II. STATISTICAL TREATMENT OF
MULTIFRAGMENTATION

Under the equilibrium hypothesis, statistical models
reduce the physical problem under study to the estimation
of the number of microscopic states compatible with the
thermodynamical macroscopic constraints. This implies that
assuming that it is possible to write down the mathematical
expression of the statistical weight of a configuration WC in
the appropriate statistical ensemble, all the thermodynamic
quantities may be calculated out of the characteristic partition
sum

Z =
∑
C

WC, (1)
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while any ensemble-averaged observable X may be expressed
as

〈XC〉 =
∑

C WCXC∑
C WC

. (2)

While for relatively large extensive systems, thermody-
namical properties are not sensitive to the way in which
the statistical ensemble is defined, when dealing with small
systems, as the nuclear ones, it is important to choose
the most appropriate replica of the physical phenomenon.
Because of the lack of any thermal or chemical potential
reservoirs in the case of isolated multifragmenting nuclei,
the microcanonical ensemble is recommended as the most
reasonable choice [3,13,14]. In this case, it is obvious that
the conserved quantities are the total proton (Z) and neutron
(A − Z) numbers, the total energy (E), total momentum (P),
and, eventually, total angular momentum (L). The freeze-out
volume (V ) may be considered as either fixed or fluctuating.

Defining a generic break-up configuration by the isotopic,
internal, and translational properties of each fragment, C =
{A1, Z1, ε1, r1, . . . , ANC

, ZNC
, εNC

, rNC
}, one gets for the sta-

tistical weight of the constant volume ensemble the equation
[6]

WC(A,Z,E, V ) ∝ 1

NC!
�

NC∏
n=1

(
ρn(εn)

h3
(mAn)3/2

)

× 2π

�[3/2(NC − 2)]

1√
(detI )

× (2πK)3/2NC−4

(mA)3/2
, (3)

where I is the moment of inertia, K is the thermal kinetic
energy, and � = χV NC stands for the free volume or,
equivalently, accounts for interfragment interaction in the
hard-core idealization. From Eq. (3) it is straightforward to
calculate the statistical weight of a microcanonical ensemble
with fluctuating volume as

WC(A,Z,E, λ) =
∫

WC(A,Z,E, V ) exp(−λV ) dV. (4)

It is worthwhile to mention at this point that work-
ing under a fixed total energy constraint, it results that
the thermal kinetic energy, a key thermodynamic quan-
tity related to the temperature through T −1 = (∂S/∂E) =
1/W (A,Z,E, V )∂W (A,Z,E, V )/∂E, is determined by the
amount of energy available after extracting from the source
excitation the costs of fragment formation

∑
i Bi , fragment

internal excitation
∑

i εi , and mutual fragment interaction∑
i<j Vij ,

K = Eex − Q −
∑

i

εi −
∑
i<j

Vij . (5)

This implies that also the fluctuations of K are strongly
dependent on the fluctuations of the other three energetic
degrees of freedom, as we shall see later on.

The results discussed hereafter were obtained in the
framework of the microcanonical model of multifragmentation
(MMM) [6] in the case of the medium size nucleus (130,60)

within the commonly accepted scenario according to which
the break-up fragments do not interact otherwise than via
Coulomb forces. The consequences of considering in the
spirit of Refs. [11,12,15] that break-up fragments also feel the
nuclear proximity potential are discussed only with respect to
fragment charge distributions, for the sake of completeness.
Despite the particular choices regarding the model and the
nucleus, the results are considered generic for the statistical
break-up of multifragmenting nuclei.

