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Serber symmetry, large Nc, and Yukawa-like one-boson exchange potentials
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The Serber force has relative orbital parity symmetry and requires vanishing NN interactions in partial waves
with odd angular momentum. We illustrate how this property is well fulfilled for spin triplet states with odd
angular momentum and violated for odd singlet states for realistic potentials but fails for chiral potentials. The
analysis is carried out in terms of partial wave sum rules for NN phase shifts, r-space potentials at long distances,
and Vlow k potentials. We analyze how Serber symmetry can be accommodated within a large-Nc perspective when
interpreted as a long-distance symmetry. A prerequisite for this is the numerical similarity of the scalar and vector
meson resonance masses. The conditions under which the resonance exchange potential can be approximated
by a Yukawa form are also discussed. Although these masses arise as poles on the second Riemann in ππ

scattering, we find that within the large-Nc expansion the corresponding Yukawa masses correspond instead to a
well-defined large-Nc approximation to the pole that cannot be distinguished from their location as Breit-Wigner
resonances.
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I. INTRODUCTION

The modern theory of nuclear forces [1] aims at a
systematic and model-independent derivation of the forces
between nucleons in harmony with the symmetries of quantum
chromodynamics. Actually, an outstanding feature of nuclear
forces is their exchange character. Many years ago, Serber
postulated an interesting symmetry for the nucleon-nucleon
system based on the observation that at low energies the
proton-proton and neutron-proton differential cross section
are symmetric functions in the center-of-mass (CM) scattering
angle around 90◦. This orbital parity symmetry corresponds
to the transformation θ → π − θ in the scattering amplitude
and was naturally explained by assuming that the potential
was vanishing for partial waves with odd angular momentum.
Such a Serber force is a 50/50 mixture of ordinary and space
exchange forces.1 Specific attempts were directed toward the
verification of such a property [4]. (See Refs. [6] and [7] for
early and comprehensive reviews.) This symmetry was shown
to hold for the NN system, up to relatively high energies [8].
However, such a force was also found to be incompatible with
the requirement of nuclear matter saturation [9] as well as with
the underlying meson forces mediated by one- and two-pion
exchange [10]. These puzzling inconsistencies were cleared
up when it was understood that only singular Serber forces
could provide saturation [11]. Old phase-shift analyses [12]
confirm the rough Serber exchange character of nuclear forces.
Many theories of nuclear structure [13], nuclear matter [14],
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1Apparently there is no reference for Serber’s work (see, e.g.,

Ref. [2]). Serber suggests that the term “Serber force” was coined
by E. Wigner [3]. The first known documented quotation we could
find appears in Ref. [4]. The first 1947 edition of Ref. [5] does
not contain this term but the second 1956 edition does. We thank
R. Machleidt for pointing out this fact.

and nuclear reactions [15–17] use Serber forces both for their
simplicity as well as their phenomenological success in the
low- and medium-energy region. The possibility of imple-
menting Serber forces in the nuclear potential was envisaged in
Skyrme’s seminal paper [18]. Modern versions (SLy4) of the
Skyrme effective interactions [19] implement the symmetry
explicitly. In a recent paper [20] a novel fitting strategy has
been proposed for the coupling constants of the nuclear energy
density functional, which focus on single-particle energies
rather than ground-state bulk properties, yielding naturally an
almost perfect fulfillment of Serber symmetry.

A vivid demonstration of the Serber symmetry is shown
in Fig. 1, where the np differential cross section is plotted
for several CM momenta using the partial wave analysis
(PWA) and the high quality potentials [21,22] carried out
by the Nijmegen group. Although discrepancies regarding
the comparison between forward and backward directions
show that this symmetry breaks down at short distances, the
intermediate-energy region does exhibit Serber symmetry. In
any case it is interesting to see that even though intermediate-
energy region departures from the symmetry can be seen,
the symmetry point is shifted a few degrees toward values
lower than 90◦ for increasing energies. Although these are
well-established features of the NN interaction, it is amazing
that such a time-honored force and gross feature of the NN

interaction, even if it does not hold in the entire range, has no
obvious explanation from the more fundamental and QCD
motivated side. To our knowledge this topic has not been
explicitly treated in any detail in the literature and no attempts
have been made to justify this evident but, so far, accidental
symmetry. The present paper tries to fill this gap by unveiling
Serber symmetry at the relevant scales from current theoretical
approaches to the NN problem, looking for its consequences
in nuclear physics and analyzing its possible origin. Of course,
a definite explanation might finally be given by lattice QCD
calculations, for which incipient results exist already in the
case of S-wave interactions [23,24].
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FIG. 1. Differential cross section for np scattering at several CM
momenta (in MeV). The error band reflects the partial wave analysis
(PWA) and high-quality potentials of the Nijmegen group [21,22].
Serber symmetry implies that the functions should be symmetric in
the CM scattering angle around 90◦.

The motivation for the present study arises from our recent
analysis [25] of an equally old symmetry, the SU(4)-spin-
isospin symmetry proposed independently by Wigner and
Hund [26,27] by introducing the concept of long-distance
symmetry. Specifically, we showed how a symmetry of the
potential at any nonvanishing but arbitrarily small distance
does not necessarily imply a symmetry of the S matrix that
may be directly observed at all energies.2 This provided an
interpretation of the role played by the Wigner symmetry in
the S waves; the potentials for the two-nucleon 1S0 and 3S1

states are identical whereas the corresponding phase shifts
are very different at all measurable energies. Furthermore,
we showed how a sum rule for SU(4) supermultiplet phase
shifts splitting from spin-orbit and tensor interactions is well
fulfilled for noncentral L-even waves and strongly violated in
L-odd waves, where a Serber-like symmetry holds instead. In
Sec. II we review the sum rules obtained from our previous
work for the partial wave phase shifts and show how their
potential counterpart is also well verified by high-quality NN

potentials (i.e., potentials that have χ2/DOF ∼ 1). Obviously,
any NN potential explaining the data will necessarily comply
to odd-L Serber symmetry as a whole; a less trivial matter is
to check whether this is displayed explicitly by the potential
and to determine the relevant ranges where the symmetry is
located. At long distances the interaction is given by one-pion
exchange (OPE), which is Wigner symmetric for even-L waves
and provides a 1/9 violation of Serber symmetry for odd-L
waves at long distances. Phenomenological potentials seem
to provide different ranges for each symmetry. In Sec. III
we analyze the signatures of the symmetry and its range
from several viewpoints including the PWA of the Nijmegen
group, the Vlow k approach, and chiral two-pion exchange.
In Sec. IV we digress on the meaning of counterterms as

2In renormalization language this corresponds to a symmetry of
the potential for any nonvanishing distance that is not shared by the
counterterms.

a diagnostics tool to characterize a long-distance symmetry
from both perturbative as well as Wilsonian renormalization
points of view, the implications for Skyrme forces, and the
resonance saturation of chiral forces.

The evidence for both even-L Wigner and odd-L Serber
symmetries is so overwhelming that we feel a pressing need for
an explanation more closely based on our current knowledge
of strong interactions and QCD. Actually, central to our
analysis will be the use of the large-Nc expansion [28,29] (for
comprehensive reviews see, e.g., Refs. [30–32]). Here Nc is the
number of colors and in this limit the strong coupling constant
scales as αs ∼ 1/Nc. For color singlet states the picture is
that of infinitely many stable mesons and glueballs, whose
masses behave as m ∼ N0

c and widths as � ∼ 1/Nc, and heavy
baryons, whose masses scale as M ∼ Nc. This limit also fixes
the interactions among hadrons. Meson-meson interactions
are weak since they scale as 1/Nc, meson-baryon interactions
scale as ∼N0

c and baryon-baryon interactions are strong as
they scale as ∼Nc. Although the pattern of SU(4)-symmetry
breaking complies to the large-Nc expectations [33,34], a
somewhat unexpected conclusion, we also pointed out that
Serber symmetry, while not excluded for odd-L waves, was
not a necessary consequence of large Nc. The search for
an explanation of the Serber force requires more detailed
information than in the case of Wigner symmetry. In any
case, our interpretation of Wigner symmetry as a long-distance
symmetry suggests that at best we can only interpret this
large-Nc prediction not literally but in a more restrictive sense
(i.e., as a feature of potentials and not of the S matrix).

In Sec. V we approach Serber symmetry from a large-Nc

perspective and make explicit use of the fact that the meson
exchange picture seems justified [35]. Actually, within such
a realization a necessary prerequisite for the validity of the
symmetry would be a numerical similarity of the scalar
and vector meson masses. This poses a puzzle since, as
is well known, these mesons arise as resonances in ππ

scattering as poles in the second Riemann sheet, yield-
ing the values

√
sσ = mσ − i�σ /2 = 441+16

−8 − i272+9
−12 MeV

[36] and
√

sρ = mρ − i�ρ/2 = 775.49 ± 0.34 − i149.4 ±
1.0 MeV [37]. The scalar and vector masses and widths are
sufficiently different as to make one question whether one
is close to the Serber limit. In Sec. VI we review the role
of two-pion exchange and analyze the resonances as well
as the generation of Yukawa potentials from the exchange
of ππ resonances from a large-Nc viewpoint. An important
result of the present paper is to show that the Yukawa
masses are determined as large-Nc approximations to the pole
position, which cannot be distinguished from the Breit-Wigner
resonance. In light of this result it is possible indeed from the
large-Nc side to envisage a rationale for the Serber symmetry.
Finally, in Sec. VII we present our conclusions and summarize
our main points.

