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Temperature dependence of nuclear matter generalized isovector symmetry energy with
Skyrme-type interactions
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The temperature dependence of the nuclear matter isovector symmetry energy coefficient (A0,1) is investigated
in the framework of the generalized nuclear polarizability with Skyrme interactions, as worked out in previous
articles [F. L. Braghin, Nucl. Phys. A665, 13 (2000); Phys Rev. C 71, 064303 (2005); Int J. Mod. Phys. E 12, 755
(2003)]. The variation of A0,1(T ) is very small (of the order of 1 MeV) for temperatures (T ) in the range of 0
and 18 MeV. Different behaviors with temperature are found to strongly depend on the Skyrme parametrization,
in particular at densities lower than the saturation density ρ0.
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I. INTRODUCTION

The neutron-proton nuclear symmetry energy is currently
under intense theoretical and experimental investigations not
only because of its relevance to different aspects of nuclear
structure and dynamics but also because of its relevance to the
description of dense stars’ structure and of the Supernovae
mechanism [1–9]. Actually, the possibility of extracting
better experimental values for it at different densities and
temperatures is under constant improvement. In this respect,
(multi)fragmentation processes in heavy ion collisions provide
experimental knowledge about the liquid-gas phase transition
and therefore about the nuclear forces at low nuclear densities
and excitation energies. For example, the isoscaling found in
yields of multifragmentation experiments [8] depends directly
on the isovector symmetry energy (coefficient), which was
found to decrease considerably with the excitation energy ac-
cording to experimental data [10]. In fact, under experimental
conditions it is very difficult to extract unambiguous behavior
with each of the thermodynamic observables involved (T , ρ)
[10] and in earlier descriptions of experimental results some
groups have considered a seemingly too strong variation of
the symmetry energy with temperature [11]. In different (more
recent) analysis it has been found that the strong decrease of
the symmetry energy under experimental conditions should
also be due to the excitation energy dependence of surface
effects [12] and to the expansion of the system, which implies
the lowering the total density [13,14]. In addition, recently
De and Samaddar [15] have argued that the symmetry free
energy [16] is the parameter that appears in the scaling
of multifragmentation. However, their arguments stand for
the specific analysis of multifragmentation processes and
we intend to discuss rather the behavior of the symmetry
energy coefficient. Concerning the specific dependence on the
temperature (up to T � 20 MeV) there are several theoretical
indications of very weak decrease [16–20]; although in some
works, for finite nuclei and nuclear matter, a small (or very
small) increase was found [1,18,21]. In some of these works
no unique tendency was found for different finite nuclei, for
example, in Ref. [18]. In Ref. [1] few preliminary numerical
results showed a very small variation of the nuclear matter

symmetry energy coefficient with temperature using Skyrme
forces. In the present work we perform a quite extensive
investigation of this subject with the generalized polarizability
as proposed in Refs. [1] and [13].

In usual mass formulas the binding energy per nucleon
depends on the n-p asymmetry with the following form:

E

A
= H0(A,Z)

A
+ aτ

(N − Z)2

A2
+ · · · , (1)

where N,Z, and A are the neutron, proton, and mass numbers
and the isovector symmetry energy coefficient (s.e.c.) is aτ .
This coefficient is a measure of the energy needed to increase
n-p asymmetry. Different powers of the n-p asymmetry
(N − Z)j /A (j �= 2) are much smaller, although the n-p
asymmetry modifies many other terms [22]. The value of
the n-p s.e.c. in fits of the mass formulas for stable nuclei
is quite well known [2]. For an infinite medium, roughly
speaking, nucleon numbers (N,Z) might be replaced by the
corresponding densities ρn, ρp for many purposes depending
on the volume occupied by each nucleon species (see, for
example, Ref. [23]).

