
PHYSICAL REVIEW C 80, 014303 (2009)

Self-consistent extension of random-phase approximation enlarged beyond
particle-hole configurations

Danilo Gambacurta and Francesco Catara
Dipartimento di Fisica e Astronomia and INFN, Via Santa Sofia 64, I-95123 Catania, Italy

Marcella Grasso
Institut de Physique Nucléaire, Université Paris-Sud, IN2P 3-CNRS, F-91406 Orsay Cedex, France

(Received 14 January 2009; revised manuscript received 6 April 2009; published 6 July 2009)

We present a new extension of the random-phase approximation method: the quasiboson approximation
is avoided and correlations are included in the ground state without resorting to renormalized operators or
renormalized matrix elements; the configuration space is enlarged by considering also elementary excitations
corresponding to the annihilation of a particle (hole) and the creation of another particle (hole) on the correlated
ground state, together with the particle-hole ones. Two new and relevant advantages of this method with respect
to the existing extensions of random-phase approximation are highlighted: (i) the energy weighted sum rules are
completely satisfied; (ii) the problem of the existence of nonphysical states in the spectrum, related to the inclusion
of particle-particle and hole-hole configurations, is solved: a way to unambiguously disentangle physical from
nonphysical states in the excitation spectrum is presented. The method is applied here to a three-level Lipkin
model where its quality can be judged by comparing with the exact results. Both advantages (i) and (ii) shall lead
to feasible future applications of this extended RPA to several realistic cases.
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I. INTRODUCTION

One of the common features characterizing finite-size
many-body systems is the existence of collective modes
of excitations. Low-lying and giant resonances in nuclei
[1], dipole plasmons in clusters [2], and breathing modes
in atomic gases [3] are some examples of many-particle
coherent motion generating a collective excitation mode. The
microscopic approach that is most currently used to analyze
collective excitations in many-body systems is the random-
phase approximation (RPA) [4], where the modes are described
as superpositions of particle-hole and hole-particle individual
configurations. This method is extensively used in different
domains and, in general, successfully describes the energies
and transition probabilities associated to the excitations.

In its standard version, it is a single-reference approach
[5], where the reference state is the uncorrelated Hartree-
Fock (HF) Slater determinant characterized by 1 and 0
occupation numbers in the single-particle states that construct
it (quasiboson approximation (QBA) [4] based approach). The
replacement of the correlated ground state with the HF one is
justified only if ground state correlations are not too strong,
otherwise a better and, if possible self-consistent, treatment
of these correlations become important. For example, it has
been shown in the context of metal clusters that correlations
in the ground state can be quite strong and induce important
deviations from 1 and 0 in the occupation numbers of hole
and particle states, respectively [6]. On the other side, in
nuclear physics, new measurements on weakly bound nuclei
start revealing relevant changes in shell structure far from
stability [7] and novel properties such as, for example, the
existence of pygmy excited modes [8]. The behavior of exotic
nuclei presents a more complex scenario with respect to the
physics of stable nuclei and the introduction of correlations

beyond standard mean field approaches may be expected to
provide an important contribution in this case.

One possible direction is the use of a multireference
approach [5]: the generator coordinate method (GCM) [9],
for instance, is a multireference approach where the reference
state is no longer a single state but a superposition of
wave functions associated to some collective coordinates.
Another possible way to explicitly introduce correlations in
the ground state consists in constructing a RPA-like formalism
where the violations of the Pauli principle related to the use
of the QBA are cured. Two main lines have been developed in
the past decades using either boson expansion methods [10]
or extensions in the fermionic space [11]. Many of these
approaches are based on the so-called renormalized RPA
(RRPA) method starting from the early works of Hara and
Rowe in the 1960s [12]. In all these RRPA models: (i) the
ground state is explicitly correlated with occupation numbers
different from 1 and 0 appearing in some renormalization
factors; (ii) the Pauli principle is satisfied because the QBA
is not adopted.

