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Quantum phase transitional patterns in the SD-pair shell model
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Patterns of shape-phase transition in the proton-neutron coupled systems are studied within the SD-pair shell
model. The results show that some transitional patterns in the SD-pair shell model are similar to the U(5)-SU(3)
and U(5)-SO(6) transitions with signatures of the critical point symmetry of the interacting boson model.
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I. INTRODUCTION

Recently, based on the generalized Wick theorem [1],
a nucleon-pair shell model (NPSM) was proposed [2], in
which nucleon pairs with various angular momenta are used
as building blocks. Since modern computing facilities fail
for the calculation in the full shell-model space for the
medium-weight and heavy nuclei, some truncation schemes
need to be used. The tremendous success of the interacting
boson model (IBM) [3] suggests that S and D pairs play a
dominant role in the spectroscopy of low-lying modes [4–6].
Therefore, one normally truncates the full shell-model space
to the collective SD-pair subspace in the NPSM. The latter is
called the SD-pair shell model (SDPSM) [2,7,8].

A crucial point in the SDPSM is the validity of the
SD-pair truncation. Shell-model foundations of the IBM were
summarized by Iachello and Talmi [9], from which the results
seem to indicate that the SD-pair truncation is a reasonable
approximation to the full shell-model space. This problem
was also studied in Refs. [10–12] with the conclusion that
the SD-pair subspace works well in the vibrational region,
but in the deformed region, the inclusion of G pairs may
be also necessary. So far the rotational motion has not
yet been well studied along the lines of the microscopic
foundation of the IBM. In Ref. [13], a comparison between
calculations in the full shell-model space and in the SD-pair
subspace was discussed. It is found that in the single-j shell
case, when the model Hamiltonian consists of monopole and
quadrupole pairing plus quadrupole-quadrupole interactions,
the SD-pair subspace satisfactorily reproduces the low-lying
levels of the shell model and E2 transitions between them.
This means that the SD-pair truncation for a single-j shell
is reasonable when the Hamiltonian consists of pairing and
quadrupole-quadrupole interactions. In the multi-j case, if
a pure quadrupole-quadrupole interaction and a reasonable
collective SD pairs are considered, the essential properties of
Elliott’s SU(3) model are well produced within the SD-pair
subspace. This is very important since it shows that the SD-pair
truncation is a good approximation of the shell model for
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rotational motion. The pair approximation of applying SDG

pairs to deformed nuclei has not yet been done so far. In
Ref. [14], the general pairing interaction and pair truncation
approximations were studied for fermions in a single-j shell. It
was shown that an attractive J th pairing interaction favors pairs
with angular momentum J in low-lying states. Therefore, one
may use pairs with angular momentum J as building blocks of
wave functions of low-lying states. In the low-energy region,
monopole and quadrupole correlations dominate in residual
two-body interactions. Hence, the configurations of low-lying
levels favor SD-pair structure. This provides a very simple
picture that supports schematic calculations by using (only)
S and D pairs. The fact that the SDPSM can describe the
collectivity of low-lying states for nuclei around A = 130
implies that the SD-pair truncation is reasonable for low-lying
states of transitional nuclei [15–20].

Nuclei, as a mesoscopic system, have been found to possess
interesting geometric shapes, such as spherical vibrational
[U(5)], axially deformed [SU(3)], and γ -soft [O(6)], which are
usually described in terms of the Casten triangle in the IBM
[21]. The search for signatures of transitions among various
shapes (phases) of atomic nuclei is an interesting subject
in nuclear structure theory. An understanding of such shape
(phase) transitions may provide insight into quantum phase
transitions in other mesoscopic systems [3]. Theoretical study
of shape phase transitions and critical point symmetries in
nuclei has mainly been carried out [3,22–38] in the interacting
boson model for identical systems (IBM-I) [3]. Investigations
on nuclear shape phase transition and critical point symmetry
for identical nucleon systems have also been carried out with
fermionic degrees of freedom in Refs. [39–44]. Recently,
investigations of the shape phase transitions and critical point
symmetries in nuclei have also been carried out [45,46] in the
proton-neutron interaction boson model (IBM-II) [3].

