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Pion pair condensed nuclear matter without a σ meson
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The nonlinear σ model that includes vector meson contributions is utilized for the study of nuclear matter.
Here, the σ meson degree of freedom is eliminated by the condition that σ 2 + π 2 is invariant under both chiral
transformation and isospin rotation. The nuclear matter consists of nucleons, pions, and vector (ω) mesons. In
the model, there are only three free parameters, and the minimum energy and desired incompressibility at the
normal nuclear density for the pion pair condensed nuclear matter can be obtained by adjusting these parameters.
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I. INTRODUCTION

The bulk properties of nuclear matter with mesons were
first studied by Walecka [1]. In the original σ -ω model, the
minimum energy at the normal nuclear density for nuclear
matter was successfully reproduced, but the resulting value
of incompressibility was very large. To obtain the desired
incompressibility for nuclear matter, higher-order σ meson
terms [2] or derivative σ -nucleon coupling [3] was introduced
into the standard σ -ω model. In both models, the higher-power
σ terms were taken into consideration to obtain the desired
value of incompressibility.

Another approach is that based on the linear σ model [4].
In addition to vector meson contributions, additional scalar
meson terms [5], scalar-vector interaction terms [6], or higher-
order terms [7,8] of the chiral loop (σ 2 + π2) were introduced
to reproduce the bulk properties of nuclear matter.

The density dependence of the classical σ meson field plays
an essential role in these calculations. However, the σ meson
has not yet been experimentally confirmed. The nonlinear σ

model has been proposed to eliminate the degree of freedom
associated with the uncertain σ meson [9]. The σ meson σ is
replaced by pions under the condition that the chiral loop (σ 2 +
π2) remains invariant under both isospin rotation and chiral
transformation. In this model, a σ meson field is expressed as
the square root of the square of the pion field and is expanded
to have an infinite number of terms representing pion fields.

In this study, we examine this idea for pion pair condensed
nuclear matter and discuss the properties of nuclear matter,
which consists of nucleons, pions, and ω mesons. It is shown
that in the model, there are only three parameters for adjusting
the minimum energy, the incompressibility, and the normal
nuclear density according to the type of nuclear matter; we can
set the three parameters to reproduce nuclear matter properties
well.

II. MODEL

The Lagrangian density of the linear σ model, which
comprises vector meson contributions, the nucleon mass term,
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and the pion mass term, can be expressed as

L = ψiγ µ∂µψ − �Mψψ + gπψ(σ + iγ5τ · π )ψ

− gωψγ µωµψ + 1
2 (∂µσ )2 + 1

2 (∂µπ)2 − 1
4FµνF

µν

− 1
2Aπf 2

π π2 + 1
2Aωf 2

π ωµωµ − Bf 3
π σ, (2.1)

with

Fµν = ∂µων − ∂νωµ, (2.2)

where ψ,π , and ωµ denote the nucleon field, the pion, and the
ω meson, respectively.

The nucleon mass, pion mass, and linear σ terms, repre-
sented by �Mψψ, 1

2Aπf 2
π π2, and Bf 3

π σ , respectively, are
not chiral invariant. The nucleon mass term renders the π -N
coupling constant gπ a free parameter that controls attraction.
The quantities, gπ, gω,Aπ,Aω,�M , and B, are constants to
be determined to obtain the desired properties of the nuclear
matter.

The apparent σ meson field σ is expressed in terms of π

according to the condition

σ 2 + π2 = A2, (2.3)

where A is a constant corresponding to the radius of the chiral
loop. The Lagrangian density thus obtained has the same form
as that of the extended linear σ model [8,10] in which the
Condition (2.3) holds.

The Dirac equation for a nucleon is given by

iγ µ∂µψ − �Mψ + gπ (σ + iγ5τ · π )ψ − gωγ µωµψ = 0.