A particularly interesting way of obtaining the symmetry
energy coefficient, eventually under different conditions,
was found by using the nuclear isovector polarizability
A0,1 [24,25]. Generalized nuclear polarizabilities and their
dependencies on several parameters simultaneously (such
as total density ρ, exchanged momentum and energy q, ω,
and neutron-proton asymmetry b = ρn

ρp
− 1) were investigated

quite extensively with Skyrme-type forces [13,25–27]. Devia-
tions from the quadratic form of expression (1) might appear
depending on the particular density fluctuations considered
for a given set of nucleon densities for these calculations
with Skyrme density functionals. Recent investigations have
revealed further relations of these (nonrelativistic) effective
interactions with relativistic models [28,29].

This work exhibits the temperature dependence of the
isovector generalized s.e.c., as proposed in Refs. [1] and [13]
using Skyrme type forces. For that, the generalized isovector
screening function with different parametrizations of Skyrme
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effective interactions are shown at different densities and n-p
asymmetries.

II. GENERALIZED POLARIZABILITIES

For an asymmetric medium in n-p densities, the generalized
screening function using Skyrme forces, for zero energy
and momentum exchange (ω = q = 0), can be written in a
compact notation as [1,13]

As,t = ρ

2N

{
1 + 2V

(s,t)
0 Nc + 6V

(s,t)
1 M∗

p(ρc + ρd )

+ 12M∗
pV

(s,t)
1 V

(s,t)
0 (Ncρd − ρcNd )

+ (
V

(s,t)
1

)2
(36(M∗

p)2ρcρd − 16M∗
pMcNd )

}
, (2)

where V0
(s,t)

and V
(s,t)

1 are functions of the Skyrme forces
parameters in a given channel of the effective nuclear in-
teraction of (spin, isospin) denoted by superscripts (s, t).
Therefore they carry the main contributions of the effec-
tive NN interaction, distinguishing each of the channels
of the particle-hole interaction. In particular, the function
V

(0,1)
1 = (t2(1 + 2x2) − t1(1 + 2x1))/16 is a combination of

(momentum dependent) Skyrme parameters that contributes
to the usual nucleon effective masses in the framework of the
Skyrme calculation, m∗

n,p. The effective masses of neutron and
protons are functions of the total density and of the neutron
and proton densities (see, for example, Ref. [24]). However,
the function V

(0,1)
0 depends mainly on t0 and t3. While V

(0,1)
0

of each of the Skyrme parametrizations used in this work do
not have meaningful different values, the function V

(0,1)
1 has

considerably different values because it might be zero, i.e., for
some forces V

(0,1)
1 = 0. Although relevant, these differences

will be shown to not be enough to provide very different
behaviors for As,t (T ). The mixed functions ρv,Mv , and Nv

reduce to densities of the Skyrme-Hartree-Fock approach at
zero temperature, being respectively the nucleon and kinetic
energy densities and the densities of states. They are the
zero frequency and zero momentum generalized Lindhard
functions calculated in Ref. [1]. The total densities ρ,N are
written without any index. These functions (ρv,Mv,Nv) are
given, respectively, by

ρv = vρn + (1 − v)ρp,

Mv = vMn + (1 − v)Mp, (3)

Nv = vNn + (1 − v)Np.

In these expressions v stands for two different n-p asymmetry
coefficients (c, d), being that we made use of the following
asymmetry coefficients:

a = m∗
p

m∗
n

− 1, b = ρn

ρp

− 1, c = 1 + b

2 + b
,

d = 1

1 + (1 + b)
2
3

.

Therefore, by fixing the parameter of density asymmetry b (for
a given total nuclear density), the neutron and proton densities

are found as well as the other asymmetry parameters (a, c, d)
for a given Skyrme force [1,13].

There is a further mass parameter in Eq. (2), M∗
p, which is

in fact a kind of reduced mass. It is given by

M∗
p ≡ m∗

p

(1 + a
2 )

= 2m∗
pm∗

n

m∗
p + m∗

n

.

Although the calculation has been carried out in such a way
to provide final expressions for each of the channels of the
particle-hole interaction (isovector, spin, spin-isovector, and
scalar), only the n-p one is investigated in this article.