A very important feature of standard RPA is that it pre-
serves energy weighted sum rules (EWSR) [9]. This property
guarantees that spurious excitations corresponding to broken
symmetries (as, for example, the translational invariance)
separate out and are orthogonal to the physical states. On the
contrary, the common limitation of all the approaches aimed
to overcome QBA is that EWSR are not satisfied [13] and
can be strongly violated (up to 20–30% in some cases [14]).
Such violations are related to the fact that only particle-hole
excitations are considered in such approaches.

An attempt to overcome this problem has been discussed
in Ref. [15]. A RRPA approach has been introduced where
particle-particle and hole-hole configurations have been added
to the standard particle-hole configurations. The method has
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been applied to a three-level Lipkin model [16] with one hole
and two particle levels and it has been shown that the EWSR
result exactly satisfied.

However, a new problem arises related to the existence
of a so called ‘spurious’ mode that does not correspond to
any level in the exact excitation spectrum of the model. In
this work, we will call this mode more properly ‘additional’ or
‘nonphysical’ instead of ‘spurious’ because it does not actually
correspond to any broken symmetry. Since the transition
probability associated to this mode becomes non-negligible at
some value of the interaction strength in the Hamiltonian [15],
an application of this method to a realistic case would result
as unfeasible: various additional modes would be generated
and it would be impossible to isolate them from the physical
spectrum by simply looking at their transition probabilities.

The appearance of these nonphysical states can be traced
back to the use of the enlarged configuration space that,
from the other hand, allows to exactly preserve EWSR (see
also [17]). Although, in some realistic calculations carried out
in extended RPA approaches, it has been discussed that the
transition probabilities associated to these modes are quite
small (see for example [18]), an approach that allows to
identify a priori these modes should be very useful.

In this work, we present a new and more general method
with respect to that of Ref. [15], where the renormalization
scheme is not adopted and, in the range of the existence of
RPA and, to some extent, beyond the RPA collapse, the EWSR
are satisfied and the separation of the additional modes is
unambiguously done.

The proposed approach is a generalization of the self-
consistent RPA introduced in Ref. [19] in the context of
metal clusters. The generalization with respect to [19] consists
in enlarging the space including also particle-particle and
hole-hole configurations following the line suggested in
Ref. [15]. Similarly to what is done in Ref. [19], the operators
Qν are non-renormalized and the one-body density matrix
(OBDM) is not assumed diagonal.

The paper is organized as follows. In Sec. II we discuss
the problem of EWSR and the origin of the violation of
EWSR when only particle-hole excitations are considered
in the phonon operators within generalized RPA approaches
aimed to overcome QBA. In Sec. III we discuss how this
problem is solved within the present approach. In Sec. IV we
apply it to a solvable three-level Lipkin model and we compare
the results obtained within this approach with the RPA and
exact ones. Finally, in Sec. V, the main conclusions are drawn.

II. GENERALIZED RPA APPROACHES AND EWSR

Let us briefly recall how the problem of the EWSR raises
when generalizations of RPA are considered, still remaining in
the space of particle-hole elementary excitations. Within such
space, the excited states of the system are written as

|ν〉 = Q†
ν |0〉, (1)

where

Q†
ν =

∑
ph

(
Xν

pha
†
pah − Y ν

pha
†
hap

)
(2)

with a† and a denoting creation and annihilation operators and
|0〉 is the correlated ground state, defined as the vacuum of the
Qν operators

Qν |0〉 = 0. (3)

.
The equations of motion method [9] leads to(

A B

B∗ A∗

) (
X(ν)

Y (ν)

)
= ων

(
G 0
0 −G∗

)(
X(ν)

Y (ν)

)
(4)

with

Aph,p′h′ = 〈0|[a†
hap,H, a

†
p′ah′]|0〉, (5)

Bph,p′h′ = −〈0|[a†
hap,H, a

†
h′ap′ ]|0〉, (6)

Gph,p′h′ = 〈0|[a†
hap, a

†
p′ah′]|0〉, (7)

where the symmetrized double commutators are defined as

[A,B,C] = 1
2 {[A, [B,C]] + [[A,B], C]}. (8)

The X and Y amplitudes satisfy the orthonormality
conditions∑

ph,p′h′

(
Xν

phX
ν ′
p′h′ − Y ν

phY
ν ′
p′h′

)
Gph,p′h′ = δνν ′ . (9)