(2.4)

The Klein-Gordon equation for a pion is given by(
π · ∂µπ

σ 2

)2

π + (∂µπ)2

σ 2
π + π · ∂µ∂µπ

σ 2
π + ∂µ∂µπ

= gπψ
(
−π

σ
+ iγ5τ

)
ψ − Aπf 2

π π + Bf 3
π

π

σ
, (2.5)

and the Proca equation for an ω meson is given by

∂µFµν = gωψγ νψ − Aωf 2
π ων . (2.6)

Further, the Hamiltonian density is given by

H = ψ†α · pψ + �Mψψ − gπψ̄(σ + iτ · πγ5)ψ

+ gωψγ µωµψ + 1
2 (∂0σ )2 + 1

2 (∇σ )2 + 1
2 (∂0π )2
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+ 1
2 (∇π)2 + 1

2Aπf 2
π π2 + 1

2 (∂0ωµ)2 + 1
2 (∇ωµ)2

− 1
2Aωf 2

π ωµωµ + Bf 3
π σ. (2.7)

Because the vector current is expressed as

J µ = ψ̄γ µ τ

2
ψ + π × ∂µπ , (2.8)

it can easily be ensured that the condition

∂µJ µ = 0 (2.9)

is satisfied and that the Lagrangian density (2.1) is invariant
under isospin transformation. The axial vector current is given
by

J µ

5 = ψ̄γ µγ5
τ

2
ψ + σ∂µπ − π∂µσ, (2.10)

and the dispersion of the axial vector current results in the
following condition:

∂µJ µ

5 = �Mψ̄iγ5τψ − Aπf 2
π σπ + Bf 3

π π . (2.11)

This implies that the nucleon mass, pion mass, and σ linear
terms are not chiral invariant.

From the weak decay of the charged pions π+ → µ+ + νµ

and π− → µ− + νµ, the following relation can be obtained

〈0|∂µJ µ

5 (0)|π(k)〉 = kµkµfπ = m2
πfπ , (2.12)

where mπ and fπ are the pion mass at vacuum (zero nuclear
density) and the decay constant of a charged pion, respectively.
From a comparison of Eqs. (2.11) and (2.12), the following
equation can be obtained

m2
π = Bf 2

π − Aπfπ 〈σ 〉0, (2.13)

where 〈σ 〉0 denotes an apparent classical σ meson field in
vacuum.

III. PION PAIR CONDENSED NUCLEAR MATTER

We use spatially and temporally uniform mean field
approximations for studying the nuclear matter. Because of
parity conservation of the nuclear ground state, the classical
field of a single pion 〈π〉 does not exist. However, the scalar
part of a combination of pions can exist as a classical field [10].
Thus, we assume

π −→ 〈π〉 = 0 π2 −→ 〈π2〉, (3.1)

ωµ −→ 〈ω〉δµ0, (3.2)

and

σ = ±
√

A2 − π2 −→ 〈σ 〉 = ±
√

A2 − 〈π2〉. (3.3)

The sign of σ is determined later.
The mean field Hamiltonian density is given by

〈H〉 = 〈ψ†α · pψ〉 + (�M − gπ 〈σ 〉)〈ψψ〉
+ gω〈ω〉〈ψγ 0ψ〉 + 1

2Aπf 2
π 〈π2〉 − 1

2Aωf 2
π 〈ω〉2

+Bf 3
π 〈σ 〉. (3.4)

The condition that the mean field Hamiltonian density 〈H〉 has
the minimum value for the pion pair classical field 〈π2〉 leads

the equation

(Aπ 〈σ 〉 − Bfπ )f 2
π = −gπ 〈ψψ〉. (3.5)

Using this equation, 〈σ 〉 and then 〈π2〉 can be expressed as
functions of nuclear density. Nuclear matter in which the pion
pair classical field 〈π2〉 exists is called pion pair condensed
nuclear matter.

The ω meson classical field 〈ω〉 should obey the equation
of motion of the ω meson field ωµ (2.6). Thus,

gω〈ψγ 0ψ〉 = Aωf 2
π 〈ω〉. (3.6)

Here, the classical ω meson field 〈ω〉 is expressed as a function
of nuclear density.

A. Mass

The meson fields can be expressed in terms of their classical
fields and their fluctuations as follows:

π −→ π̃ π2 −→ 〈π2〉 + π̃2, (3.7)

ωµ −→ 〈ω〉δµ0 + ω̃µ, (3.8)

and

σ = ±
√

A2 − π2 −→ 〈σ 〉 + σ̃ = ±
√

A2 − 〈π2〉 − π̃2

= ±
√

A2 − 〈π2〉
{

1 − π̃2

2(A2 − 〈π2〉)

− π̃4

8(A2 − 〈π2〉)2
− · · · · · ·

}

= 〈σ 〉 − π̃2

2〈σ 〉 − π̃4

8〈σ 〉3
− · · · · · · . (3.9)

By substituting these equations in the Lagrangian density (2.1),
the effective nucleon mass can be defined by