A. Varying temperature

The densities Nα, ρα , and Mα (for α = n, p, neutrons and
protons) are the basic input for the temperature dependence of
the polarizabilities. At finite temperature these functions are
given, respectively, by integrals written as

(Nα, 3ρα, 4Mα) = − 1

π2

∫
dfα(k)

(
k.m∗

α; k3; k5). (4)

In these expressions, dfα(k) is the measure of integration in
terms of the usual free fermion occupation numbers fα(k) for
neutrons and protons (α = n, p). At T = 0 for the usual Fermi
occupation number we have

dfα(k) = −δ
(
k − k

(α)
F

)
dk, (5)

where k
(α)
F is the Fermi momentum for each of the nucleon

species. In this case the integration is trivial. Therefore all the
temperature dependence of the density-like quantities ρ,N,M

is encapsulated in the integrals above (4), which can, at most,
yield smoother results for the integral. Furthermore Nv(T )
and Mv(T ) are the only parameters that vary with temperature
because ρα are kept constant. The zero temperature limit was
considered previously [1,13] and it shows more explicitly,
as mentioned above, the effect of each of the Skyrme force
parameters through the functions V

(s,t)
0 and V

(s,t)
1 as well as

the effective masses. This issue is extremely relevant for the
resulting A0,1(T ).

From the general expression in Eq. (2) a useful (simplified)
limit is recovered in which the behavior with temperature can
be understood in detail. For instance, consider the limit in
which the function V

(0,1)
1 appears only in the leading order of

the symmetric n-p function. This is achieved with b = a = 0
and d = c = 1/2, yielding m∗ = m∗

n = m∗
p = M∗

p and ρp =
ρn = ρ/2. We obtain an expression of the following form, for
(s, t) = (0, 1), in the n-p symmetric limit:

A0,1 → aτ = ρ

2

(
1

N
+ 2V

(0,1)
0 + 6m∗V (0,1)

1

ρ

N

)
+ h.o., (6)

where h.o. stands for the higher order terms in V
(0,1)

1 . This
expression reproduces exactly aτ , which is the usual symmetry
energy coefficient in the Skyrme-Hartree-Fock approximation
[24]. The first and third terms of aτ depend on N and therefore
they show a very small variation with temperature only due
to N (T ) according to Expression (4). The behavior of the
function Nα(T ) is monotonic and it decreases with T . This
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is the main feature for understanding the numerical results of
Expression (2).

The higher order terms, in the limit of n-p symmetric
matter, are given by

h.o. → (
V

(0,1
1

)2
(9(m∗)2ρ2 − 8m∗MN )

ρ

2N
. (7)

In these terms, and mainly for n-p asymmetric matter [in
the complete expression (2)], the imbalance between the T

dependence of Mv(T ) and Nv(T ) determines whether the
increasing behavior of N (T ) with temperature is the leading
one or not. Basically this is seen from the (overall) denominator
of Expression (2) by reminding that N (T ) is a decreasing
function of the temperature in the Skyrme-Hartree-Fock level
and Mv(T ) is an increasing function of the temperature. The
different resulting behaviors might appear because of the
relative values of their coefficients, i.e., V (0,1)

0 and V
(0,1)

1 . This is
noticed in the results exhibited in the next section. Although it
might be expected that for asymmetric n-p matter the variation
of the polarizability is larger because there are more terms at
work, this will be shown to be not really sizable for the forces
considered in this work. The complete expression is quite
complicated such that it might not exhibit a simple and unique
behavior in more general situations.