The standard RPA equations can be obtained by replacing,
in the evaluation of the matrices (5)–(7), the state |0〉 with
the (uncorrelated) HF one. In particular the norm matrix G

acquires the simpler form

G
(HF)
ph,p′h′ = 〈HF|[a†

hap, a
†
p′ah′]|HF〉 = δhh′δpp′ , (10)

the matrices A and B are easily evaluated since

a
†
h|HF〉 = ap|HF〉 = 0 (11)

and the RPA X and Y amplitudes satisfy the orthonormality
conditions ∑

ph

(
Xν

phX
ν ′
ph − Y ν

phY
ν ′
ph

) = δνν ′ . (12)

A very important feature of standard RPA is that it preserves
EWSR [9,20]. It is well known that, if |0〉 and |ν〉 are a complete
set of exact eigenstates of the Hamiltonian, with eigenvalues
E0 and Eν , the following identity holds:∑

ν

ων |〈ν|F |0〉|2 = 1

2
〈0|[F, [H,F ]]|0〉, (13)

where ων = Eν − E0 and F is any Hermitian single particle
operator. The above equality is in general violated to some
extent when |0〉, |ν〉 and ων are calculated with some approx-
imation. To which extent it is satisfied is a measure of the
adequacy of the approximation.

Transition amplitudes 〈ν|F |0〉 induced by a one-body
operator

F =
∑
α,β

〈α|F |β〉a†
αaβ (14)

between the ground state |0〉 and excited states |ν〉 when these
are described within RPA and RPA-like approaches

〈ν|F |0〉 = 〈0|[Qν, F ]|0〉, (15)
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where the definition (1) and the vacuum property (3) have
been used. The above expression is general and it is valid
independently of the explicit form of the Q operators. Within
standard RPA, where the latter have the form (2), only the p-h
components of the transition operator F are selected, obtaining

〈ν|F |0〉 =
∑
ph

{
Xν∗

ph〈p|F |h〉 + Y ν∗
ph〈h|F |p〉}. (16)

A very important feature of RPA, known as Thouless theorem
[20], can be described as follows. When the left hand side
of Eq. (13) is evaluated by using the energies and the X and
Y amplitudes of RPA, one finds the same result as when the
right hand side of the same equation is calculated by replacing
the exact ground |0〉 with the |HF〉 state. This result is very
important also because it guarantees that spurious excitations
corresponding to broken symmetries (as, for example, the
translational invariance) separate out and are orthogonal to the
physical states. We remark that, when the r.h.s. is evaluated
in the HF state, only the p-h components of the transition
operator F appear in it. The same happens in the l.h.s. but it is
essentially related to the p-h nature of the Q operators. In fact,
when the correlated |0〉 is maintained, it is still true that only
the p-h components of the transition operator F appear in the
l.h.s. and one has

〈ν|F |0〉 =
∑

php′h′

{
Xν∗

ph〈p′|F |h′〉 + Y ν∗
ph〈h′|F |p′〉}Gph,p′h′ ,

(17)

while this is no more the case in the r.h.s., where the whole
structure of F appears. This is the reason why all extension of
RPA, with only p-h excitations, violate Eq. (13). On the other
hand, the use of the HF state in place of the correlated one,
and thus the use of the QBA, is a well known limit of RPA and
many efforts have been done in order to overcome this limit
by taking into account ground state correlations neglected in
standard RPA.

III. FORMULATION OF THE APPROACH

In the following we present an extension of RPA aimed
to overcome the QBA, by taking into account ground state
correlations and, at the same time, to obtain a scheme in which
EWSR are preserved. As discussed above, the violations of
the EWSR in extended RPA approaches are mainly due to the
use of phonon operators containing only p-h excitations. In
our approach the excited states |ν〉 of the system are generated
by more general operators

Q†
ν =

∑
α>β

(
Xν

αβa†
αaβ − Y ν

αβa
†
βaα

)
, (18)

where α and β are single-particle states and α > β means
that nα < nβ (n being the occupation number of the state).
The equations to solve are similar to RPA equations with a
different norm matrix:(