Two arbitrary paths in the phase diagram have been
considered: a constant volume path V = 6V0 and one along
which the average volume increases with excitation energy.
The motivation of choosing a constant volume path is twofold.
First, it reproduces the fixed freeze-out volume statistical
constraint that has been used for treating multifragmentation
over almost two decades, and second, it accounts for the
belief that the freeze-out volume (average) value does not
change significantly as the source excitation energy increases.
Twofold also is the motivation of choosing the second path.
First, it cancels the statistical constraint of constant volume,
and second, it accounts for a freeze-out volume whose
(average) value may increase with energy, as recent analyses of
experimental data indicate [16,17]. In this last case, the average
freeze-out volume increases from 3.5V0 at 2 MeV/nucleon to
about 10.4V0 at 14 MeV/nucleon, as indicated in the inset
of Fig. 1. Even more importantly, the two paths differ by
the regions of the system phase diagram they explore. Thus,
following the evolution of the heat capacity,

C−1 = −T 2

(
∂2S

∂E2

)

= 1 − T 2 1

W (A,Z,E, V )

∂2W (A,Z,E, V )

∂E2

= 1 − T 2

〈(
3
2N − 4

) (
3
2N − 5

)
K2

〉
, (6)

plotted in Fig. 1 as a function of excitation energy, one may
notice that the constant volume path is supracritical, while the
increasing average-volume path crosses the phase coexistence
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FIG. 1. (Color online) Heat capacity vs source excitation energy
for the multifragmenting nucleus (130,60) which evolves through
the phase space following (1) a constant freeze-out volume V = 6V0

path or (2) a path characterized by an average freeze-out volume that
increases with the excitation, as indicated in the inset.
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FIG. 2. (Color online) Evolution with
source excitation energy of mean (left
column) and rms (right column) values of
total binding energy (a) and (e), total frag-
ment internal excitation (b) and (f), Coulomb
fragment-fragment interaction (c) and (g), and
thermal kinetic energy (d) and (h), corre-
sponding to the break-up stage of the (130,
60) multifragmenting nucleus. The consid-
ered states along a constant volume V = 6V0

(1) and an average volume increasing with
excitation (2) paths are represented by solid
and open circles. The open and solid stars
in (c) and (g) depict the excitation energy
dependence of the largest fragment in each
decay event. The dashed lines in (d) and (h)
stand for total fragment kinetic energy.

region. Phase coexistence is signaled by negative values of the
heat capacity.

III. ENERGY SHARING AT BREAK-UP:
AVERAGE AND RMS VALUES

Figures 2(a)–2(d) present, respectively, the average values
of the total fragment binding energy, internal excitation,
Coulomb interaction, and thermal kinetic energy together
with their rms values [Figs. 2(e)–2(h)] corresponding to the
break-up stage of a (130,60) nucleus whose excitation energy
ranges from 2 to 14 MeV/nucleon along the two considered
trajectories. Distributions of the mean charge of the largest
fragment and its rms are superimposed on the Figs. 2(c) and
2(g) with full and open stars. Dashed lines in Figs. 2(d)
and 2(h) indicate how the total fragment kinetic energy, a
quantity experimentally accessible, behaves with respect to
source excitation.

One can see that, irrespective of the considered path, the
more and more advanced fragmentation allowed by an increas-
ing source energy, suggested by a rapidly decreasing Zmax,
leads to a monotonic diminish of the total binding energy and
a monotonic increase of the total Coulomb interaction energy.
The total binding energy decrease is due to the increasing

fragment surfaces, while the increase of the total Coulomb
interaction energy is explained by an increasingly uniform
occupation of the volume. While the curves corresponding
to the two considered paths diverge with excitation, they are
still not far from one another, as for a given Eex their values
differ by at most 20% in the considered energy domain. In
contrast with this, the amount of energy dissipated in fragment
internal excitation has a more complex evolution, and the
relative difference among the values obtained along the two
paths reaches 50% at Eex = 14 MeV/nucleon. Nevertheless,
the evolution and relative magnitude of the above quantities
are such that the kinetic energy increases monotonically, as
one would expect [see Fig. 2(d)].

The right-side panels of Fig. 2 present the energy fluc-
tuations and indicate that, as more and more fragment
partitions are possible with the increasing energy, σ (B) and
σ (Eint) rise as well. Very interestingly, σ (VC) augments up
to 4 MeV/nucleon and then decreases. The positive slope
region corresponds to the energy domain where configurations
containing one heavy residue are dominant. The negative
slope interval corresponds to a regime of rather advanced
fragmentation which allows for a more uniform population of
the freeze-out volume. As one may notice, the peak of σ (VC)
corresponds roughly to the peak of σ (Zmax) [full and open
stars in the Fig. 2(g)] and indicates that the largest fragment
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Zmax dictates the geometrical arrangement of fragments and,
finally, the Coulomb energy.