II. LONG-DISTANCE SYMMETRY AND WEIGHTED
AVERAGE POTENTIALS

When discussing and analyzing symmetries in nuclear
physics quantitatively we find it convenient to delineate the
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scale where they supposedly operate. As we see from Fig. 1,
Serber symmetry does not work all over the range nor equally
well for all energies. Thus, we expect to see the symmetry
in the medium- and long-distance region, precisely where a
reliable theoretical description in terms of potentials becomes
possible. Although this is easily understood, it is less trivial to
implement these features in a model-independent formulation.
Furthermore, as we see from Fig. 1 there are some small
deviations and it may be advisable to find out not only the
origin of the symmetry but also the sources of this symmetry
breaking.

For the purpose of the present discussion we will separate
the NN potential as the sum of central components and
noncentral ones, which will be assumed to be small,

VNN = V0 + V1, (1)

where [ �L,V0] = 0 whereas [ �J , V1] = 0 and [ �L,V1] �= 0.
Specifically, for the central part we take

V0 = VC + τWC + σVS + τσWS, (2)

and the noncentral part is

V1 = (VT + τWT )S12 + (VLS + τWLS)L · S. (3)

Here τ = τ1 · τ2 and σ = σ1 · σ2, with σi and τi the Pauli
matrices representing the spin and isospin, respectively, of
the nucleon i. The tensor operator is S12 = 3σ1 · x̂σ2 · x̂ −
σ1 · σ2 and L · S corresponds to the spin-orbit term. The total
potential commutes with the total angular momentum J =
L + S. However, we will start by assuming that the potential
is central and that the breaking in orbital angular momentum
is small.

We proceed in first-order perturbation theory, by using the
central symmetric distorted waves as the unperturbed states.
Note that τ = τ1 · τ2 = 2T (T + 1) − 3 and σ = σ1 · σ2 =
2S(S + 1) − 3 and the Pauli principle requires (−)S+T +L =
−1. The corresponding zeroth-order wave function is of the
form

	(�x) = uST
L (r)

r
YLML

(x̂)χSMS φT MT , (4)

with χSMS and φT MT spinors and isospinors with good total
spin S = 0, 1 and isospin T = 0, 1, respectively. The radial
wave functions satisfy the asymptotic boundary conditions

uST
L (r) → sin

(
kr − Lπ

2
+ δST

L

)
, (5)

where k is the CM momentum. From the central potential
assumption it is clear that partial waves do not depend on the
total angular momentum and so we would have, for example,
δ3P0 = δ3P1 = δ3P2 and so on, in complete contradiction to
the data. As is well known the spin-orbit interaction lifts the
independence on the total angular momentum, via the operator
�L · �S. Moreover, the tensor coupling operator, S12, mixes states
with different orbital angular momentum, so to account for the
J dependence we proceed in first-order perturbation theory in

the spin-orbit and tensor potentials using the orbital symmetric
distorted waves as the unperturbed states. Note that this is not
the standard Born approximation where all components of the
potential are treated perturbatively. According to a previous
calculation (see Appendix D of Ref. [25]) the correction to the
phase shift to first order reads

�δST
JL = −M

p

∫ ∞

0
dr uST

L (r)†�V uST
L (r), (6)

so that the perturbed eigenphases become

δST
JL = δST

L + �δST
JL. (7)

Note that to this order the mixing phases vanish, �εJ = 0,
and there is no difference between the eigen phase shifts
or the nuclear bar phase shifts. Note that although the
spin-orbit operator �L · �S lifts the independence on the total
angular momentum and the tensor coupling operator, S12,
mixes states with different orbital angular momentum, these
two perturbations leave the center of the orbital multiplets
unchanged. Actually, since

L+1∑
J=L−1

(2J + 1)
(
�V 10

J

)
L,L

= 0, (8)

one has

L+1∑
J=L−1

(2J + 1)�δ10
LJ = 0. (9)

As a consequence

δ̄ST
L =

∑L+1
J=L−1(2J + 1)δST

LJ

(2L + 1)3
= δST

L . (10)

Thus, to first order we may define a common mean phase
obtained as the one obtained from a mean potential

V̄3L(r) =
∑L+1

J=L−1(2J + 1)V3LJ
(r)

3(2L + 1)
. (11)

It is in terms of these potentials where we expect to formulate
the verification of a given symmetry. This is nothing but
the standard procedure of verifying a symmetry between
multiplets by defining first the center of the multiplet.3 Now,
Serber symmetry requires

V1L(r) = V3L(r) = 0, odd L, (12)

whereas Wigner symmetry requires

V3L(r) = V1L(r), all L. (13)

Clearly these two requirements are incompatible except when
all potentials vanish. In Fig. 2 we plot the Argonne V-18
potentials [38] for the center of the orbital multiplets. Thus

3A familiar example is provided by the verification of SU(3) in
the baryon spectrum. Although the symmetry is rough the Gell-
Mann-Okubo formula works rather well after it has been broken
by a symmetry-breaking term.
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FIG. 2. Argonne V-18 potentials [38] for the center of the Serber-Wigner multiplets. Wigner symmetry requires singlet and triplet potentials
to coincide. Serber symmetry implies vanishing odd-L partial waves. Even-L waves possess Wigner symmetry whereas odd-L triplet waves
exhibit Serber symmetry.

the potentials suggest instead that for r > 1.5 fm

V3L(r) � V1L(r), odd L, (14)

V3L(r) ∼ V1L(r), even L; (15)

that is, Wigner symmetry is fulfilled for even-L states whereas
Serber symmetry holds for odd-L triplet states at distances
above 1.5 fm, in agreement with the expectations spelled out
at the beginning of this section. The parallel statements for
phase shifts have been developed in detail in Ref. [25] (see
Fig. 3), where the relation of long-distance symmetry and
renormalization has been stressed. The remarkable aspect,
already discussed there, is that the symmetry pattern, although
incompatible with Wigner symmetry for odd-L states, is
fully compatible with large-Nc expectations [34]. It does not
explain, however, why Serber symmetry is a good one.

III. SEARCHING THE SYMMETRY

Most modern potential models of the NN interaction
include OPE as the dominant longest range contribution.
However, they differ at short distances where many effects
compete and even are written in quite different forms (en-
ergy dependent, momentum dependent, angular momentum
dependent, etc.). These ambiguities are of course compatible
with the inverse scattering problem and manifest mainly in the
off-shell behavior of the NN forces. The relevant issue within
the present context regards the range and form of current NN

interactions from the view point of long-distance symmetries.
Any potential fitting to the elastic scattering data must possess
the symmetries displayed by the phase-shift sum rules as we
see in Fig. 3. However, it is not obvious that potentials display
the symmetry explicitly.
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FIG. 3. Average values of the phase shifts [21] (in degrees) as a function of the CM momentum (in MeV). (Upper left panel) P waves.
(Upper right panel) D waves. (Lower left panel) F waves. (Lower right panel) G waves. According to the Wigner symmetry δ1L = δ3L. Serber
symmetry implies δ3L = 0 for odd L. One sees that L-even waves satisfy Wigner symmetry whereas L-odd spin triplet waves satisfy Serber
symmetry.

A. One-pion exchange

The OPE potential reads

V π (r) = τ
[
σWπ

S (r) + S12W
π
T (r)

]
. (16)

Although OPE complies to the Wigner symmetry it does not
embody exactly the Serber symmetry. Actually, we get for
even-L waves

V π
1S

(r) = V π
1D

(r) = V π
1G

(r) = −3Wπ
S (r), (17)

V π
3S

(r) = V π
3D

(r) = V π
3G

(r) = −3Wπ
S (r), (18)

and for odd-L waves we have

V π
1P

(r) = V π
1F

(r) = V π
1H

(r) = 9Wπ
S (r), (19)

V π
3P

(r) = V π
3F

(r) = V π
3H

(r) = Wπ
S (r). (20)

The factor 9 for the singlet to triplet ratio is nonetheless a
close approximation to the Serber limit in a region where the
potential is anyhow small. These OPE relations are verified in
practice for distances above 3–4 fm. As we see from Fig. 2
the vanishing of the 3P potential happens down to the region
around 1.5 fm. For smaller distances, potential models start
deviating from each other (see, e.g., Ref. [22]) but this
vanishing of the 3P potential is a common feature that occurs
beyond the validity of OPE.