It is worth mentioning some recent results claiming that
the symmetry free energy is the quantity that really rules
multifragmentation [15,16,30]. Basically this corresponds to
considering the entropic contribution, which amounts basically
to extra additive terms. This can be qualitatively seen as
follows. The calculation of the polarizability in such a case
should depart from a free energy in the presence of a
n-p asymmetry and of an infinitesimal external source (ε)
that induces fluctuations of the densities of neutrons from
protons; i.e., F(ρ + δρnp) = E(ρ + δρnp) − T S(ρ + δρnp) +
εδρnp, where δρnp = δρn − δρp. The entropy can be expanded
in terms of ρn − ρp to make explicit its contribution to
the symmetry (free) energy: F(T ) = E0(T ) + aτ (δρnp)2 +
S(1)(T )δρnp − S(2)(T )(δρnp)2 + εδρnp + · · ·, where S(i)(T ) are
the leading contributions of the entropy for the symmetry free
energy. As it was shown in Ref. [13], the linear term in δρnp

might be incorporated into the usual calculation (considering
only the quadratic terms) and it is not considered explicitly
below. The polarizability is then given by

	 ≡ δρnp

ε
= − ρ

2(aτ − S(2))
. (8)

The final symmetry free energy coefficient can be written
as a

f
τ (T ) = aτ (T ) − S(2)(T ). Therefore we can expect that

the entropic contribution would appear mainly as additive
terms for the screening function. This is seen in the results of
Refs. [15,16,30]. However, a microscopic investigation of this
quantity, with its eventual relevance for the multifragmentation
processes, is outside the scope of the present work.

B. Results

The temperature dependence of the isovector polarizability
A0,1(T ) is shown in Figs. 1 to 4 for the following Skyrme
forces: SGII from Ref. [31], SLyb from Ref. [32] (which
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FIG. 1. The inverse of isovector polarizability, A0,1, as a function
of the temperature for different Skyrme forces: SkSC 4 [33] (circles),
SGII [31] (squares), SLyb [32] (diamonds), SkSC 6 [33] (× or +).
For: (ρ/ρ0 = 1 and b = 0).

is sometimes referred to as SLy4 in the literature), and two
parametrizations SkCS4 and SkSC6 from Ref. [33]. These last
two Skyrme parametrizations have a slightly more intricate
density dependence, although the resulting functions V

(0,1)
1

are zero. The zero function V
(0,1)

1 = 0 (which carries the main
part of the momentum dependent Skyrme forces) brings a
lot of simplification to the dependence on the temperature as
discussed in the last section and it is noticed in the figures
below. In these cases the behavior of As,t (T ) is always
monotonic depending on N (T ) and slightly less on V

(0,1)
0 .

Different total densities and n-p density asymmetries are also
considered.

In Fig. 1 the function A0,1(T ) is shown at the saturation
density, ρ = ρ0, and zero n-p density asymmetry (b = 0) with
the following Skyrme parametrizations: SkSC4 (circles) [33],
SkSC6 (×) [33], SGII (squares) [31], and SLyb (diamonds)
[32]. The variation with temperature (up to T � 18 MeV) is
quite small, reaching 
A0,1 � 0.5–1.0 MeV depending on
the interaction and even nearly zero for the SGII force. The
slope is always positive, although smaller at high temperatures.
As noticed after Expression (6), the function N (T ) decreases
with temperature within the Skyrme-Hartree-Fock approach.
The force SLyb is the one with larger variation in A0,1(T ).
This trend of small variation was found before [1], although
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FIG. 2. The inverse of isovector polarizability, A0,1, as a function
of the temperature for the same Skyrme forces as in figure 1.
Considering: full symbols and symbol (×) for (ρ/ρ0 = 0.75 and
b = 0.25) and empty symbols and + for (ρ/ρ0 = 0.75 and b = 0.).
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FIG. 3. The inverse of isovector polarizability, A0,1, as a function
of the temperature for the same Skyrme forces as figure 1. Consid-
ering: full symbols and symbol × for (ρ/ρ0 = 0.5 and b = 0.5) and
empty symbols and + for (ρ/ρ0 = 0.5 and b = 0.25).

it disagrees with the small decrease of the s.e.c. with T found
in different works for lower densities [16–21]. However, it
is also worth pointing out that in these references the s.e.c.
was investigated in the regime of very low total density. The
variation found for the range of T = 0 up to T � 15 MeV is
not large in all these works, and it can be of the order of 1 up
to 3 MeV (though negative), a little bit larger than the present
results.