Another observation is that because the reduction of the
Coulomb energy fluctuation is less significant than the increase
of the internal excitation and binding energy fluctuations,
σ (Kth) increases monotonically. Nevertheless, analyzing the
experimentally accessible fragment total kinetic energy distri-
bution, one notes a peak at 3 MeV/nucleon, as the consequence
of summing up the peaked σ (VC) with the monotonically
increasing σ (Kth) [Fig. 2(h)].

But the first important result is that fluctuations of kinetic
and configurational energetic channels prove rather insensitive
to both freeze-out volume constraints and the trajectory
followed by the system into the excitation-energy–freeze-out
volume plane, provided that the fragmentation pattern is pre-
served. The result is even more striking as the two considered
trajectories explore different regions of the phase diagram.

IV. FRAGMENTATION PATTERNS AND NUCLEAR
MATTER RADIAL DISTRIBUTIONS

The break-up fragmentation pattern corresponding to
4 MeV/nucleon excitation energy, where the largest fluctua-
tions in σ (Zmax) and σ (VC) manifest themselves, is illustrated
in the Fig. 3(a), while Fig. 4(a) presents the fragmenta-
tion pattern obtained at a slightly higher source excitation,
6 MeV/nucleon. As no sensitivity was found to the way in
which the freeze-out volume in constrained, from here on we
shall consider only the case corresponding to V = 6V0.

One can see that at Eex = 4 MeV/nucleon, the dominant
fragmentation mode is characterized by a residue representing
80% of the total system, but multifragmentation configurations
are already possible. For instance, configurations characterized
by two intermediate size fragments (Zmax ≈ 30 and Zmax2 ≈
20), though five times less probable than the most probable
fragmentation mode, are nevertheless frequent enough to
induce a quite flat Y (Zmax). The diversity of fragmentation
modes translated in broad Zmax and Zmax2 distributions persists
at 6 MeV/nucleon, but it is no longer possible to identify
a close competition among different fragmentation patterns.
This means that there are no more distinct ways of filling up the
available volume, whose coexistence leads to large fluctuation
of the Coulomb energy.

We recall at this point that fragmentation patterns are
nevertheless very sensitive to the break-up fragment definition
or modeling of the break-up stage itself. If, for instance, one
sticks to the noninteracting break-up fragments scenario but
considers that, in agreement with Thomas-Fermi calculations,
excited nuclei at freeze-out are diluted, the fragment charge
distribution will be settled by the competition between the
reduced free volume and the augmented thermal kinetic
energy. The same qualitative situation is reached if not the
fragment densities but their internal excitations are modified.
If, for example, one adopts for the nuclear level density an
expression that leads to lower fragment internal excitation,
in view of Eq. (5), Kth will increase, favoring an increased
reaction products multiplicity. In turn, this last quantity, by
making possible a more uniform population of the freeze-out
volume characterized by a larger VC , will tend to diminish Kth.
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FIG. 3. (Color online) Charge distributions (a) and distributions
of average kinetic energy as a function of fragment charge [(b) and
(c)] corresponding to the multifragmentation of the (130,60) nucleus
with V = 6V0 and Eex = 4 MeV/nucleon. (a) and (b) depict break-
up stage results, while after-burner data are illustrated in (c). Solid
circles stand for all fragments; open circles, open squares, and open
triangles stand, respectively, for the largest, second largest, and third
largest fragment in each event. The solid line in (a) corresponds to the
break-up fragment charge distribution obtained under the assumption
that break-up fragments interact not only through repulsive hard-core
and Coulomb potentials but also via proximity potentials.