Since the SDPSM is also built up from SD pairs, it is
expected that the SDPSM can produce results similar to those
from the IBM. Our previous work shows that the vibrational,
rotational, and γ -soft spectra can be well reproduced [47]
similar to the U(5), SU(3), and SO(6) limiting spectra in the
IBM. The vibrational-rotational phase transition for identical
systems can also be produced within the framework of the
SDPSM with fermionic degrees of freedom [48]. Since nuclei

0556-2813/2009/80(1)/014311(6) 014311-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.80.014311
mailto:luoya@nankai.edu.cn


LUO, ZHANG, MENG, PAN, AND DRAAYER PHYSICAL REVIEW C 80, 014311 (2009)

are neutron-proton coupled systems, and a rich phase structure
can be obtained in the IBM-II, it is interesting to see whether
the phase transitional patterns in the neutron-proton coupled
system also show up in the SDPSM with fermionic degrees of
freedom. This is the main objective of this paper.

II. MODEL

In the shell-model description, the pairing and quadrupole-
quadrupole interactions are the most important short-range
and long-range correlations. Given that the Hamiltonian used
to study the shape phase transition in the IBM is mainly
composed of monopole pairing and quadrupole-quadrupole
interaction (e.g., Refs. [45,46]), a schematic Hamiltonian is
adopted in the SDPSM that is a combination of monopole
pairing and quadrupole-quadrupole interaction with

HX =
∑

σ=π,ν

(−GσS†
σ Sσ − κσQ(2)

σ · Q(2)
σ

) − κQ(2)
π · Q(2)

ν ,

S† =
∑

a

â

2
(C†

a × C†
a), (1)

Q(2) =
√

16π/5
∑

i

r2
i Y 2(θi, φi),

where X in HX is denoted as U(5), SU(3), or SO(6)
corresponding to vibrational, rotational, or γ -soft limiting case
in the model, Gσ and κσ are the pairing and quadrupole-
quadrupole interaction strength between identical nucleons,
respectively, and κ is the quadrupole-quadrupole interaction
strength between proton and neutrons. In this paper, we set
Gπ = Gν and κπ = κν . Q(2)

σ is the quadrupole operator, for
which the second quantized form is given by

Q(2)
µ =

∑
cd

q(cd2)P 2
µ(cd),

q(cd2) = (−)c−
1
2

2

5
ĉd̂C2 0

c 1
2 ,d− 1

2
�cd2〈Nlc|r2|Nld〉,

�cd2 = 1

2
[1 + (−)lc+ld+2],

P t
µ(cd) = (C†

c × C̃d )tµ,

where l̂ ≡ √
2l + 1, C2 0

c 1
2 ,d− 1

2
is the corresponding CG co-

efficient, and N is the principal quantum number of the
harmonic oscillator wave function with energy eigenvalue
(N + 3/2)h̄ω0. The matrix elements for r2 are

〈Nlc|r2|Nld〉 =
{

(N + 3/2)r2
0 , lc = ld ,

ϕ[(N + ld + 2 ± 1)(N − ld + 1 ∓ 1)]1/2r2
0 , lc = ld ± 2,

where the phase factor ϕ can be taken either as −1 or +1, and
r2

0 = h̄/MNω0 = 1.012A1/3 fm2,MN is the mass of a nucleon,
and ω0 is the frequency of the harmonic oscillator.

To study the phase transitional patterns, the Hamiltonian
for the proton-neutron coupled system is written as

H = (1 − α)HU(5) + αHX, (2)

where 0 � α � 1 is a control parameter and HX is taken as
HSU(3) when we study vibration-rotation transitional patterns
and is taken as HSO(6) when we study vibration to γ -soft
transitional patterns.

The E2 transition operator adopted is

T (E2) = eπQ(2)
π + eνQ

(2)
ν , (3)

where eπ (eν) is the effective charge for the proton (neutron).
The collective S pair is defined as

S† =
∑

a

y(aa0)(C†
a × C†

a)0. (4)

By solving the BCS equation, we obtain ua and va , the empty
and occupied amplitudes for orbit a for a certain pairing
interaction, respectively. Because we use the degenerate
single-particle levels, ua and va are independent of the pairing
strengths. Therefore, the S-pair structure coefficient is fixed
to be y(aa0) = â va

ua
= â

√
N

�a−N
, where �a is defined as

�a = a + 1/2 and N is the number of pairs for like nucleons.
A commonly used prescription for the D pair [49] is by using

the commutator

D† = 1

2
[Q(2), S†] =

∑
ab

y(ab2)(C†
a × C

†
b)2. (5)

After symmetrization, it is easy to obtain that

y(ab2) = −1

2
q(ab2)

[
y(aa0)

â
+ y(bb0)

b̂

]
. (6)

In this method, the many-body effect on the structure of the
building block is included.