A B

B∗ A∗

) (
X(ν)

Y (ν)

)
= ων

(
G Ḡ

−Ḡ∗ −G∗

)(
X(ν)

Y (ν)

)
. (19)

The norm matrix is defined by the matrices G which read

Gαβ,α′β ′ = 〈0|[a†
βaα, a

†
α′aβ ′ ]|0〉

= δαα′ρ(β,β ′) − δββ ′ρ(α′,α), (20)

where ρ is the OBDM

ρ(α, β) ≡ 〈0|a†
αaβ |0〉 (21)

and

Ḡαβ,α′β ′ = Gαβ,β ′α′ . (22)

The new A and B matrices have the same expressions
defined in Eqs. (5) and (6) but the p′s and h′s indices are
replaced now by the α′s and β ′s ones, respectively.

All the matrix elements appearing in Eqs. (19) are cal-
culated in the correlated ground state, which is defined as
the vacuum of the operators Q. The explicit expressions of
the A and B matrices is calculated by using the method
of linearization of equations of motion [15,19]. It amounts
to contract with respect to the correlated ground state |0〉
the two-body terms coming out from the inner commutators
appearing in Eqs. (5) and (6). In a loose notations, this means

[H, a†a] → a†a + a†a†aa ∼ a†a + 〈0|a†a|0〉a†a. (23)

In such a way also, the A and B matrices are expressed in
terms of the OBDM.

By using the number operator method [19,21] the ρ matrix
is expressed in terms of the X and Y amplitudes:

ρ(p, p′) =
∑
νν ′

∑
h

⎛
⎝δνν ′ − 1

2

∑
p1h1

Rν ′
h1p1

Rν∗
p1h1

⎞
⎠ Rν

phR
ν ′∗
hp′ ,

(24)

ρ(h, h′) = δhh′ −
∑
νν ′

∑
p

⎛
⎝δνν ′ − 1

2

∑
p1h1

Rν ′
h1p1

Rν∗
p1h1

⎞
⎠

×Rν
phR

ν ′∗
h′p, (25)

ρ(p, h) =
∑
νν ′

∑
h2

⎛
⎝δνν ′ − 1

2

∑
p1h1

Rν ′
h1p1

Rν∗
p1h1

⎞
⎠ Rν

ph2
Rν ′∗

h2h
,

(26)

where

Rν
ij =

∑
α>β

(
Xν

αβGij,αβ − Y ν
αβGij,βα

)
. (27)

Therefore Eqs. (19) are nonlinear and in order to solve
them we use an iterative procedure. At the nth iterative step
we compute the ρ matrix, and thus the A,B, and G matrices,
by using the X and Y amplitudes of the (n − 1)th step. As
starting point, we use the HF OBDM, i.e.,

ρ(0)(h,h′) = δh,h′ ; ρ(0)(p,p′) = 0; ρ(0)(p,h) = 0, (28)

obtaining thus the standard RPA solutions, which are used in
the next step. The procedure is carried out until convergence is
reached, namely, until the maximum relative difference in the
excitation energies between two successive iterations is less
than a chosen limit (10−7 in the following calculations).
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Equations (19) are a generalized eigenvalue problem and
can be solved directly by using, for example, QR or QZ

algorithms [22]. Alternatively, one can extract a set of linear
independent states by diagonalizing the norm matrix(

G Ḡ

−Ḡ∗ −G∗

)
, (29)

and make thus a unitary transformation which allows to
transform the generalized eigenvalue problem into a standard
one [23]. We have used this second way for the following
reason. Since, in the enlarged phonon operator (18) the α and
β indices denote generic single particle states, both occupied
and unoccupied in the HF ground state, particle-particle,
particle-hole, and hole-hole configurations are included. This
implies that nonphysical additional states come into play.
The strong advantage of this method with respect to that of
Ref. [15] is that by diagonalizing the norm matrix and by
looking at the overlaps of the excited states with the ground
state the nonphysical states can be isolated and eliminated from
the spectrum. The implications of the above approach on the
description of the collective states in realistic system will be
studied in forthcoming works. In the next section we show the
advantages of the method within a three-level Lipkin model.