B. Boundary conditions (alias Vhigh R)

We now analyze the symmetry issue for the highly success-
ful PWA [21] of the Nijmegen group. There, a OPE potential

is used down to rc = 1.4 fm and the interaction below that
distance is represented by a boundary condition determined
by a square-well potential with an energy-dependent height,

2µVS,β (k2) =
N∑

n=0

an,βk2n, (21)

where β stands for the corresponding channel, so that the total
potential reads

Vβ(r) = [
V π

β (r) + V int
β (r)

]
θ (r − rc) + VS,β (k2)θ (rc − r),

(22)

where V int
β (r) is a phenomenological intermediate-range po-

tential that acts in the region 1.4 � r � 2.0 fm. Then, for the
center of the L multiplets (with V in MeV and k in fm) we
have

VS,1P (k2) = 139.438 − 23.412k2 + 2.479k4, (23)

VS,3P (k2) = 14.666 + 0.92k2 + 0.029k4, (24)

VS,1F (k2) = 248.73, (25)

VS,3F (k2) = −33.08 + 5.90k2, (26)

where, again, we see that Serber symmetry takes place since
VS,3P (k2) � VS,1P (k2) and VS,3F (k2) � VS,1F (k2). Actually,
the factor is strikingly similar to the 1/9 of the OPE interaction,
which in the analysis holds up to rc = 1.4 fm. Thus, in the
Nijmegen PWA decomposition of the interaction we find the
remarkable relation

V3L(r) � V1L(r), odd L, all r, (27)
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showing that there is Serber symmetry in the short-range piece
of the potential. However, the even partial waves yield

VS,1S(k2) = −17.813 − 1.016k2 + 2.564k4, (28)

VS,3S(k2) = −40.955 + 4.714k2 + 1.779k4, (29)

VS,1D(k2) = 61.42 − 15.678k2, (30)

VS,3D(k2) = 28.869 − 3.579k2, (31)

VS,1G(k2) = 466.566, (32)

VS,3G(k2) = 0, (33)

where we clearly see the violations of Wigner symmetry at
short distances; that is, we only have

V3L(r) ∼ V1L(r), even L, r � rc. (34)

This simple analysis suggests that Serber symmetry, when it
works, holds to shorter distances than the Wigner symmetry.
Our previous analysis in terms of mean phases [25] fully
supports this fact. Indeed, higher partial waves with angular
momentum l are necessarily small at small momenta owing to
the well-known δl(p) ∼ −αlp

2l+1 threshold behavior. In fact,
this is the case for δ1P and δ1F . However, Serber symmetry
implies that δ3P and δ3F are rather small not only in the
threshold region but also in the entire elastic region, as can
be clearly seen from Fig. 3.

C. Potentials and Vlow k

A somewhat different perspective arises from a Wilsonian
analysis of the NN interaction, which corresponds to a coarse

graining of the potential. This viewpoint was implemented
in Ref. [39], where the so-called Vlow k approach has been
pursued, and corresponds to integrating out high-momentum
modes below a given cutoff k � � from the Lippmann-
Schwinger equation. It was found that high-quality potential
models (i.e., fitting the NN data to high accuracy and also in-
corporating OPE) collapse into a unique self-adjoint nonlocal
potential for � ∼ 400 MeV. This is a not a unreasonable result
since all the potentials provide a rather satisfactory description
of elastic NN scattering data up to p ∼ 400 MeV. Moreover,
the potential that emerges from eliminating high-energy modes
can be accurately represented as the sum of the truncated
original potential and a polynomial in the momentum [40],

Vlow k(k′, k) = VNN (k′, k) + V �
CT(k′, k), (k, k′) � �, (35)

where VNN (k′, k) is the original potential in momentum space
for a given partial wave channel and V �

CT(k′, k) is the effect of
the high-energy states,

V �
CT(k′, k) = klk′l′[Cll′

0 (�) + Cll′
2 (�)(k2 + k′2) + · · · ], (36)

where the coefficients Cll′
n (�) play the role of counterterms. It

should be noted that here VNN (k′, k) is cut off independent
of � whereas V �

CT(k′, k) does depend on �. When the
potential given by Eq. (35) is plugged into the truncated
Lippmann-Schwinger equation (i.e., for intermediate states
q � �), the phase shifts corresponding to the full original
potential VNN (k′, k) are reproduced. In Fig. 4 the corre-
sponding diagonal Vlow k(p, p) mean potentials are plotted for
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FIG. 4. Diagonal Vlow k(p, p) potentials (in femtometers) as a function of the momentum p (in fm−1) for the Argonne-V18 [38], for the
center of the Serber-Wigner multiplets. Wigner symmetry requires singlet and triplet potentials to coincide. Serber symmetry implies vanishing
odd-L partial waves. Even-L waves possess Wigner symmetry whereas odd-L triplet waves exhibit Serber symmetry.
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FIG. 5. Diagonal Vlow k(p, p) potentials (in femtometers) as a function of the momentum p (in fm−1) for the N3LO-chiral potentials [45]
for the S-wave states when the chiral cutoffs �χ = 500 MeV and �χ = 600 MeV are used. As we see there is a 5% violation of Wigner
symmetry in the second case.

the Argonne-V18 force [38].4 As we see both Wigner and
Serber symmetries are, again, vividly evident. The important
observation here is that the separation assumed by Eq. (35)
does not manifestly display the symmetry. Actually, a more
convenient representation would be to separate all polynomial
dependence explicitly from the original potential

Vlow k(k′, k) = V̄NN (k′, k) + V̄ �
CT(k′, k), (k, k′) � �, (37)

so that if V̄ �
CT(k′, k) contains up to O(pn) then V̄NN (k′, k)

starts off at O(pn+1) (i.e., the next higher order). This way
the departures from a pure polynomial may be viewed as true
and explicit effects caused by the potential. In terms of these
polynomials, Wigner and Serber symmetries are formulated
from the coefficients

C̄0 = C0 + C
high
0 (�) (38)

constructed from the sum of the potential and the integrated-
out contribution below a cutoff �, namely

C̄0,1L = C̄0,3L, even L ,
(39)

C̄0,3L = 0, odd L.

It should be noted that the Vlow k approach is in spirit
nothing but the momentum space version of the PWA of the
Nijmegen group in coordinate space where short distances,
r � rc, are integrated out and parametrized by means of an
energy-dependent boundary condition. From this viewpoint
the similarities as regards the Wigner and Serber symmetries
are not surprising. This is why the standard boundary condition
approach might also be denominated by Vhigh R (see also
Ref. [41] for further discussion).

D. Chiral two-pion exchange

The chiral two-pion exchange (TPE) potentials computed
in Refs. [42,43] using chiral perturbation theory (ChPT) are
understood as direct consequences of the spontaneous chiral
symmetry breaking in QCD. Actually, the TPE contribution

4We thank Scott K. Bogner for kindly providing the numbers of
Ref. [40].

takes over the OPE one at about r = 2 fm. At very long
distances one has

V ChPT
2π (r) = (1 + 2�τ1 · �τ2)

e−2mπ r

r

3g4
Am5

π

1024f 4
π MNπ2

+ · · · , (40)

where mπ and MN are the pion and nucleon masses, respec-
tively, gA is the axial coupling constant, and fπ is the pion
weak decay constant. As we see Serber symmetry is broken
already at long distances. Generally, these chiral potentials
are supplemented by counterterms or equivalently boundary
conditions when discussing NN scattering and generating
phase shifts (see, e.g., Ref. [44]). Given that these NN phase
shifts do fulfill the symmetry (see Fig. 3) we expect that
the breaking of the symmetry at long distances must be
compensated by the counterterms, which encode the unknown
short-distance physics [44]. This can be verified by looking, for
example, at the Vlow k potential corresponding to the next-to-
next-to-next-to-leading order (N3LO) chiral potential, which
contains its own cutoff parameter of �χ = 500 MeV [45]. This
potential contains OPE and describes successfully the data and
hence falls into the universality class of high-quality potentials
[46] when the common Vlow k cutoff scale � = 400 MeV
is used. If the chiral potential is slightly detuned by taking
�χ = 600 MeV one sees a low-momentum violation of the
Wigner symmetry in Fig. 5 in total contradiction with the fact
that one expects that asymptotically OPE should dominate.
This shows that regarding the symmetry �χ is fine-tuned.
A more complete account of these issues will be presented
elsewhere [47].

IV. ARE COUNTERTERMS FINGERPRINTS OF
LONG-DISTANCE SYMMETRIES?

Given the fact that both Wigner and Serber symme-
tries can be interpreted as long-distance symmetries that
roughly materialize at low energies in the potentials (see
Fig. 2), the phase shifts (see Fig. 3), and the Vlow k potentials
(see Fig. 4) we find it appropriate to discuss how these results
fit into renormalization ideas and the role played by the
corresponding counterterms.
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A. The perturbative point of view

As we have mentioned in the previous section, chiral po-
tentials are generally used to describe NN scattering with the
additional implementation of counterterms that cannot directly
be determined from chiral symmetry alone. Nonetheless, one
expects these counterterms to encode short-distance physics
and hence to be related to the exchange of heavier mesonic
degrees of freedom like those employed in the one-boson
exchange (OBE) potentials [48]. The idea is quite naturally
based on the resonance saturation hypothesis of the exchange
forces (see, e.g., Ref. [49] for a discussion in the ππ scattering
case). This is achieved by integrating out the heavy fields by
using their classical equations of motion, and expanding the
exchanged momentum between the nucleons as compared to
the resonance mass case [50,51]. Schematically it corresponds
to power expanding the Yukawa-like NN potentials as

g2
M

q2 + M2
= g2

M

M2
− g2

Mq2

M4
+ · · ·

= C0 + C2
(
p2 + p′2) + C1p · p′ + · · · , (41)

where we are working in the CM system, we take the
momentum transfer as q = p − p′, and we ignore spin and
isospin for simplicity. In this equation C0 is an s-wave zero
range, C2 is an s-wave finite range, C1 is a p wave, etc. More
generally, Eq. (41) corresponds to a power series expansion of
the potential in momentum space. Obviously, we expect such
a procedure to be meaningful whenever the scattering process
can be treated perturbatively (like, e.g., the case of peripheral
waves). As is well known, central s waves cannot be treated
perturbatively as the corresponding scattering amplitudes have
poles very close to threshold, corresponding to a virtual state
in the 1S0 channel and the deuteron in the 3S1-3D1 channel.
This does not mean, however, that the potential cannot be
represented in the polynomial form of Eq. (41), but rather that
the coefficients cannot be computed directly as the Fourier
components of the potential.