Much dramatic modifications are expected if one consid-
ers that break-up fragments interact not only via repulsive
Coulomb but also via attractive nuclear proximity potentials.
This conceptually different approach is mainly justified by
the fact that for break-up volumes of the order of a few
V0 the distances between fragment surfaces may be lower
than ∼1 fm. This situation has been discussed recurrently in
Refs. [11,12,15], together with break-up fragment subsequent
recombination, and shown to lead to an increased productivity
of light and heavy fragments at the cost of the intermediate
ones. As recombination, which occurs if two fragments
approach each other during the Coulomb propagation, acts
in the sense of washing-out the statistical properties of
break-up fragment formation, here we shall restrict ourselves
to comment exclusively on the consequences of modifying
fragment energetics.

It is relatively easy to anticipate from Eq. (5) that by
considering an extra attractive potential, one will obtain an
increase in thermal kinetic energy and reaction products
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FIG. 4. (Color online) Same as Fig. 3, but for the multifragmenta-
tion of the (130,60) nucleus with V = 6V0 and Eex = 6 MeV/nucleon.

multiplicity. The confirmation is given by the solid curves
Figs. 3(a) and 4(a) obtained in the case in which the nuclear
interactions are implemented as in Ref. [11]. In both situations,
one may notice a dramatic enhancement of the light cluster
multiplicity and the total suppression of fragments with
Z � 10. These steep Y (Z) distributions and the evolution
of their slopes with source excitation may be reconciled
with experimental data if and only if one assumes that final
fragment formation is dominated by post-break-up dynamics
(including collective flow) and multiparticle correlation [12].
If this were the case, the freeze-out would occur much later
than the break-up. The complete modeling of this process is
nevertheless a challenging task that goes beyond the goal of
the present paper.

In addition to charge distributions, fragment average kinetic
energy distributions represent robust and directly accessible
experimental information and make up a key ingredient in the
standard procedure of identifying the statistically equilibrated
source by confrontation with predictions of statistical models
[8,9]. The Figs. 3(b), 3(c), 4(b), and 4(c) depict the average
kinetic energy distributions of primary and, respectively, cold
fragments corresponding to the same source (130,60) with
V = 6V0 and Eex = 4 and 6 MeV/nucleon. The inclusive
distributions are plotted with full circles, while distributions
corresponding to the largest, second largest, and third largest
fragment are plotted with open circles, squares and triangles.

Collective radial flow is set to zero to keep fragment statistical
properties unaffected.

Fragment average kinetic energy distributions are qualita-
tively similar for the two source excitations. As one may notice,
the maximum value of 49 (42) MeV reached by the primary
(asymptotic) 〈K(Z)〉|4 MeV/nucleon distribution exceeds by 25%
(30%) the maximum value obtained by the corresponding
〈K(Z)〉|6 MeV/nucleon distribution. This result is in apparent
contrast with what one would expect given the increase of
57% of the total Coulomb energy over the considered energy
domain, though it may be understood by taking into account
the much stronger increase in the total number of reaction
products [18].

A common and interesting feature is present in the charge
domain where the 〈K(Z)〉 distributions reach their maximum.
Thus, the break-up and asymptotic average kinetic energies
of the largest fragment are systematically smaller than the
average kinetic energies of the second largest fragment, which
are, in their turn, smaller than the ones corresponding to the
third largest fragment. This result has been already pointed
out by the INDRA Collaboration in the case of Xe + Sn at
32 MeV/nucleon and Gd + U at 36 MeV/nucleon reactions
[19] and shown to diminish with the source excitation energy,
in perfect agreement with the present results. Taking into
account that fragment kinetic energies are to a large extent
dictated by Coulomb, it becomes obvious that in analyzing
them, one may get information on the most probable fragment
position at break-up. Having the same dependence as Coulomb
on fragment mass and distance from the freeze-out volume
center, radial collective flow, if present, would enhance this
shift. If this reasoning is correct, it means that the larger a
fragment is, the closer it is produced to the freeze-out volume
center.