IV. AN APPLICATION TO THE LIPKIN MODEL

The three-level Lipkin model consists of three energy
levels, each of them is 2�-fold degenerate, in which the total
number of fermions N = 2� is distributed. The Hamiltonian
of the model is

H =
∑
i �=0

εiKii + V0

∑
i,j �=0

Ki0K0j + V1

∑
i,j �=0

(Ki0Kj0 + h.c.)

+V2

∑
i,j,k �=0

(Ki0Kjk + h.c.) + V3

∑
i,j,k,l,�=0

KijKkl (30)

where ε are the energies of the levels and the coefficients V

represent the strengths of the various interaction terms. The
operators K have the following form:

Kij =
∑
m

a
†
imajm (31)

and satisfy the commutation relations

[Kij ,Kkl] = δjkKil − δilKkj . (32)

The indices i and j indicate the three levels and m denotes the
2� degenerate states of each level. The operators K define a
SU(3) algebra. The exact excitation spectrum of the model can
be calculated and compared with the obtained results.

We present the results for two choices of the parameters ε

and V in the Hamiltonian.
As a first set we have

ε0 = 0, ε1 = ε, ε2 = 2.5ε, V0 = −χ,
(33)

V1 = χ, V2 = −χ/2, V3 = χ/10.

In Fig. 1 the excitation spectrum (a) and the eigenvalues of
the norm matrix (b) are displayed as a function of the strength
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FIG. 1. (Color online) First set of parameters (33). (a): Excitation
energies of the states (1), (2), and (3) and the eigenvalues of the
norm matrix (b) as a function of the strength parameter τ = χ/ε.
The energies in the Y axis are expressed in units of ε. In (c) the
corresponding overlaps [Eq. (34)] of the three states with the ground
state are shown. See the text for more details.

parameter τ = χ/ε for the first set of parameters. The present
calculation is denoted in the figure with the acronym EERPA
(extended and enlarged RPA). EERPA results (solid lines) are
compared with the exact corresponding values (dashed lines)
and with the standard RPA energies (dotted lines). The first
two RPA excited states are indicated with (1) and (3). A much
better agreement with the exact results is found for EERPA
with respect to RPA. This is mostly evident for the first RPA
excited state already before the RPA collapse point, τ = 0.026.
With EERPA the collapse point is located much further and
the good agreement with the exact values is kept in the whole
region where the EERPA results exist. The state (2), whose
energy is equal to ε2 − ε1 when τ approaches 0, does not
correspond to any exact solution. Thus it is nonphysical. This
straightforward identification would not be possible when the
EERPA is applied to the study of realistic systems since exact
results are not available in that case. Quite in general, however,
one can proceed as follows.

The eigenvalues of the norm matrix Eq. (29), are plotted in
panel (b) of the figure. One can observe that even beyond the
RPA collapse point one eigenvalue is much smaller than the
others, its value being equal to 0.03 at the RPA collapse. At
τ = 0.035, that is far beyond the collapse, the three eigenvalues
are still well separated: 0.09, 0.69, and 0.84, respectively. This
tells us that one of the three solutions is nonphysical. One
condition that the three excited states should satisfy in order
to be acceptable as physical states is their orthogonality with
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the ground state. In panel (c) of Fig. 1 we show the overlaps

〈0|ν〉 = 〈0|Q†
ν |0〉 =

∑
α>β

Xν
αβρ(α,β) − Y ν

αβρ(β,α) (34)