B. The Wilsonian point of view

The momentum space Vlow k approach [40] makes clear
that the long-distance behavior of the theory is not determined
by the low-momentum components of the original potential
only; one has to add virtual high-energy states, which also
contribute to the interaction at low energies in the form of
counterterms, as outlined by Eqs. (35) and (37). Alternatively,
the more conventional coordinate space boundary condition
(alias Vhigh R) method shows that the low-energy behavior
of the theory is not determined only by the long-distance
behavior of the potential; one has to include the contribution
from integrated-out short distances in the form of boundary
conditions. A true statement is that the low-momentum
features of the interaction in the Vlow k(p, p) potential can
be mapped into long-distance characteristics of the potential
V (r). The symmetries are formulated in terms of the conditions
in Eq. (39).

C. Long-distance symmetries in nuclear potentials

To substantiate our points further, let us note that in Ref. [40]
it was suggested that the Vlow k was a viable way of determining
the effective interactions, which could be further used in
shell-model calculations for finite nuclei. Actually, this inter-
pretation when combined with our observation of Fig. 4 that
Serber symmetry shows up quite universally has interesting
consequences. Schematically, this can be implemented as a
Skyrme-type effective (pseudo)potential [18]

V (�r) = t0(1 + x0Pσ )δ(3)(�r) + t1(1 + x1Pσ ){−∇2, δ(3)(�r)}
− t2(1 + x2Pσ )∇δ(3)(�r)∇ + · · · , (42)

where Pσ = (1 + σ1 · σ2)/2 is the spin exchange operator with
Pσ = −1 for spin singlet S = 0 and Pσ = 1 for spin triplet
S = 1 states. The dots stand for spin-orbit, tensor interaction,
etc. Of note is the close resemblance of the momentum space
version of this potential

V (p′, p) = t0(1 + x0Pσ ) + t1(1 + x1Pσ )(p′2 + p2)

+ t2(1 + x2Pσ )p′ · p + · · · (43)

to Eq. (37) after projection onto partial waves, where only
S and P waves have been retained. Traditionally, binding
energies have been used to determine the parameters ti and
xi within a mean-field approach and many possible fits arise
depending on the chosen observables (see, e.g., Ref. [19])
possibly displaying some spurious short-distance sensitivity
beyond the range of applicability of Eq. (42). The low-
momentum character of the Skyrme force suggests using the
longest possible wavelength properties. Actually, inclusion of
a tensor force and a new fitting strategy to single-particle
energies [20] yields x2 = −0.99, which is an almost perfect
Serber force for spin-triplets (Pσ = 1) and reproduces the
so-called SLy4 form of the Skyrme functional [19]. In light
of our discussion this result seems quite natural as single-
particle energies place attention in long wavelength states, a
situation where Vlow k can be described by a pure polynomial
in momentum [see Eq. (37)] and Serber symmetry becomes
manifest directly from a coarse graining of the NN interaction.

D. Matching OBE potentials to chiral potentials

In Ref. [50] a systematic determination of counterterms has
been carried out for a variety of realistic potentials that success-
fully fit the NN data by reading off the Fourier components of
the potential [see, e.g., Eq. (41)]. The counterterms so obtained
are then compared to those determined from direct fits to the
NN data when the chiral potential is added. The spread of
values for these counterterms found in Ref. [50] for realistic
potentials, however, does not comply with the fact that all those
potentials provide a quite satisfactory description of the phase
shifts. Moreover, in Ref. [50] it is found that for the OBE Bonn
potential [48]

C1P = +0.454 × 10−4 GeV−4, (44)

C3P ≡ 1
9

(
C3P0 + 3C3P1 + 5C3P2

) = −0.140 × 10−4 GeV−4.

(45)
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Thus, the triplet to singlet ratio is C3P /C1P ∼ −0.33 in this
case. For the CD Bonn potential [52] one has C3P /C1P ∼
−0.7 whereas Argonne AV-18 [38] yields C3P /C1P ∼ −0.54.
These large factors contrast with the much smaller factor
VS,3P (k2)/VS,1P (k2) ∼ 1/10 of the PWA sketched in Sec. III B.
They also disagree with the almost vanishing ratio
V3P (p, p)/V1P (p, p) found for the Vlow k potentials described
in Sec. III C, which yield a universal result (see also Fig. 4
for the particular AV-18 potential). The reason for this
disagreement is that the correct formulation of the symmetry
conditions is given by Eq. (39), which are made up from the
potential plus the contribution of the high-energy tail. Thus, it
appears that in the approach of Ref. [50] Serber symmetry is
more strongly violated at short distances than is expected from
other means. In our view the spread of values found in Ref. [50]
might possibly reflect an inadequacy of the method used to
characterize the long-distance coarse-grained NN dynamics
where, as we have shown, Serber symmetry becomes quite
accurate. Actually, the matching of counterterms between,
say, the OBE potential and the chiral potentials is done
in terms of objects that have a radically different large-Nc

behavior (see Sec. V for further details). For instance, although

COBE
0 ∼ g2

M/m2
M ∼ Nc because gM ∼ N

1
2
c and mM ∼ N0

c one

has Cchiral
0 ∼ g4

Am2
π/f 4

π ∼ N2
c since mπ ∼ N0

c , fπ ∼ N
1
2
c and

gA ∼ Nc. In fact, the values of the counterterms determined
from resonance exchange are generally not simply determined
by the coefficients of the power series expansion of the
potential in momentum space, as schematically given by
Eq. (41), since they undergo renormalization and hence run
with the scale.

E. Long-distance symmetry and off-shellness

The previous analysis shows that nothing forbids having a
potential that breaks the symmetry strongly on the one hand
and being able to simultaneously fit the scattering data that
manifestly display the symmetry on the other hand. Actually,
this can only be achieved by some degree of compensating
symmetry violation between long and short distances.5 How-
ever, it is somewhat unnatural as it does not reflect the true
character of the theory and relegates the role of the symmetry
to be an accidental one. As is widely accepted, unveiling
symmetries is not mandatory but makes life much easier.6

Of course, these observations are true as long as we
restrict ourselves to on-shell properties, such as NN scattering.
However, would these symmetries have any consequence for

5This is the case for instance of chiral TPE potentials (see
Sec. III D), where the potential [42,43] breaks the symmetry above
1.6 fm but the data can be described [44] with this truncated potential
plus suitable energy-dependent boundary conditions.

6This discussion is somewhat similar to the use of regularization
schemes in effective field theory; although it is possible to break
the symmetry by all allowed counterterms, final physical results
will depend on redundant combinations of parameters expressing the
symmetry. In practice it is far more convenient to use a regularization
scheme where the symmetry is manifestly preserved.

off-shell nucleons? One may clearly have arbitrary short-
distance parametrizations of the force without a sizable change
of the phase shifts. However, the universality of long-distance
potentials above ∼1.5 fm or, equivalently, a coarse graining
of the interaction with the given length scale ∼π/� such
as Vlow k is by definition based on insensitivity to shorter
wavelengths. Our discussion here on effective forces illustrates
the fact that these redefinitions of the potential in the NN

scattering problem cannot affect the effective force and so a
violation of the Serber symmetry has a physical significance
for wavelengths larger than the coarse-graining scale.

V. SERBER FORCE FROM A LARGE-Nc PERSPECTIVE

Up till now, in this paper we have provided evidence that
long-distance symmetries such as Wigner’s and Serber’s do
really take place in the two-nucleon system. From now on
we are concerned with trying to determine whether those
symmetries are purely accidental ones or whether they obey
some pattern following more closely from QCD. Actually, we
found [25] that the large-Nc limit [28,29] (for comprehensive
reviews see, e.g., Refs. [30–32]) provides a rationale for
Wigner symmetry. The fact that Serber symmetry holds
when Wigner symmetry fails suggests analyzing the large-Nc

consequences more thoroughly. Although we do not find
a completely unique answer regarding the origin of Serber
symmetry, the analysis does show interesting features, as will
be discussed.

A. Large-Nc and long-distance symmetry

In this section we want to analyze these long-distance
Serber and Wigner symmetries within the two-nucleon system
from the large-Nc expansion [28,29] (for comprehensive
reviews see, e.g., Refs. [30–32]). One feature of large Nc

that becomes relevant for the NN problem is that is does
not specially hold for long or short distances. This allows us
in particular to switch from perturbative quarks and gluons
at short distances to the nonperturbative hadrons, the degrees
of freedom of interest to nuclear physics. This quark-hadron
duality makes possible the applicability of large-Nc counting
rules directly to baryon-meson interactions, at distances where
explicit quark-gluon effects are not expected to be crucial.
The procedure provides a set of consistency conditions from
which the contracted SU(4) symmetry is deduced [30–32].
Thus, although the large-Nc scaling behavior and spin-flavor
structure of the NN potential, Eq. (46), is directly established
in terms of quarks and gluons [34], quark-hadron duality
at distances larger than the confinement scale requires an
identification of the corresponding exchanged mesons, and
hence a link to the OBE potentials is provided. However, for
internal consistency of the hadronic version of the large-Nc

expansion, these counting rules should hold regardless of the
number of exchanged mesons between the nucleons. Actually,
naive power counting suggests huge violations of the NN

counting rules. The issue has been clarified after the work of
Banerjee, Cohen, and Gelman for all meson exchange cases
with spin 0 and spin 1 [35] where the necessary cancellations
between meson retardation in direct box diagrams and crossed
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box diagrams was indeed shown to take place. In the TPE
case the � isobar embodying the contracted SU(4) symmetry
was explicitly needed. Although the exchange of three or more
mesons appeared initially to present puzzling inconsistencies
[53] a possible outcome was outlined in Ref. [54] by noting
that large-Nc counting rules apply to energy-independent and
hence self-adjoint potentials.