Some further remarks to understand the behavior with
temperature are in order. The chemical potential fixes the
nucleonic density, which is kept constant for all temperatures.
In the calculations with Skyrme interactions, the kinetic part
of aτ and the terms with N (T ),M(T ) in Expression (2) are
temperature-dependent. In particular whereas the functions
Nα slightly decrease with the temperature, the densities
Mα increase slightly. Having this in mind and analyzing
Expression (2) we can expect that n-p asymmetry (b, d, c �= 0)
favors different behaviors of A0,1(T ). The relative variation of
the potential energy part of the symmetry energy at the Hartree
Fock level is nearly zero because it depends mostly on ρ at not
very low densities.

The same Skyrme parametrizations (and symbols) are used
in Fig. 2. In this figure, A0,1(T ) is exhibited for ρ = 0.75ρ0

with b = 0.25 (solid symbols and ×) and b = 0 (open
symbols and +). For these cases (of lower nuclear matter
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FIG. 4. The inverse of isovector polarizability, A0,1, as a function
of the temperature for the same Skyrme forces as figure 1. Consid-
ering: full symbols and symbol × for (ρ/ρ0 = 1.33 and b = 0.) and
empty symbols and + for (ρ/ρ0 = 1.33 and b = 0.25).

density), the behavior of the polarizability with temperature is
nonmonotonic in the case of force SGII (squares). For Skyrme
forces SkSC4, SkSC6, and SLy, the polarizability A0,1(T ) is
nearly constant at very low temperatures and it starts increasing
smoothly around T � 5 MeV until T � 10–15 MeV. For the
force SGII, A0,1 decreases for low temperatures and smoothly
increases for temperatures higher than nearly 3–5 MeV. By
comparing the relative variation of the polarizability for n-p
symmetric and for b = 0.25 n-p asymmetric matter, we find
no further meaningful difference. It is worth emphasizing that
the lower total density makes possible this nonmonotonic
behavior. This is produced by the different behaviors with
temperature of the functions Nα(T ) and Mα(T ) for given V

(0,1)
0

and V
(0,1)

1 . This becomes clearer in Fig. 3, where ρ = 0.5ρ0.
As noticed above, the n-p asymmetry might amplify this
nonmonotonic behavior although the difference is very small
in the cases we show.

The same Skyrme parametrizations (and symbols) are used
in Fig. 3, where A0,1(T ) is exhibited for the still lower density
ρ = 0.5ρ0 with b = 0.5 (solid symbols and ×) and b = 0.25
(open symbols and +). Different from all the results shown
above the only Skyrme force that exhibits the nonmonotonic
behavior is SLyb for both b = 0.5 and b = 0.25. Furthermore
we notice that the stronger variation for all the forces (even if
they are very small of the order of .5 MeV) occurs below T �
5 MeV or T � 10 MeV. Above these temperatures, the
isovector polarizability variation is smaller. The reason why
the SGII and SLyb forces have the nonmonotonic behavior
at different densities is explained by the different values of
the functions V

(0,1)
0 , in terms of the t0, t3 Skyrme parameters

[1,13], and also V
(0,1)

1 (nonzero).
For the range of lower nuclear densities some further

conclusions can be extracted by comparing the Figs. 2
and 3, in particular for b = .25, (which means ρn = 1.25ρp).
We notice that the behavior of A0,1(T ) is different depending
on the effective force. While the parametrizations SkSC 4
and SkSC 6 do not provide any different behavior [apart
from an eventual overall total variation of A0,1(T )], the forces
SGII and SLyb present different trends for ρ = .5ρ0 (Fig. 3:
open squares, SGII; open diamonds, SLyb) and ρ = .75ρ0