M∗ = �M − gπ 〈σ 〉 (3.10)

as the coefficient of the term ψψ . The square of the effective
pion mass is given by

m∗2
π = Aπf 2

π − Bf 3
π

〈σ 〉 (3.11)

as the coefficient of π̃2/2. That of the effective ω meson mass
is also given by

m∗2
ω = Aωf 2

π . (3.12)

The effective ω meson mass does not depend on the nuclear
density, and thus, it must be equal to the ω meson mass at zero
nuclear density. Thus, the coefficient Aω can be determined as

Aω = m2
ω

f 2
π

. (3.13)

By comparing Eqs. (2.13) and (3.11) under the condition
of zero nuclear density, the following relation was derived:

〈σ 〉0 = −fπ . (3.14)

Thus,

A = fπ, (3.15)
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and

σ = −
√

f 2
π − π2. (3.16)

Further

Aπ + B = m2
π

f 2
π

, (3.17)

and

�M = MN − gπfπ , (3.18)

where MN is the nucleon mass at zero nuclear density.

B. Energy

For pion condensed nuclear matter, other distributions
that are different from the Fermi gas distribution have been
suggested [11]. However, here we assume the existence of
the classical field of the scalar part of combined pions, and
we do not aim to discuss the structures of pion condensed
nuclear matter. Thus, we assume that the nuclear distribution
for pion pair condensed nuclear matter is the simplest Fermi
gas distribution. The energy per nucleon of the nuclear matter
with the Fermi momentum p

F
is given by

E = EN − MN + Eω + Eπ , (3.19)

where

EN = 2

π2

∫ p
F

0
p2

√
p2 + M∗2dp / ρ

B

= M∗4

4π2

[
p

F

M∗

{
2
( p

F

M∗
)2

+ 1

} √
1 +

( p
F

M∗
)2

− log

∣∣∣∣∣ p
F

M∗ +
√

1 +
( p

F

M∗
)2

∣∣∣∣∣
] /

ρ
B
, (3.20)

Eω = 1
2gω〈ω〉, (3.21)

and

Eπ = {
1
2Aπf 2

π 〈π2〉 + Bf 3
π (〈σ 〉 + fπ )

}/
ρ

B
. (3.22)

The baryon density (nuclear density) ρ
B

of the Fermi gas
nuclear matter is given by

ρ
B

= 〈ψγ 0ψ〉 =
∑
s,I

∫ �p
F

0

d3p

(2π )3
= 2p3

F

3π2
, (3.23)

where s and I are the spin and isospin degrees of freedom,
respectively.

IV. NUMERICAL CALCULATION

The Lagrangian density (2.1) has six unknown coefficients:
gπ , gω,Aπ,Aω, B, and �M . These coefficients are related to
each other as given below:

Aω = m2
ω

f 2
π

, (4.1)

Aπ + B = m2
π

f 2
π

, (4.2)

and

�M = MN − gπfπ . (4.3)

Thus, the number of free parameters to be determined is three:
gπ, gω, and Aπ . The classical pion pair field 〈π2〉 is determined
by using Eq. (3.5), where 〈ψψ〉 = ρ

S
is the scalar density. For

the Fermi gas nuclear matter ρ
S

is given by

ρ
S

= M∗3

π2

{
p

F

M∗

√
1 +

( p
F

M∗
)2

− log

∣∣∣∣∣ p
F

M∗ +
√

1 +
( p

F

M∗
)2

∣∣∣∣∣
}

. (4.4)

Condition (3.5) indicates that the square of the effective
pion mass (3.10) is zero at zero nuclear density. This means
that Condition (3.5) cannot be applied in the case of nuclear
density values near zero. In fact, Eq. (3.5) does not have a
positive 〈π2〉 solution below a certain critical nuclear density
ρ

C
. Thus, in the case of low nuclear density, the following

conditions must be satisfied:

〈π2〉 = 0, (4.5)

〈σ 〉 = −fπ, (4.6)

M∗ = �M + gπfπ = MN, (4.7)

and

m∗2
π = Aπf 2

π + Bf 2
π = m2

π . (4.8)

The classical ω meson field 〈ω〉 is proportional to the
nuclear density, as shown in Eq. (3.6).

The parameters gπ , gω, and Aπ are determined such that
the pion pair condensed nuclear matter has the minimum
energy per nucleon E = −16.3 MeV [12] and such that the
incompressibility is K ∼ 300 MeV [13] at normal nuclear
density ρ0 = 0.153 fm−3 (p

F
= 259.15 MeV/c). For numer-

ical calculations, the values of the pion decay constant fπ ,
nucleon mass MN , pion mass mπ , and ω meson mass mω at
zero nucleon density were 93, 938.9, 139.6, and 781.94 MeV,
respectively.