Before entering into a more detailed discussion one should
be aware of the fact that strictly speaking the large-Nc picture
for nuclei does not look at all like the physical world because
of fine tuning of low-energy parameters. As already noted
by Witten [29] baryons are solitons whose interactions are
described by a time-dependent mean-field theory. A smooth
large-Nc limit is possible if, besides being heavy, nucleons
are also assumed to be fast; that is, their momentum scaling
as p ∼ Nc resembles a time-dependent mean-field picture of
elastic scattering of rapidly moving solitons, the consequences
of which could hardly be tested experimentally. Furthermore,
aside from spin and isospin there is no trace of quantum
scattering effects. As noted by Cohen and co-workers [55,56],
the leading equations have, in addition to the standard spin,
isospin, parity, and angular momentum conservation laws,
an extra and genuine large-Nc symmetry—the spin-isospin
reversal of a single particle, σi → −σi, τa → −τa . Relations
deduced from this spin-isospin reversal symmetry could be
tested in a mean-field approximation in a regime where the
momentum is still large, p ∼ √

Nc, but the kinetic energy,
p2/M ∼ N0

c , is small compared to the potential energy,
V ∼ Nc. Calculations of the maximal elastic energy in proton-
neutron and proton-proton scattering for the spin asymmetry
differential cross sections have been shown to fail, indicating
a shortcoming of the leading Nc approximation for the NN

interaction at least in the time-dependent mean-field version.
The estimate of Ref. [56]—that corrections only scale as
1/

√
Nc and so are parametrically small but numerically

large—may explain this failure. This negative result leaves
little room for a successful mean-field large-Nc description
of NN scattering and shows that a literal interpretation of
large Nc is far different from the real Nc = 3 world. However,
the components of the NN force may still follow a large-Nc

hierarchy, which in the meson exchange picture determines
the relative strength of meson-nucleon couplings. Actually,
this is coherent within the long-distance symmetry scenario.
In other words, whereas the potential may comply with
a large-Nc scaling pattern, the renormalization conditions
and, in particular, counterterms, need not follow the same
pattern. Actually, the case of 1S0 and 3S1 channels with
regard to Wigner symmetry corresponds to such a situation.
From this viewpoint we analyze only large-Nc potentials and
consider binding energy or scattering lengths as independent
parameters, thus avoiding the fine-tuning problem [57].

B. Large-Nc N N components of the potential

One of the advantages of taking the large-Nc limit is that
the nucleons become infinitely heavy, so if their momentum
is taken to be fixed and Nc independent, p ∼ N0

c , the nonrel-
ativistic potential is a well-defined object and presumably not
subjected to the many ambiguities of relativistic potentials.

This suggests a scheme departing from Witten’s original
proposal where smoothness is required for the quantum
mechanical NN potential instead of the S matrix. Based on the
contracted SU(4) large-Nc symmetry the spin-flavor structure
of the NN interaction was analyzed by Kaplan, Savage, and
Manohar [33,34], who found that the leading Nc nucleon-
nucleon potential indeed scales as Nc and has the structure

V (r) = VC(r) + τ1 · τ2 [σ1 · σ2WS(r) + S12WT (r)] . (46)

It is noteworthy that the tensor force appears at the leading
order in the large-Nc expansion. This only corresponds
to the NN → NN component of the interaction. More
generally, one should also at least consider NN → N� and
NN → �� processes as dynamical coupled channels that
open up as soon as the nucleon and the � become degenerate
since M� − MN ∼ N−1

c . Note that in this limit all other
parameters in the potential should also evolve with Nc. This
is another example in which a literal interpretation of the
large-Nc framework will most likely fail in a nuclear physics
environment. The inclusion of �(1232) has been favored in
the NN phenomenology [58]. One should, however, note the
difference between having a potential that has a well-defined
(although unrealistic) large-Nc limit from taking the large-Nc

limit in the actual calculation (see Ref. [59]).7

From the large-Nc potential, Eq. (46), we have for the center
of multiplet potentials the sum rules

V1L = V3L = VC(r) − 3WS(r), (−1)L = +1,

V1L = VC(r) + 9WS(r), (−1)L = −1, (47)

V3L = VC(r) + WS(r), (−1)L = −1,

where, as we see, V1L �= V3L for odd L. Thus, large Nc implies
Wigner symmetry in even-L channels and allows a violation
of Wigner symmetry in odd-L partial waves while it allows
a violation of Serber symmetry in spin singlet channels.8 The
question is whether or not large Nc implies Serber symmetry
in spin triplet channels as we observe both for the potentials
in Fig. 2 as well as for the phase shifts in Fig. 2. However,
from the odd waves we see from Fig. 3 that the mean triplet
phase is close to null; thus one might attribute this feature
to an accidental symmetry where the odd waves potentials

7This difference is conceptually similar to the chiral perturbative
setup of NN potentials [42–45] based on the smallness of the pion
mass as compared to other scales; if the pion was massless the NN

interaction would be a van der Waals (unrealistic) long-range potential
V (r) ∼ 1/(Mm

N f n
π rm+n+1). However, under renormalization with the

physical scattering lengths, the 1S0 and 3S1 phases with TPE potentials
in the chiral limit look rather reasonable (see Sec. VII in Ref. [60]).

8As noted in Ref. [57], Eq. (46) would suggest that this potential be
renormalized by a contact interaction piece to be at least of the same
form as the long-distance potentials, that is, Vshort(�x) = (CC + τ1 ·
τ2[σ1 · σ2CS + S12CT ])δ(�x), which embodies a short-distance Wigner
symmetry for S waves since C1S0

= C3S1
= CC − 3CS and hence

implies δ1S0
= δ3S1

. The long-distance symmetry interpretation [25]
allows a more general structure C1S0

�= C3S1
, explains why δ1S0

�=
δ3S1

, and avoids the extra spin-isospin reversal symmetry of a single
particle, σi → −σi, τa → −τa of Ref. [56].
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are likewise negligible. In the large-Nc limit this means VC +
9WS � VC + WS , a fact that should be verified.

C. OBE large-Nc potentials

According to Refs. [33,34] in the leading large Nc one
has VC ∼ WS ∼ Nc whereas VS ∼ WC ∼ 1/Nc. To proceed
further and gain some insight we write the potentials in terms
of leading single-meson exchanges (see also Ref. [35]). The
Yukawa-like potentials (in the notation of Ref. [48]) are

VC(r) = −g2
σNN

4π

e−mσ r

r
+ g2

ωNN

4π

e−mωr

r
,

(48)

WS(r) = 1

12

g2
πNN

4π

m2
π

�2
N

e−mπ r

r
+ 1

6

f 2
ρNN

4π

m2
ρ

�2
N

e−mρr

r
,

where �N = 3MN/Nc is a scale that is numerically equal to
the nucleon mass and is O(N0

c ). All meson couplings scale as
gσNN, gπNN, gωNN, fρNN ∼ √

Nc whereas all meson masses
scale as mπ, mσ , mρ, mω ∼ N0

c . In principle there would be
infinitely many contributions but we stop at the vector mesons.
A relevant question that will be postponed to the next section
regards what values of Yukawa masses should one take. This
is particularly relevant for the mσ case. Note that the tensorial
structure of the potential in Eq. (46) is complete to O(N−1

c ).
This leaves room for O(N0

c ) corrections to the NN potential
without generating new dependencies triggered by subleading
mass shifts �mσ = O(N−1

c ) and subleading vertex corrections
�gσNN = O(N−1/2

c ).
As we have already mentioned, to obtain Serber symmetry

we must get a large cancellation. At short distances the Yukawa
OBE potentials have Coulomb-like behavior, V → C/(4πr),
with the dimensionless combinations

CVC+WS
= −g2

σNN + g2
ωNN + f 2

ρNNm2
ρ

6M2
N

, (49)

CVC+9WS
= −g2

σNN + g2
ωNN + 3f 2

ρNNm2
ρ

2M2
N

, (50)

where the small OPE contribution has been dropped. To re-
semble Serber symmetry we should have CVC+WS

� CVC+9WS
.

There are several scenarios where this can be achieved. For
instance, if we impose the OPE 1/9 rule for the full poten-
tial we have g2

σNN = g2
ωNN . Using SU(3), 3gρNN = gωNN ,

Sakurai’s universality gρNN = gρππ/2, the current-algebra
KSFR relation,

√
2gρππfπ = mρ , and the scalar Goldberger-

Treiman relation, gσNNfπ = MN , one would get MN =
Ncmρ/(2

√
2), a not unreasonable result. This only addresses

the cancellation at short distances. The cancellation would be
more effective at intermediate distances if mρ and mσ would
be numerically closer. In this regard, let us note that there are
various schemes where an identity between scalar and vector
meson masses can be explicitly verified [61–63]. In reality,
however, the scalar and vector masses are sufficiently different
(mσ = 444 MeV versus mρ = 770 MeV). In the next section
we want to analyze this apparent contradiction.