III. RESULTS

To identify shape phase transitions and determine the
corresponding patterns, Iachello et al. initiated a study on
effective order parameters, which should display different
critical behaviors for the phase transitions with different order.
Specifically, the quantities related to isomer shifts, defined as
v2 = (〈0+

2 |n̂d |0+
2 〉 − 〈0+

1 |n̂d |0+
1 〉)/N and v′

2 = (〈2+
1 |n̂d |2+

1 〉 −
〈0+

1 |n̂d |0+
1 〉)/N , were proposed as effective-order parameters

in Ref. [31]. Consequently, some other quantities, such as
the B(E2) ratios K1 = B(E2; 4+

1 → 2+
1 )/B(E2; 2+

1 → 0+
1 )

and K2 = B(E2; 0+
2 → 2+

1 )/B(E2; 2+
1 → 0+

1 ) [38], as well
as the energy ratio R60 = E6+

1
/E0+

2
, were also suggested as

the effective order parameters to identify phase transitions
and the corresponding orders. Therefore, to study the shape
phase transition in the SD-pair fermion model space, v2, v

′
2,
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TABLE I. The parameters used to produce the vibrational,
rotational, and γ -soft spectra. Gσ is in units of MeV; κσ and κ

are in units of MeV/r4
0 .

Limit Gπ Gν κπ κν κ

Vibration-rotation Vibration 0.5 0.5 0 0 0.01
Rotation 0 0 0.1 0.1 0.2

Vibration-γ -soft Vibration 0.5 0.5 0 0 −0.01
γ -soft 0.15 0.15 0 0 −0.015

in which the d-boson number operator n̂d is replaced by
D-pair number operator N̂D in the SDPSM, K1,K2, and R60

will be studied in this paper. Because of the importance of
R42 = E4+

1
/E2+

1
in determining the limiting cases and shape

phase transitions [50], R42 is also presented.

A. Vibration-rotation transitional patterns

We begin by considering the vibration-rotation phase
transition. A system with Nπ = Nν = 3 in the gds shell was
studied. By fitting R42 ≡ E4+

1
/E2+

1
= 2 for the vibrational

case, the parameters used to produce the vibrational spectra
were obtained, and these are presented in Table I. A detailed
discussion of the vibrational spectra can be found in Ref. [47].
In the SDPSM, the full shell-model space was truncated to
the SD-pair subspace. The investigation on the validity of the
SD-pair truncation in Refs. [10–12] shows that the SD-pair
truncation cannot produce the rotational spectra. But Zhao’s
work [13] and our previous work [47] show that if a reasonable
Hamiltonian and a suitable collective SD-pair structure were
considered, the rotational behaviors can be produced very well.
It is found that with 2κπ = 2κν = κ = 0.2 MeV/r4

0 , results
similar to those found in the SU(3)π × SU(3)ν limit of the
IBM can be reproduced, in which the typical energy ratios
E4+

1
/E2+

1
and E6+

1
/E2+

1
are 3.33 and 6.96, close to the IBM

results of 3.33 and 7, respectively. A detailed discussion can
be found in Refs. [13,47].

Energy ratios R42 and R60 against control parameter α are
shown in Fig. 1. Figure 1(a) shows that the energy ratio R42

is 2 (when α = 0) and 3.3 (when α = 1), which are typical
values of vibrational and rotational spectra, respectively, in
the IBM [3]. It is also shown that the rapid change occurs
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α

2

2.25

2.5

2.75

3

3.25

3.5

R
42

a

0 0.2 0.4 0.6 0.8 1
α

0.5

0.75

1

1.25

1.5

1.75

R
60

b

FIG. 1. Energy ratios R42 and R60 vs α for the vibration-rotation
transition.
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FIG. 2. v2 and v′
2 vs α in the vibration-rotation transition.

when 0.3 � α � 0.6, which indicates that the phase transition
occurs within this region.