(Fig. 2: solid squares and solid diamonds, respectively). The
nonmonotonic behavior appears for the SGII parametrization
at ρ = .75ρ0 whereas for the SLyb one it appears when
ρ = .5ρ0. As discussed in the beginning of the last section,
because of the complicated form of Expression (2) and of
the behavior of the functions N (T ) and M(T ), the results
from the polarizabilities with Skyrme forces are not always
monotonic. A suitable quantity for comparing the results
from different forces, and even different methods, is the
total variation 
A0,1 = A0,1(T = 20) − A0,1(T = 0). This
quantity is (quite) small in all the works of the field, with
small differences also due to the particular nuclear density
under consideration being also seen also in other works using
different approaches [14,17,19,20] as analyzed in Ref. [26].
One of the main outcomes of these comparisons goes along
with the above remarks: the behavior of A0,1(T ) might be
different at ρ0, 0.75ρ0, and 0.5ρ0, eventually for still lower
densities analyzed in other works.
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In Fig. 4, A0,1(T ) is exhibited for a density higher than
ρ0, i.e., ρ = 1.33ρ0 with b = 0 (solid symbols and ×)
and b = 0.25 (open symbols and +). The same kind of
behavior found for ρ = ρ0 in Fig. 1 is present in Fig. 4.
The isovector polarizability very smoothly increases with
temperature, although the variation is considerably smaller
at high temperatures.

This analysis suggests that the T dependence of the s.e.c.
is strongly dependent on the nuclear matter density ρ, and it
is also suitable for shedding light on the nuclear effective
interactions expected to be reliable with good predictive
power. Nevertheless we emphasize that experimental data with
temperature are very difficult to extract unambiguously [10].

III. SUMMARY

To summarize we conclude that the bulk isovector symme-
try energy does not vary considerably in a quite wide range of
temperatures within the isovector polarizability with Skyrme
forces. As noticed in other works the dependence of A0,1 on
the n-p density asymmetry is probably too strong. This issue,
however, does not modify the variation with the temperature
meaningfully. In the framework of the Skyrme-Hartree-Fock
parametrization, temperature effects arise from the functions
M and N given by Expression (4). They depend on the
general properties of the Skyrme-Hartree-Fock approach. The
variation ofA0,1(T ) depends strongly on the particular Skyrme
force, being always very smooth and small. The different

contributions of the potential and kinetic parts of the symmetry
energy for fixed densities, by means of the functions N (T )
and M(T ), as well as the relative values of V

(0,1)
0 and V

(0,1)
1 ,

are responsible for these different results of each Skyrme
interaction. The variation (decrease) of Nα(T ) (which reduces
to the n, p densities of states at zero temperature) with
temperature is, however, the most relevant contribution for
the results. The larger variation of A0,1(T ) occurs for ρ < ρ0,
depending strongly on the effective force parametrization (for
which V

(0,1)
1 �= 0, i.e., SGII and SLyb). The final behavior is

not always monotonic with temperature. The differences in
the overall variation of A0,1(T ) for different densities below
ρ0 are seen also in other works using different approaches
[14,17,19,20] as pointed out and compared in Ref. [26]. The
trends exhibited by the Skyrme parametrizations suggest that
the eventual experimental knowledge of the behavior of the
symmetry energy with the temperature will also contribute
to better fine-tuning of the effective interaction as well as
to improving its predictive power. This is clearer in the
comparison between Figs. 2 and 3 (mainly for Skyrme forces
SGII and SLyb).

ACKNOWLEDGMENTS

The author thanks Sergio R. Souza for short discussions and
a reading of the manuscript. This work was partially supported
by IBEM and the Ministry of Science and Technology of Brazil
and by FAPESP in the earlier stage of the investigation.

[1] F. L. Braghin, Nucl. Phys. A665, 13 (2000).
[2] D. V. Shetty, S. J. Yennello, and G. A. Souliotis, Phys. Rev. C

76, 024606 (2007); 76, 039902 (2007).
[3] W. Henning, Nucl. Phys. A734, 654 (2004); J. A. Nolen, ibid.

A734, 661 (2004); W. G. Lynch, ibid. A734, 573 (2004);
“Isospin Physics in Heavy-Ion Collisions at Intermediate
Energies,” edited by Bao-An Li and W. Udo Schroeder (NOVA
Science Publishers, New York, 2001).