VI. FROM ππ RESONANCES TO N N YUKAWA
POTENTIALS

A. Correlated two-pion exchange

As we have already mentioned TPE is a genuine test of
chiral symmetry. However, it is well known that the iterated
exchange of two pions may become in the t channel either a σ

or a ρ resonance for isoscalar and isovector states, respectively.
Although the interactions leading to this collectiveness are
controlled to a great extent by chiral symmetry [64–66], the
resulting contributions to the NN potential in terms of boson
exchanges bear a very indirect relation to it. The relation of
the ubiquitous scalar meson in nuclear physics and NN forces
in terms of correlated two-pion exchange has been pointed
out many times [48,67–69] (see, e.g., Refs. [42,70–72] for a
discussion in a chiral context). Attempts to introduce chiral
Lagrangeans in nuclear physics have been numerous [73–75]
but the implications for the OBE potential are meager despite
the fact that useful relations among couplings can be deduced.9

As we will see, they provide complementary information to
the large-Nc requirements.

Note that the leading term generating the scalar meson is
g4

A/f 6
π ∼ Nc but it occurs first at N3LO in the chiral counting.

The central potential reads [42,70–72]

V C
NN (r) = − 32π

3m4
π

∫
d3q

(2π )3
eiq·x[σπN (−q2)]2t00(−q2), (51)

where σπN (s) is the πN sigma term and t00(s) is the ππ

scattering amplitude in the I = J = 0 channel as a function
of the ππ CM energy

√
s [see also Eq. (53)]. Under the

inclusion of � resonance contributions, Eq. (51) is modified by
an additive redefinition of σπN to include those � states [70].
In the large-Nc limit, tππ (s) ∼ 1/Nc whereas σπN (s) ∼ Nc,

yielding VNN ∼ Nc as expected [34]. Actually, at the sigma
pole

32π

3m4
π

[σπN (s)]2 t II
ππ (s) → g2

σNN

s − (mσ − i�σ /2)2
→ g2

σNN

s − m2
σ

,

(52)

where in the second step we have taken the large-Nc limit. This
yields gσππ ∼ 1/

√
Nc, provided mσ ∼ N0

c and �σ ∼ 1/Nc.
The “fictitious” narrow σ exchange has been attributed to
N� + �� intermediate states [42], to 2π iterated pions
[72], or to both [70]. This identification is based on fitting
the resulting r-space potentials to a Yukawa function in a
reasonable distance range.

B. Exchange of pole resonances

In this section we separate the resonance contribution to the
NN potential from the background, neglecting for simplicity
the vertex correction in Eq. (51). The most obvious definition

9We should mention the Goldberger-Treimann relations for pions,
gAMN = gπNNfπ , and scalars, MN = gσNNfπ , which yield gπNN =
12.8 and gσNN = 10.1, and the KSFR-universality relation, which
yields gρNN = gρππ/2 = mρ/fπ/

√
8 = 2.9.

014002-11
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of the σ or ρ propagator is via the ππ scattering amplitude
in the scalar-isoscalar and vector-isovector channels, (J, I ) =
(0, 0) and (J, I ) = (1, 1), respectively. We use the definition

tIJ (s) = 1

2iρππ (s)
(e2iδIJ (s) − 1), (53)

with ρππ (s) = √
1 − 4m2

π/s as the phase space in our notation.
We take into account the fact that on the second Riemann sheet
(taking σ as an example) the amplitude has a pole

t II
00(s) → Rσ

s − sσ

, (54)

with
√

sσ = Mσ − i�σ /2 as the pole position and Rσ the
corresponding residue. Here we define, as usual, the analytical
continuation as

t II
00(z)−1 − t I

00(z)−1 = 2iρππ (z). (55)

By continuity t00(s) ≡ t I
00(s ± i0+) = t II

00(s ∓ i0+) and thus
unitarity requires ρππ (s + i0+) = −ρππ (s − i0+). One has
for the (suitably normalized) scalar propagator

DS(s) = t00(s)

|Rσ | , (56)

in the whole complex plane. In particular,

DII
S (s) = t II

00(s)

|Rσ | → eiϕσ

s − (Mσ − i�σ /2)2
, (57)

where the phase ϕσ is defined as eiϕσ = Rσ/|Rσ | and is
related to the background (i.e., the nonpole contribution). In
Appendix A we discuss a toy model for ππ scattering [76] that
proves quite useful to fix ideas. The function DS(s) is analytic
in the complex s-plane with a 2π right cut along the (4m2

π ,∞)
line stemming from unitarity in ππ scattering and a left cut
running from (−∞, 0) owing to particle exchange in the u

and t channels. If we assume that the scattering amplitude is
proportional to this propagator the corresponding ππ phase
shift is then given by

e2iδ00(s) = t00(s + i0+)

t00(s − i0+)
= DS(s + i0+)

DS(s − i0+)
. (58)

The propagator satisfies the unsubtracted dispersion relation
[77],

DS(q2) =
∫ ∞

4m2
π

dµ2 ρS(µ2)

µ2 − q2
, (59)

where the spectral function is related to the discontinuity across
the unitarity branch cut10

ρS(s) = 1

2iπ
DiscDS(s + i0+) (60)

= 1

π |Rσ |ρππ (s)|t00(s)|2, (61)

which satisfies the normalization condition∫ ∞

4m2
π

dµ2ρS(µ2) = Zσ , (62)

10The cut is defined as Disc t(s + i0+) = t(s + i0+) − t(s − i0+) =
2iIm t(s) for a real function below ππ threshold, 0 < s < 4m2.

where Zσ is the integrated strength. Thus, the Fourier trans-
formation of the propagator is

DS(r) =
∫

d3q

(2π )3
ei �q·�xDS(−�q2)

= − 1

4πr

∫ ∞

4m2
π

dµ2ρS(µ2)e−µr . (63)

According to Eq. (62), DS(r) ∼ −Zσ/(4πr) for small dis-
tances. We define the analytic function ρS(z)e−√

zr for r > 0
in the cut plane without (−∞, 0) and (4m2

π ,∞) where

ρS(z) = 1

π |Rσ |ρππ (z)t I
00(z)t II

00(z), (64)

and fulfilling the boundary value condition ρS(s) ≡ ρS(s +
i0+). This function has a pole at the complex point z =
sσ = (Mσ − i�σ /2)2 and a square-root branch cut at z = 4m2

π

triggered by the phase space factor only since t I
00(z)t II

00(z) is
continuous, so that ρS(s + i0+) = −ρS(s − i0+). Thus, we
can write the spectral integral, Eq. (63), as running below
the unitarity cut and by suitably deforming the contour in the
fourth quadrant in the second Riemann sheet, as shown in
Fig. 6, we can separate explicitly the contribution from the
pole and the 2π background, yielding

DS(r) = Dσ (r) + D2π (r). (65)

In principle, both contributions are complex, but the total
result must be real and their imaginary parts must cancel
identically (see Appendix A for a specific example). Because
Eq. (55) implies 2it I00(sσ )ρππ (sσ ) = 1 the σ -pole contribution
is effectively given by

ReDσ (r) = −Zσ e−Mσ r

4πr

[
cos

(
r�σ

2

)
− tan ϕσ sin

(
r�σ

2

)]
,

(66)

which is an oscillating function damped by an exponential.
In the narrow-resonance limit, �σ → 0, one has ϕσ = O(�σ ),
yielding

ReDσ (r) ∼ −Zσ e−Mσ r

4πr

[
1 + O

(
�2

σ

)]
, (67)

x

4m2

(M−i Γ/2 )2 Re(z)

Complex s ππ plane

Im(z)

FIG. 6. ππ complex squared CM energy plane, showing the
contour used in the main text yielding the pole+background de-
composition for the coordinate space scalar-isoscalar propagator in
Eq. (65).
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which is a Yukawa potential. The 2π background reads

Re D2π (r) = − 1

4πr

i

2

[∫ ∞

0
dyρS

(
4m2

π − iy
)
e−r

√
4m2

π −iy

−
∫ ∞

0
dyρS

(
4m2

π + iy
)
e−r

√
4m2

π +iy

]
. (68)

At large distances the integral is dominated by the small-y
region, and we get the distinct TPE behavior ∼e−2mπ r . The pre-
factor is obtained by expanding at small y and using the fact
that unitarity imposes the spectral density to be proportional
to the phase space factor, Eq. (61). Close to threshold, s →
4m2

π , involves the ππ scattering length a00 defined as δ00(s) ∼
a00

√
s − 4m2

π , yielding

ρS(s) = 2mπa2
00

π |Rσ |
√

s − 4m2
π + · · · . (69)

We therefore get

D2π (r) = −K2(2mπr)

r2

4m3
πa2

00

π2|Rσ | + · · · ∼ −e−2mπ r

r
5
2

2a2
00m

5
2
π

π |Rσ | .

(70)

In Appendix A the pole-background decomposition in Eq. (65)
is checked explicitly in a toy model. The resonance contri-
bution saturates the normalization completely with the 2π

continuum background, yielding a vanishing contribution to
the integrated strength. However, the resonance produces a
Yukawa tail with an oscillatory modulation that alternates
between attraction and repulsion, although the region where
the oscillation is relevant depends largely on ϕσ .