The energy ratio R60 given in Fig. 1(b) shows that a behavior
similar to that of the IBM for a finite number of bosons, NB,

is reproduced. It exhibits a modest peak followed by a sharp
decrease across the phase transition, a typical signature of the
first-order quantum phase transition [51].

The SDPSM results of v2, v
′
2,K1, and K2 are given in

Figs. 2 and 3. The effective charges were fixed with eπ =
3eν = 1.5e. As argued in Ref. [31], v2, v

′
2 should have wiggling

behaviors in the region of the critical point owing to the
switching of the two coexisting phases for the first-order phase
transition. Indeed, the obvious wiggling behaviors shown by
v2, v

′
2 in Fig. 2 further confirm that the transition is first order.

The results for the B(E2) ratio K1 is also consistent with those
of other effective quantities [31,38]. The critical behavior of
K2 seems to deviate from the character of the first-order phase
transition.

In the IBM, the critical point symmetry [27] between U(5)
and SU(3) is X(5). Since the shape phase transition between
vibrational and rotational limits can be reproduced in the
SDPSM, it is interesting to see whether the properties of the
X(5)-like symmetry also occur within the SDPSM. We found
that there is indeed a signature with α = 0.54 in the SDPSM
similar to that of the X(5) in the IBM. A few typical values
are given in Table II, from which one can see that the typical
feature of the X(5) symmetry stated in Refs. [51,52] indeed
occurs in the SDPSM. For example, R42, R60, and E0+

2
/E2+

1
are
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FIG. 3. B(E2) ratios vs α in the vibration-rotation transition.
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TABLE II. Energy and B(E2) ratios at vibrational and rotational
limits and the X(5)-like critical point calculated in the SDPSM.

Limit E4+
1
/E2+

1
E6+

1
/E2+

1
E6+

1
/E0+

2

4+
1 →2+

1
2+

1 →0+
1

6+
1 →4+

1
2+

1 →0+
1

Vibrational
limit

1.99 2.97 1.47 1.49 1.48

X(5)-like point 2.91 5.60 1.05 1.38 1.38
Rotational limit 3.33 6.96 0.46 1.34 1.32

E0+
2
/E2+

1

E2+ −E
0+

2
E

2+
1

E4+ −E
0+

2
E

2+
1

2+→0+
2

2+
1 →0+

1

4+→2+
2+

1 →0+
1

X(5)-like point
(0+

2 band)
5.32 2.30 5.33 0.37 0.43

2.91, 1.05, and 5.32, respectively, in the SDPSM calculation,
close to the IBM results of 2.91, 1.0, and 5.67, respectively.

B. Vibration-γ -soft transitional patterns

The investigation of the vibration-γ -soft shape phase
transition in the IBM has been studied in Ref. [53], in which
the corresponding quantum phase transition was suggested to
be of second order. Recently, a similar phase transition within
the fermion model for identical-nucleon systems has also been
indicated [43,44].

From the periodic chart, one can deduce that nuclei with
SO(6) character lie close to the end of the shell, at least in the
neutron sector. Therefore, to explore whether the transitional
patterns between vibration and γ -soft spectrum can be realized
in the SDPSM, we considered a system with Nπ = Ñν = 3 in
the gds shell. Namely, neutron pairs in this case were treated as
three neutron-hole pairs and a negative κ was used, as shown in
Ref. [47]. By fitting R42 = 2 and 2.5 for vibrational and γ -soft
limiting cases, the parameters were fixed, and the results are
listed in Table I. The detailed discussion of the two limiting
cases in the SDPSM can be found in Ref. [47].

The IBM calculations show that the level crossing–
repulsion behavior of 0+

2 and 0+
3 states occurs [54] in the critical

region of the U(5)-SO(6) transition. The SDPSM results of
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α
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14

E
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)

FIG. 4. Energy levels of 0+
2 and 0+

3 states vs α in the vibration-
γ -soft transitional region.
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FIG. 5. Energy ratios R42 and R60 vs α in the vibration-γ -soft
transitional region. Dashed and solid lines are the results for the 0+

3

and 0+
2 states, respectively.

0+
2 and 0+

3 states, given in Fig. 4, show a similar behavior
of level crossing–repulsion when α = 0.58. Therefore, to see
the behavior of effective order parameters against the control
parameters clearly, the quantities related to the 0+

2 state were
also calculated for the 0+

3 state.
The results for R42(R60),K1(K2), and v2(v′

2) are given in
Figs. 5, 6, and 7, respectively. The effective charges were fixed
as eπ = −3eν = 1.5e since the neutron pairs were treated as
holes.