The answer to this issue is offered by Fig. 5, where
radial probability distributions of different size fragments
corresponding to the break-up stage of the (130,60) source
with V = 6V0 and Eex = 4 MeV/nucleon are plotted. As a
first general remark, one may say that the probability to create
a fragment inside the freeze-out volume, whatever its size, is
highly nonuniform and strongly diminishes in the core region.
Moreover, heavy fragments are localized preferentially toward
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FIG. 5. (Color online) Radial probability distributions of different
size (Z = 1, 5, 10, 20, 30, 40, and 50) primary fragments at break-up.
The statistically equilibrated source (130, 60) is characterized by
an excitation energy of 4 MeV/nucleon and a freeze-out volume
V = 6V0.
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FIG. 6. (Color online) Total charge radial distributions corre-
sponding to the (130,60) multifragmenting nucleus with V = 6V0

and different excitation energies (4, 6, 8, and 10 MeV/nucleon).

the inner parts, while relatively light nuclei may be created
over wider regions. This means that the lighter the fragment,
the stronger is the Coulomb repulsion the charged core will
exercise over it, and consequently the higher is its final kinetic
energy. This explains the observed systematic shift between the
maximum values of kinetic energy corresponding to the three
largest fragments. The systematic reduction of the volume ac-
cessible to a fragment as its mass increases is the consequence
of the employed nonoverlapping condition between a fragment
and the wall of the container which mimics the freeze-out
volume. For the heaviest fragments (Z = 50), this geometric
condition is responsible for fragment concentration in a region
that represents only 15% of the total freeze-out volume. We
recall that the classification of multifragmentation events with
respect to fragments’ spatial arrangement and its influence on
fragment-fragment correlation functions was discussed for the
first time in Ref. [20] in the framework of the Microcanonical
Metropolis-Monte Carlo (MMMC) model [3], in which the
authors identified “sun”- and “soup”-like events.

As the source excitation energy increases and fragmentation
becomes more advanced, a more uniform population of the
freeze-out volume is expected, such that the largest fragments’
kinetic energy shifts become negligible. The evolution of
the total charge radial distribution with source excitation is
illustrated in Fig. 6 for the same multifragmenting nucleus
(130, 60) with V = 6V0. Indeed, at 8 MeV/nucleon, the matter
in the inner regions of the freeze-out volume is 10 times
denser that the one produced at 6 MeV/nucleon, but the
overall distribution remains strongly outward peaked, giving
the source a bubble-like structure. Bubble-like structures of

the nuclear matter at break-up have been obtained also in the
framework of stochastic mean-field approaches [21], which
explain fragmentation on behalf of growing volume and
surface instabilities encountered during the expansion phase of
the excited system, as recently reported in Refs. [22,23]. This
agreement between results of statistical models with cluster
degrees of freedom and dynamical models with nucleonic
degrees of freedom is far from being trivial taking into account
the conceptually different scenarios the two categories of
models advance for explaining multifragmentation and the
almost complementary treatment of the physical process.

V. CONCLUSIONS

To conclude, using a microcanonical multifragmentation
model with cluster degrees of freedom, we have analyzed the
break-up fragmentation patterns of a medium size equilibrated
source that follows different paths through the excitation-
energy–freeze-out volume space. The constraints imposed on
the freeze-out volume are found to not affect significantly
the magnitude of different energy fluctuations. Moreover,
kinetic and configurational energy fluctuations are insensitive
to the system phase properties as long as the considered
fragment partitions are similar. Over the whole domain of
excitation energy, spatial matter distribution at break-up is
highly nonuniform, its outward-peaked shape giving the source
a bubble-like structure. The most probable localization of
nuclear fragments at break-up depends on fragment mass,
and because of Coulomb acceleration, it is possible to infer
it from the experimentally accessible fragment average kinetic
energy distributions, especially at intermediate values of
source excitation. Thus, heavy fragments are found to be
produced in the inner regions of the freeze-out volume, while
the lighter ones are produced in a larger region of the freeze-out
volume. Considering that break-up fragments interact not only
through repulsive hard-core and Coulomb potentials but also
via proximity potentials, one obtains dramatic modifications of
the break-up fragmentation patterns, which suggest that final
fragment formation is strongly influenced by post-break-up
dynamics and multiparticle correlations.
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