C. ππ resonances at large Nc

The large-Nc analysis also opens up the possibility for
a better understanding of the role played by the ubiquitous
scalar meson. This is an essential ingredient, accounting
phenomenologically for the mid-range nuclear attraction, and
which, with a mass of ∼500 MeV, was originally proposed in
the 1950s [78] to provide saturation and binding in nuclei.
Over the years, there has always been some arbitrariness
on the “effective” or “fictitious” scalar meson mass and
coupling constant to the nucleon, partly stimulated by lack
of other sources of information.11 During the past decade, the
situation has steadily changed, finally culminating, through the
insistence and efforts of theoreticians [79], with the inclusion
of the 0++ resonance (commonly denoted by σ ) in the PDG
[80] as the f0(600) seen as a ππ resonance, with a wide spread
of values ranging from 400 to 1200 MeV for the mass and
from 600 to 1200 MeV for the width [81]. These uncertainties
have recently been sharpened by a benchmark determination
based on Roy equations and chiral symmetry [36], yielding
the value mσ − i�σ /2 = 441+16

−8 − i272+9
−12 MeV. Once the

formerly fictitious sigma became a real and well-determined
lowest resonance of the QCD spectrum it became mandatory
to analyze its consequences all over. Clearly, these numbers

11For instance, in the very successful charge-dependent (CD) Bonn
potential [52] any partial wave 2S+1LJ -channel is fitted with a
different scalar meson mass and coupling.

represent the value for Nc = 3, but large-Nc counting requires
that for mesons mσ ∼ N0

c and �σ ∼ 1/Nc.
In this regard the large-Nc analysis may provide a clue to

what value should be taken for the σ mass [82].12 Of course,
similar remarks apply to the width of other mesons, such as the
ρ, as well. If we make use of the large-Nc expansion according
to the standard assumption (M (k) ∼ N−k

c )

Mσ = M (0)
σ + M (1)

σ + O
(
N−2

c

)
, (71)

�σ = �(1)
σ + O

(
N−2

c

)
, (72)

the pole contribution becomes

Dσ (r) = −e−mσ r

4πr
+ O

(
N−2

c

)
, (73)

where mσ = M (0)
σ + M (1)

σ , representing the resonance mass to
NLO in the 1/Nc expansion, should be used. Note that the
width does not contribute to this order. Thus, for all purposes
we may use a Yukawa potential to represent the exchange
of a resonance. However, what numerical value of this mσ

should one use for the NN problem? Model calculations
based on Nc scaling of ππ chiral unitary phase shifts for
Nc = 3 suggest sizable modifications as compared with the
accurately determined pole position when Nc is varied but
the numerical results are not very robust [85].13 From an

12Large-Nc studies in ππ scattering based on scaling and unitariza-
tion with the inverse amplitude method (IAM) of ChPT amplitudes
provide results that regarding the troublesome scalar meson depend
on details of the scheme used. Although the one-loop coupled
channel approach [83] yields any possible mσ and a large width
(in apparent contradiction with standard large-Nc counting [28,29]),
the (presumably more reliable) two-loop approach [84] yields a large
mass shift (by a factor of 2) for the scalar meson when going from
Nc = 3 to Nc = ∞, yielding mσ → 900 MeV, but a small shift in
the case of the ρ meson. One should note the large uncertainties
of the two-loop IAM method documented in Ref. [66]. Based on
the Bethe-Salpeter approach to lowest order [65] we have estimated
mσ → 500 MeV [82]. In Ref. [85] it is argued that mσ → mρ from
the one-loop IAM.

13Actually, according to Ref. [86] the effect of a meson width in the
Yukawa-like potential is

V (r) = − g2

4π

(
1 − �σ

mσ π

)
e−(mσ +�σ /π )r ,

which corresponds to a NLO large-Nc renormalization of the mass and
coupling and provides an O(N0

c ) correction to the central potential.
The analysis is based on separating the integrand into different
intervals that become dominant at large distances. Our analysis
separates first the pole contribution from the background and then
studies each contribution separately. We note, however, that one
can extract a Yukawa potential of the meson even for the large
and physical width in the region where the potential is operating
with quite sensible values [76]. In Appendix B we update this
analysis using recent parametrizations of ππ scattering provided in
Refs. [87,88], confirming the Yukawa behavior. The main reason
for this behavior is that the potential is being probed for spacelike
exchanged four-momentum, whereas the resonance behavior takes
place in the timelike region corresponding to the crossed process
N̄N → 2π .
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alternative viewpoint, to the same accuracy, the large-Nc

NLO pole contribution could be replaced by the equivalent
Breit-Wigner resonance mass to the same approximation, since
according to Ref. [85] we may take

δ00
(
m2

σ

) = π

2
+ O

(
1/N3

c

)
. (74)

Thus, at leading and next-to-leading orders in the large-Nc

limit the exchange of a resonance between nucleons can be
represented at long distances as a Yukawa potential with the
Breit-Wigner mass toO(N−2

c ). The vertex correction σπN [see,
e.g., Eq. (51)] just adds a coupling constant, yielding

Vσ (r) = −g2
σNN

4π

e−mσ r

r
+ O(1/Nc). (75)

Of course, the same type of arguments apply to the ρ-meson
exchange, with the only modification

δ11
(
m2

ρ

) = π

2
+ O

(
1/N3

c

)
, (76)

where now mρ = M (0)
ρ + M (1)

ρ . In Fig. 7 we show the data
for ππ phase shifts, where we see that the true Breit-Wigner
masses are not very different. Of course, these arguments do
not imply that the Yukawa masses should exactly coincide, but
at least they suggest that one should expect a large shift for
the σ mass from the pole position and a very small one for
the ρ meson mass when the next-to-leading 1/Nc correction
to the pole masses are considered. The identity of scalar and
vector masses has been deduced from several scenarios based
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FIG. 7. ππ scattering phase shifts (in degrees) as a function of the
CM energy

√
s. Horizontal lines mark the position of the Breit-Wigner

resonances. Data are from Refs. [92–98].

on algebraic chiral symmetry [61,89]. Actually, it has been
shown that mρ = mσ without appealing to the strict large-Nc

limit but assuming the narrow resonance approximation (see
also Ref. [90]). A recent analysis [91] also supports this result.

VII. CONCLUSIONS

Serber symmetry seems to be an evident but puzzling
symmetry of the NN system. Since it was proposed more
than 60 years ago no clear explanation based on the more
fundamental QCD Lagrangean has been put forward.

In the present paper we have analyzed the problem from
the viewpoint of long-distance symmetries, a concept that
has proven useful in the study of Wigner SU(4) spin-flavor
symmetry. Actually, Serber symmetry is clearly seen in the
np differential cross section, implying a set of sum rules for
the partial wave phase shifts that are well verified to a few
percent level in the entire elastic region. Although this situation
corresponds to scattering of on-shell nucleons, it would be
rather interesting to establish the symmetry beyond this case.
Therefore, we have formulated these sum rules at the level
of high-quality potentials (i.e., potentials that describe elastic
NN scattering with χ2/DOF ∼ 1) that are also well verified
at distances above 1 fm. This suggests that a coarse graining
of the NN interaction might also display the symmetry.
The equivalent momentum-space Wilsonian viewpoint is
implemented explicitly by the Vlow k approach by integrating
all modes below a certain cutoff � ∼ 400. By analyzing
existing Vlow k calculations for high-quality potentials we have
shown that Serber symmetry is indeed fulfilled to a high degree.
We recall that within the Vlow k approach this symmetry has
direct implications in shell-model calculations for finite nuclei
since the Vlow k potential corresponds to the effective nuclear
interaction.

A surprising finding of the present paper is that chiral
potentials, although implementing extremely important QCD
features, do not fulfill the symmetry to the same degree as
current high-quality potentials. This effect must necessarily
be compensated by similar symmetry violations in the coun-
terterms encoding the nonchiral and unknown short-distance
interaction and needed to describe NN phase shifts where
the symmetry does indeed happen. This is not necessarily
a deficiency of the chiral approach but it is disturbing that
the symmetry does not manifest at long distances, unlike
high-quality potentials. This may be a general feature of chiral
potentials that requires further investigation [47].

In an attempt to provide a more fundamental understanding
of the striking but so far accidental Serber symmetry, we have
also speculated how it might arise from QCD within the large-
Nc perspective in the second part of the paper. The justification
for advocating such a possible playground is threefold. First,
the NN potential tensorial structure is determined with a
relative 1/N2

c accuracy, which naively suggests a bold 10%.
Second, the meson exchange picture is justified. Finally, we
have found previously that such an expansion provides a
rationale for the equally accidental and pre-QCD Wigner
SU(4) symmetry. Actually, we found that large Nc predicts
the NN channels where Wigner symmetry indeed works and
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fails phenomenologically. The very interpretation of Wigner
symmetry as a long-distance symmetry suggests that at best
we can only interpret this large-Nc prediction in a restrictive
sense, i.e., as a feature of potentials and not of the S matrix.
The intriguing point is that when Wigner symmetry fails, as
allowed by large-Nc considerations, Serber symmetry holds
instead. In the present paper we have verified the previous
statements at the level of potentials at large distances or using
Vlow k potentials, reinforcing our previous conclusions based
on just a pure phase shift analysis. Under those circumstances,
it is therefore natural to analyze to what extent and even
whether Serber symmetry could be justified at all from a
large-Nc viewpoint. In practical terms we have shown that
within a one-boson exchange framework, the fulfillment of
the symmetry at the potential level is closely related to
having not too dissimilar values of σ and ρ meson masses
as they appear in Yukawa potentials. Actually, these σ and
ρ states are associated with resonances that are seen in ππ

scattering and can be uniquely defined as poles in the second
Riemann sheet of the scattering amplitude at the invariant
mass

√
s = MR − i�R/2. We have therefore analyzed the

meaning of those resonances within the large-Nc picture, by
assuming the standard mass mR ∼ N0

c and width �R ∼ 1/Nc

scaling. We have found that, provided we keep terms in the
potential to NLO, meson widths do not contribute to the
NN potential, as they are O(N−1

c ) (i.e., a relative 1/N2
c

correction to the leading-order contribution). This justifies
using a Yukawa potential where the mass corresponds to an
approximation to the pole mass mR = M

(0)
R + M

(1)
R , which

cannot be distinguished from the Breit-Wigner mass up to
O(N−2

c ). This suggests that the masses mσ and mρ that appear
in the OBE potential could be interpreted as an approximation
to the pole mass rather than its exact value. This supports
the customary two-Yukawa representation of complex-pole
resonances pursued in phenomenological approaches since it
was first proposed [76], because in practice only the lowest
Yukawa mass contributes significantly. The question of what
numerical value should be used for the Yukawa mass is a
difficult one, and at present we know of no other direct way
than NN scattering fits, for which mσ = 501(25) MeV might
be acceptable [99] when the uncorrelated 2π contribution is
disregarded.