Figure 5(a) shows that the typical ratios, R42 = 2 (when
α = 0) and 2.47 (when α = 1), of vibration and γ -soft spectra
were produced. Interestingly, we found that in comparison
with that of the rotation-vibration transitional results, R42 in the
vibration-γ -soft transitional region increases with α smoothly.

From Fig. 6 and R42 given in Fig. 5(a), and in comparison
with the IBM results [38], one can see that the wiggling
behavior in K1 is smoothed out in the vibration-γ -soft
transition. One can also see that because the structure of 0+

2 and
0+

3 exchange at α ∼ 0.58, the amplitudes of B(E2; 0+
2 → 2+

1 )
and B(E2; 0+

3 → 2+
1 ) also exchange at this point.

In Ref. [51], the experimental data of Xe and Ba isotopes
were analyzed. For smaller neutron numbers, 134,136Ba and
128Xe, the 0+

3 state was taken in the R60 if its B(E2) decay
was consistent with σ = N − 2. It was also shown that
[54] B(E2; 0+

2 → 2+
1 )/B(E2; 2+

1 → 0+
1 ) = 0.07 for 196Pt,
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K
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α

0

0.2

0.4

0.6

0.8
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K
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FIG. 6. B(E2) ratios vs α in the vibration-γ -soft transitional
region. Dashed and solid lines are the results for the 0+

3 and 0+
2

states, respectively.
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FIG. 7. v2 and v′
2 vs α in the vibration-γ -soft transitional region.

Dashed and solid lines are the results for 0+
3 and 0+

2 states,
respectively.

whereas it is 0.81 for 198Pt. By considering these results, the
0+

3 state were taken in the R60,K2, and v′
2 when α > 0.58.

In comparison with those in the vibration-rotation transition,
Fig. 5(b) and Fig. 6(a) show that R60,K1, and K2 change
smoothly with α, which are typical features of a second-order
phase transition [38,51].

Figure 7 shows that as predicted in the IBM and shell-model
calculation for identical systems, the vibration-γ -soft phase
transition takes place and it is a second order phase transition,
for which v2 and v′

2 change smoothly with α, and the wiggling
behavior with sign change in the region of the critical point
are smoothed out.

In the U(5)-SO(6) transitional region in the IBM, E(5) is the
critical point symmetry [53,55]. It is interesting to see whether
the signature of the E(5)-like symmetry can be realized in the
SDPSM for the proton-neutron coupled system. We found that
E4+

1
/E2+

1
= 2.19 when α = 0.54, corresponding to the typical

value of E(5) symmetry in the IBM. Other typical results are
listed in Table III, in which the IBM results for N = 5 are also
given [53]. It is seen that except for E0+

2
/E2+

1
= 2.59, which is

smaller than that of the IBM result for N = 5, the characters
of E(5) symmetry in the IBM indeed shows up in the SDPSM.

TABLE III. The SDPSM results for E(5)-like symmetry. The
corresponding results with N = 5 in the IBM are also given [53].

Limit E4+
1
/E2+

1
E0+

2
/E0+

3
E0+

2
/E2+

1

SDPSM 2.19 0.99 2.59
IBM 2.19 1.04 3.68

4+
1 →2+

1
2+

1 →0+
1

2+
2 →2+

1
2+

1 →0+
1

0+
2 →2+

1
2+

1 →0+
1

SDPSM 1.36 1.29 0.53
IBM 1.38 1.39 0.51

0+
2 →2+

2
0+

2 →2+
1

0+
3 →2+

1
0+

3 →2+
2

SDPSM 0.06 0.03
IBM 0 0

IV. SUMMARY

In summary, the shape phase transition patterns for pthe
roton-neutron coupled system have been studied within the
framework of the SD-pair shell model. The results show that
patterns of vibration-rotation and vibration-γ -soft shape phase
transitions are indeed similar to the corresponding results
obtained from the IBM previously. The signatures of the
critical point symmetry in the SD-pair shell model are also
close to those shown in the IBM. This work also confirms in yet
another way that the truncation scheme adopted in the SD-pair
shell model seems reasonable as long as the Hamiltonian is
reasonably chosen.
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