[4] B.-A. Li, C. M. Ko, and W. Bauer, Int. J. Mod. Phys. E 7,
147 (1998); B.-A. Li, Nucl. Phys. A734, 593 (2004); B.-A. Li,
C. B. Das, S. DasGupta, and C. Gale, Phys. Rev. C 69, 011603(R)
(2004).

[5] Several works presented in IX Conference on Nucleus
Nucleus Collisions, Rio de Janeiro, Brazil, August 28–
September 1, 2006, Nucl. Phys. A787 (2007), edited by C. A.
Bertulani, P. R. S. Gomes, M. S. Hussein, and A. Szanto de
Toledo.

[6] T. Gaitanos, M. Di Toro, G. Ferini, M. Colonna, and H. H.
Wolter, in Proceedings of the XLII International Winter
Meeting On Nuclear Physics, Bormio (Italy) January–
February, 2004; arXiv:nucl-th/0402041; V. Greco, M. Colonna,
M. DiToro, and F. Matera, Phys. Rev. C 67, 015203
(2003); B. Liu, V. Greco, V. Baran, M. Colonna, and
M. DiToro, Phys. Rev. C 65, 045201 (2002); F. L. Braghin,
Int. J. Mod. Phys. D 13, 1267 (2004).

[7] P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298, 1592
(2002); D. V. Shetty, S. J. Yennello, and G. A. Souliotis, in
Proceedings of CAARI 2006, Forth Worth, Texas, August 2006,
arXiv:nucl-ex/0610019.

[8] M. B. Tsang, W. A. Friedman, C. K. Gelbke, W. G. Lynch,
G. Verde, and H. Xu, Phys. Rev. Lett. 86, 5023 (2001);
D. V. Shetty et al., Phys. Rev. C 70, 011601(R) (2004);
D. V. Shetty et al., arXiv:nucl-ex/0401012; A. S. Botvina, O. V.
Lozhkin, and W. Trautmann, Phys. Rev. C 65, 044610 (2002).

[9] S. Reddy, M. Prakash, J. M. Lattimer, and J. A. Pons, Phys. Rev.
C 59, 2888 (1999); A. W. Steiner, M. Prakash, J. M. Lattimer,
and P. J. Ellis, Phys. Rep. 411, 325 (2005).

[10] S. Kowalski et al., Phys. Rev. C 75, 014601 (2007); D. V. Shetty
et al., arXiv:nucl-ex/0606032; A. Le Fevre et al. (ALADIN and
INDRA Collaborations), Phys. Rev. Lett. 94, 162701 (2005);
W. Trautmann et al. (ALADIN and INDRA Collaborations), in
Proceedings of the IWM2005, Catania, Italy, November 2005,
arXiv:nucl-ex/0603027.

[11] N. Buyukcizmeci, A. S. Botvina, I. N. Mishustin, and R. Ogul,
Phys. Rev. C 77, 034608 (2008); arXiv:0711.3382 [nucl-th];
A. Ono et al., Phys. Rev. C 70, 041604 (R) (2004); J. Iglio et al.,
Phys. Rev. C 74, 024605 (2006).

[12] S. R. Souza, M. B. Tsang, R. Donangelo, W. G. Lynch, and
A. W. Steiner, Phys. Rev. C 78, 014605 (2008).

[13] F. L. Braghin, Phys. Rev. C 71, 064303 (2005) [Erratum-ibid.
79, 069902(E) (2009)]; F. L. Braghin, Int. J. Mod. Phys. E 12,
755 (2003).

[14] S. K. Samaddar, J. N. De, X. Vinas, and M. Centelles, Phys.
Rev. C 76, 041602(R) (2007).

[15] J. N. De and S. K. Samaddar, Phys. Rev. C 78, 065204
(2008).

[16] C. J. Horowitz and A. Schwenk, Nucl. Phys. A776, 55
(2006).

014307-5
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