On a more fundamental level, however, lattice QCD
calculations at variable Nc values (see, e.g., Ref. [100]
for a review) might reliably determine the Yukawa mass
parameters appearing in the large-Nc potential. A recent
quenched QCD lattice calculation yields [101] mρ/

√
σ =

1.670(24) − 0.22(23)/N2
c with

√
σ the string tension, which

for
√

σ = 444 MeV yields mρ = 740 MeV for mπ = 0 (see
also Ref. [102]). The extension of those calculations to
compute the needed 1/Nc mass shift would be most welcome
and would require full dynamical quarks. One should not
forget that Serber symmetry holds to great accuracy in the real
Nc = 3 world, and in this sense it represents a stringent test to
lattice QCD calculations in P waves in the mid-range region.
Amazingly, the only existing S-wave potential calculation [23]
displays Wigner symmetry quite accurately.

Of course, although the numerical large-Nc similarity
between scalar and vector meson masses could explain the

observed Serber symmetry a truly accidental origin cannot be
completely excluded. In any case the large-Nc form of the
potential specified by Eq. (46) can be retained with relative
1/N2

c accuracy since meson widths enter beyond that accuracy
as subleading corrections, on equal footing with many other
effects (spin-orbit, relativistic, and those from other mesons),
independently of the size of the σ width for Nc = 3. A more
satisfactory description could be achieved if one incorporates
the coupling of N� and �� channels, which remain closed
in the real world for NN scattering below the pion production
threshold but open up as soon as the � resonance becomes
degenerate with the nucleon since M� − MN ∼ N−1

c . These
findings suggest pursuing a deeper and more quantitative
analysis, but it remains to be seen whether the condition
of reproducing a large-Nc behavior does indeed impose a
useful constraint for the NN interaction in the real world with
Nc = 3.
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APPENDIX A: TOY MODEL FOR ππ SCATTERING

In this Appendix we illustrate with a specific example our
discussion of Sec. VI and in particular the pole-background
decomposition of Eq. (65). According to Ref. [76] the finite
width of the scalar meson can be modeled by the propagator

DS(s) = 1

s − m2
σ − imσγσ

√
s−4m2

π

m2
σ −4m2

π

, (A1)

for t � 4m2
π . Below the elastic scattering threshold we use

the standard definition
√

t − 4m2
π = −i

√|t − 4m2
π |eiθ , where

0 � θ = Arg(t − 4m2
π ) < 2π . This defines the propagator in

the first Riemann sheet; the second Riemann sheet is de-
termined from the usual continuity equation DII

S (s + i0+) =
DI

S(s − i0+). The pole position is given by

sσ = (Mσ − i�σ /2)2 = m2
σ − γ 2

σ m2
σ

2m2
σ − 8m2

π

− i
γσmσ

√
4
(
m2

σ − 4m2
π

)2 − γ 2
σ m2

σ

2m2
σ − 8m2

π

. (A2)

In the small-width limit the position of the pole and width are

Mσ = mσ − γ 2
σ

8mσ

m2
σ + 4m2

π

m2
σ − 4m2

π

+ O
(
γ 4

σ

)
, (A3)

�σ = γσ + O
(
γ 3

σ

)
. (A4)
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Despite the large σ width mσ ∼ γσ this expansion works
because of the 1/8 factor (with the next correction having
a numerical value of 1/128; see the following). If we assume
that the scattering amplitude is proportional to this propagator
the corresponding ππ phase shift is then given by

e2iδ00(s) =
s − m2

σ − imσγσ

√
s−4m2

π

m2
σ −4m2

π

s − m2
σ + imσγσ

√
s−4m2

π

m2
σ −4m2

π

. (A5)

The parametrization is such that the standard Breit-Wigner
definition of the resonance is fulfilled for the bare parameters,

δ00
(
m2

σ

) = π

2
, γσ = 1

mσδ′
00

(
m2

σ

) . (A6)

Of course, in the limit of narrow resonances the two definitions
are indistinguishable and we have Mσ → mσ and �σ → γσ .
If we use the pole position in the second Riemann sheet of the
S matrix or equivalently the zero in the first Riemann sheet
from Ref. [36], yielding the value Mσ − i�σ /2 = 441+16

−8 −
i272+9

−12 MeV, we get

mσ = 567(10) MeV, γσ /2 = 276(10) MeV. (A7)

From the small-width expansion, Eq. (A4), we get mσ =
554(10) MeV, despite the apparent large width. From
Ref. [103] one has the magnitude of the residue |Rσ | =
0.218+0.023

−0.012 GeV2 whereas we get |Rσ | = 0.430 GeV2. Note
the 120(20)-MeV shift between the Breit-Wigner and the
pole position. With these parameters the scattering length
is a00mπ = 0.36, which is clearly off the value a00mπ =
0.220(2) deduced from ChPT. The propagator satisfies the
unsubtracted dispersion in Eq. (59), where the spectral function
is given by

ρ(µ2) = 1

π

γσmσ

√
m2

σ − 4m2
π

√
µ2 − 4m2

π(
m2

σ − 4m2
π

)(
µ2 − m2

σ

)2 + γ 2
σ m2

σ

(
µ2 − 4m2

π

) ,

(A8)

and satisfies the normalization condition given by Eq. (62) with
Zσ = 1. Thus, using the Fourier transformation of the propa-
gator and separating explicitly the contribution from the poles

Dσ (r) and the 2π background D2π (r) we reproduce Eq. (65).
This yields the result depicted in Fig. 8, which illustrates
and checks the pole-background decomposition and shows
that the total contribution, although describable by a Yukawa
shape, does not correspond to the pole piece. In addition the
cancellation of imaginary parts, ImDσ (r) = −ImD2π (r), is
explicitly verified. By using the inverse relations of Eq. (A4),
in the narrow-width approximation the pole contribution
becomes

ReDσ (r) = −e−Mσ r

4πr

×
[

1 + r�2
σ

8

(
2Mσ

M2
σ − 4m2

π

− r

)
+ · · ·

]
, (A9)

in qualitative agreement with Eq. (67). However, the 2π

contribution at long distances becomes

D2π (r) = −K2(2mπr)

r2

γσm2
πmσ

π2
(
m2

σ − 4m2
π

) 5
2

+ · · ·

= −e−2mπ r

r
5
2

γσm
3
2
πmσ

π
3
2
(
m2

σ − 4m2
π

) 5
2

+ · · · . (A10)

The asymptotic form in the first lime reproduces with 95%
accuracy the full result, Eq. (65), for r > 5 fm. Finally, the
ρ meson propagator and the associated (I, J ) = (1, 1) phase
shift can be dealt with mutatis mutandis by using

[DV (s)]−1 = s − m2
ρ − imργρ

[
s − 4m2

π

m2
ρ − 4m2

π

] 3
2

, (A11)

where the p-wave character of the ρ → 2π decay can be
recognized in the phase space factor.

APPENDIX B: REALISTIC SCALAR-ISOSCALAR
ππ SCATTERING

Realistic parametrizations of the ππ scattering data have
been proposed based on the conformal mappings [87,88] with
several variations. Our results show little dependence on those
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and we show here the ghost-full version and the Adler zero
located at the lowest order ChPT sA = m2/2 [87], which reads

ρππ cot δ00 = m2

s − m2/2

[
m√
s

+ B0 + B1w + B2w
2

]
, (B1)

with w(s) = (
√

s −
√

4m2
K − s)/(

√
s +

√
4m2

K − s). For
the three sets of B0,1,2 parameters discussed in Ref. [87] the
resulting complex pole position is slightly higher than the

Roy equation value
√

sσ = 441+16
−8 − i272+9

−12 MeV [36]. If
we use the dispersive representation for D(r) given in Eq. (63)
and cut the integral at the K̄K threshold µ = 2mK we get
a function that can be fitted in the range 1 � r � 5 fm by a
Yukawa potential with mσ = 600(50) MeV. The uncertainty
corresponds to changing the B0,1,2 parameters within errors
[87] as well as varying the fitting interval. This is the modern
version of the result found long ago [76] using a relativistic
Breit-Wigner form (see Appendix A and Ref. [72]).
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