between the ground state and the states of panel (a). As it is
very clearly visible, such overlap for the state labeled as (2)
is strongly different from zero, while for the others it is much
smaller. Thus we can conclude that indeed such state is the
nonphysical one. Of course, in the case of a schematic, exactly
solvable model such identification can be done directly by
looking at the exact energy spectrum while this is not possible
in realistic cases. On the other hand, the appearance of a
(almost) zero eigenvalue of the norm matrix does not allow
to identify the nonphysical state. On the contrary, looking at
the values of the overlaps Eq. (34) is an unambiguous criterion
to single out the states to be eliminated and it is viable also
in realistic systems. The fact that the overlaps of the physical
states with the ground state are not exactly zero, especially for
large values of the strength, is related to the approximations
present in the approach. For example, the OBDM is evaluated
by using the number operator method truncated at a certain
order, which probably is not enough for values of the strength
well beyond the RPA collapse point. However, in physical
cases we expect to be in situations corresponding to smaller
values of the strength or, in worst cases, around the RPA
collapse point. We remark that the above discussed criterion,
to disentangle physical from nonphysical states, could not be
applied in the previous approach [15] where, since the OBDM
is assumed diagonal, the overlaps (34) are zero by construction
for all the states |ν〉 and thus the fulfillment of the orthogonality
condition is not achievable.

It is worthwhile to underline that even when only particle-
hole excitations are included in the phonon operators (18), the
self-consistent treatment of the ground state correlations used
in our approach leads to a better agreement with the exact
results with respect to RPA, as we have checked. However,
in this case, violations of EWSR are found. For example,
near the RPA collapse point, deviations of the order of 30%
are present. When instead the enlarged configuration space is
used, EWSR are exactly satisfied, as shown in [15]. This has
been numerically verified in the present calculations.

The first set of parameters allows to modelize the case
where, in a realistic system, two particle (or hole) states which
construct an elementary configuration are quite well separated
in energy: the unperturbed energy of the corresponding
configuration is then finite and greater than zero. It can happen,
however, that a realistic single-particle spectrum presents
some very close single-particle states. If a particle-particle or
hole-hole configuration can be formed with two of these states,
the associated unperturbed energy would be very close to zero.
It has been shown in Ref. [18] for a realistic nuclear system
that these additional states (that would contribute in the low-
energy part of the excitation spectrum) have actually very low
transition probabilities and do not contribute in practice to the
strength distribution of the excitation mode. The second set of
parameters in our Lipkin model has been chosen to mimic such
a situation by using the same strength parameters V of (33)
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FIG. 2. (Color online) Same parameters of Eq. (33) but with ε1 =
ε, ε2 = 1.2ε.

and as single particle energies:

ε0 = 0, ε1 = ε, ε2 = 1.2ε. (35)

In Fig. 2, where we show the same quantities of Fig. 1 for
this second choice, we can see that EERPA results are again in
better agreement with the exact ones with respect to the RPA,
whose collapse point is now at τ = 0.019. The energy of the
nonphysical state, labeled as (1) in the figure, starts from a
value equal to ε2 − ε1 when τ is near to 0 and then decreases
by increasing τ . Indeed, the collapse of EERPA (τ = 0.036),
that we did not observe in Fig. 1, in this second case happens
just because the energy of the nonphysical state approaches 0.
However, the EERPA collapse is far beyond the RPA one. In
panels (b) and (c) of Fig. 2, we plot the eigenvalues of the norm
matrix (29) and the overlaps (34), respectively, which, as in the
previous case, allow to disentangle physical from nonphysical
states in a very clear way.

V. CONCLUSIONS

In conclusion, we have presented an extension of RPA in
which ground state correlations are treated in a self-consistent
way and no use of the quasiboson approximation is made.
The method has been applied to a three-level Lipkin model
and a better agreement with the exact results than in RPA
has been found. By using an enlarged configuration space,
with respect to that commonly used (particle-hole excitations),
EWSR are exactly preserved. This means that the problem
of spurious excitations corresponding to broken symmetries
which arises in many, if not all, extensions of RPA is not
present in this method. In a previous paper [15], an extension
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of RPA with an enlarged basis of elementary excitations within
the renormalized RPA framework was introduced and studied
in the same three level Lipkin model. A serious problem
of that approach is the appearance of a nonphysical state,
having no counterpart in the exact spectrum. The strong and
innovative advantage of the here presented approach is that by

diagonalizing the norm matrix and by looking at the overlaps of
the excited states with the ground state, nonphysical states can
be isolated and eliminated from the spectrum. The obtained
results strongly encourage the application of the present
approach to more realistic systems. Work in this direction
is in progress.
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