The results of the numerical calculations are given in
Table I.

TABLE I. Solutions with E = −16.3 MeV at
ρ0 = 0.153 fm−3.

gπ gω Aπ K (MeV)

25.09 15.81 −30.0 316.09
25.27 15.81 −30.5 308.93
25.45 15.80 −31.0 302.44
25.62 15.78 −31.5 293.40
25.79 15.77 −32.0 285.03
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FIG. 1. Energy per nucleon E . The solid and dashed lines denote
results pertaining to pion pair condensed nuclear matter and nuclear
matter without 〈π2〉, respectively.

The most preferable set of parameters is gπ = 25.45, gω =
15.80, and Aπ = −31.0. Equation (3.5) has positive 〈π2〉
solutions when p

F
� 102 MeV/c. In this region, pion pair

condensed nuclear matter has a lower energy than nuclear
matter without 〈π2〉, as shown in Fig. 1. The effective masses
of the nucleon, pion, and ω meson obtained from the same
parameter set are given in Fig. 2. Classical fields of the pion
pair and the ω meson divided by fπ , i.e.,

√
〈π2〉/fπ and 〈ω〉/fπ ,

respectively, are also shown in Fig. 3. The solid and dashed
lines in all figures show the numerical results pertaining to
pion pair condensed nuclear matter and nuclear matter without
〈π2〉, respectively.

V. CONCLUDING REMARKS

Fermi gas nuclear matter consisting of nucleons, pions, and
ω mesons can be used to reproduce the desired properties
of nuclear matter in pion pair condensation. The apparent σ

meson degree of freedom is replaced by pions satisfying the
condition σ 2 + π2 = f 2

π . In the Lagrangian density (2.1), the
free parameters are gπ, gω, and Aπ . When gπ = 25.45, gω =
15.80, and Aπ = −31.0, the pion pair condensed nuclear
matter has a minimum energy of E = −16.3 MeV at a
normal nuclear density of ρ0 = 0.153 fm−3 and the desired
incompressibility K = 302.44 MeV. The critical density of

FIG. 2. Effective masses. The solid and dashed lines denote
results pertaining to pion pair condensed nuclear matter and nuclear
matter without 〈π2〉, respectively.

FIG. 3. Classical meson fields divided by fπ . 〈 〉/fπ rep-
resents

√
〈π2〉/fπ and 〈ω〉/fπ . The solid lines denote the results

pertaining to pion pair condensed nuclear matter, and the dashed line
denotes the results pertaining to 〈ω〉/fπ without 〈π2〉, respectively.

the pion pair condensed nuclear matter is p
C

= 102 MeV/c.
In other words, solutions of the pion pair classical field
〈π2〉 > 0 exist for nuclear matter with a Fermi momentum
greater than p

F
= 102 MeV/c. Here, pion pair condensed

nuclear matter certainly has an energy lower than that of
nuclear matter in which the pion classical field is absent,
and the effective pion mass m∗

π increases with nuclear
density.

As the pion pair classical field 〈π2〉 increases with nuclear
density, the effective nucleon mass M∗ decreases rapidly; this
effect results in a decrease in the energy EN . The contribution
from the ω meson Eω is a repulsive contribution, as shown
in Fig. 4. The contribution from the pion Eπ is a repulsive
contribution at low energies, while that from the nucleon
EN is an attractive contribution. The attraction is mainly
caused by the reduction in the effective nucleon mass M∗.
In fact, M∗ = 360 MeV at the normal nuclear density is
lower than the suggested nucleon mass in a nucleus by a
fair amount. The attraction is controlled by the coupling
constant gπ via variations in M∗, and the repulsion is
controlled by gω via the vector meson contributions. By
varying the parameter Aπ , the strength of the higher-power
terms of π2 can be controlled and the incompressibility can be
adjusted.

FIG. 4. Contributions of nucleon EN , pion Eπ , and Eπ to the
energy E .
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To obtain the desired incompressibility for nuclear matter,
higher-powered σ meson terms were introduced in both the
σ -ω model and linear σ model. In our model, the pion degrees
of freedom are used instead of the σ meson degrees of

freedom, and the condition σ 2 + π2 = f 2
π results in higher-

power π2 terms. From the higher-power π2 terms, the desired
incompressibility can be obtained for the pion pair condensed
nuclear matter.
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