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Role of superfluidity in nuclear incompressibilities
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Nuclei are propitious tools to investigate the role of the superfluidity in the compressibility of a Fermionic
system. The centroid of the Giant Monopole Resonance (GMR) in Tin isotopes is predicted using a constrained
Hartree-Fock Bogoliubov approach, ensuring a full self-consistent treatment. Superfluidity is found to favour the
compressibitily of nuclei. Pairing correlations explain why doubly magic nuclei such as 208Pb are stiffer compared
to open-shell nuclei. Fully self-consistent predictions of the GMR on an isotopic chain should be the way to
microscopically extract both the incompressibility and the density dependence of a given energy functional. The
macroscopic extraction of Ksym, the asymmetry incompressibility, is questioned. Investigations of the GMR in
unstable nuclei are called for. Pairing gap dependence of the nuclear matter incompressibility should also be
investigated.
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The effect of the superfluidity on the compressibility of
a Fermionic system remains an open question. Superfluidity
initially referred to a system with a dramatic drop of its
viscosity [1]: it could be suspected that a super-fluid would
be easier to compress than a normal fluid. This question has
been investigated in Fermionic atoms traps, by studying the
frequency of the compression mode with respect to the scat-
tering length. Experimentally some increase of the frequency
may be observed in the weak pairing regime [2], but this signal
remains to be confirmed. Theoretically both microscopic
and hydrodynamical investigations show no variation of the
compression mode between the normal and the superfluid
phases [3], but the analysis is complicated by the temperature
change between the two phases. In nuclear physics, the
study of the role of superfluidity in the compressibility can
also be performed: the isoscalar Giant Monopole Resonance
(GMR) is a compression mode, allowing to probe for related
superfluid effects. Ideal tools are especially isotopic chains,
where pairing effects are evolving from normal (doubly-
magic) nuclei to superfluid (open-shell) ones [4]. Moreover,
the incompressibility of nuclear matter is a basic parameter
in calculations describing neutron stars or supernovae, where
superfluid effects are known to occur [5].

Constraining the nuclear incompressibility modulus K∞
with experimental data on the Giant Monopole Resonance
is a longstanding problem. The first relevant approaches
have been performed following the work of Blaizot and
Pearson [6,7]: only microscopic predictions of the GMR
compared with the data could validate the K∞ value of
the functional which was used. Using a fully self-consistent
approach such as the Random Phase Approximation (RPA)
[8] or the constrained Hartree-Fock (CHF) [9] method, the
GMR data on 208Pb currently provides K∞ � 230 MeV in
non-relativistic approaches [10] whereas K∞ � 260 MeV is
obtained for relativistic one [11]. The roots of this puzzle
between the two approaches is still an open question, but it has
been shown that the neutron-proton asymmetry dependence of
the incompressibility, denoted as Ksym, plays also a role, as
well as the density dependence of the functional [12–14]: a
value of K∞ � 250 MeV could be extracted from 208Pb data,

using a non-relativistic CHF method with a modified density
dependence of the functional. Therefore, it should be noted that
K∞ cannot be extracted from the measurement of the GMR
in a single nucleus: several parts of the functionnal are tested
simultaneously, namely K∞, Ksym and its density dependence.

A previous study on the role of superfluidity on nuclear
incompressibility has been performed, finding a negligible
effect [15], but the theoretical approach was not self-consistent.
Indeed self-consistency is crucial since pairing effects are
expected to be small in the GMR: this high energy mode
is mainly built from particle-hole configurations located far
from the Fermi level, where pairing do not play a major role.
However giant resonances are known to be very collective
[16] and pairing can still have a sizable effect on the GMR
properties: around 10% on the centroid, which is the level of
accuracy of present analysis on the extraction of K∞ [10,11].
This requires the advent of accurate microscopic models in
the pairing channel, such as fully self-consistent Quasiparticle
Random Phase Approximation (QRPA) [17,18], achieved only
recently. Experimentally, the measurement of the GMR on an
isotopic chain facilitates the study of superfluidity on the GMR
properties [19], and the possibility to measure the GMR in
unstable nuclei emphasizes this feature [20].

It is therefore necessary to go toward the measurement of
the GMR on several nuclei, such as an isotopic chain. The
overused method of precise GMR measurements in a single
nucleus, such as 208Pb, may not be the relevant approach. Other
nuclei have been used such as 90Zr and 144Sm. Indeed when
considering the available GMR data from which the K∞ value
has been extracted, 208Pb is stiffer than the Sn, Zr and Sm
nuclei: K∞ is about 20 MeV larger, both in non-relativistic
and in relativistic approaches [10,11]. The question may not
be “why Tin are so soft?” [21] but rather “why 208Pb is so
stiff?”.

Recently the GMR was measured on the stable Tin istopic
chain (from 112Sn to 124Sn) [19]. Once again it has been
noticed that it is not possible to describe the GMR both in
Sn and in Pb with the same functional, Tin beeing softer than
Pb [17,21]. In the non relativistic case, fully self-consistent
QRPA calculations on Sn isotopes lead to K∞ � 215 MeV. The
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relativistic DDME2 paremeterisation using QRPA describes
well the GMR in the Sn isotopes [22], but predict a low value
of the GMR in 208Pb compared to the experiment, as can be
seen on Fig. 8 of Ref. [11]. On the contrary, a recent relativistic
functional describes well the 208Pb GMR, but systematically
overestimates the Sn GMR values of about 1 MeV [23].
Finally, attempts have been performed in order to describe
Sn GMR data with relativistic functionals having a lower
incompressibility and hence different density dependence and
Ksym value [24]. Once again the 208Pb and Tin GMR cannot
be described at the same time: this puzzling situation is due
to the higher value of K∞ extracted from 208Pb, compared to
Tin, Sm and Zr nuclei.

In Ref. [17] it has been found that including pairing effects
in the description of the GMR allows to explain part of the Sn
softness : pairing may decrease the predicted centroid of the
GMR of few hundreds of keV, located at ∼16 MeV. This is
sufficient to change by about 10 MeV the extracted value of
the incompressibility of nuclei KA, defined as [6]:

EGMR =
√

h̄2KA

m〈r2〉 (1)

where m is the nucleon mass and 〈r2〉 is the ground-state mean
square radius.

In this work we follow up this idea and show that the
consequences of superfluidity on nuclear incompressibility
may solve the above mentioned puzzle. It should be noted
that pairing is vanishing in the doubly magic 208Pb nucleus,
unlikely the other nuclei. It is necessary to use a fully
microsocopic method including an accurate pairing approach.
In order to predict the GMR in a microscopic way we use
the constrained HF method, extended to the full Bogoliubov
pairing treatment (CHFB). The CHF(B) method has the
advantage to very precisely predict the centroid of the GMR
using the m−1 sumrule [9,14]. The whole residual interaction
(including spin-orbit and Coulomb terms) is taken into account
and this method is by construction the best to predict the
GMR centroid [14]. Introducing the monopole operator as a
constraint, the m−1 value is obtained from the derivative of the
mean value of this operator. The m1 sumrule is extracted from
the usual double commutator, using the Thouless theorem [25].
Finally the GMR centroid is given by EGMR = √

m1/m−1. All
details on the CHF method can be found in [9,10].

The extension of the CH method to the CHFB case has been
recently demonstrated in [26]. The present work uses the HFB
approach in coordinate space [27] with Skyrme functionals and
a zero-range surface pairing interaction. The magnitude of the
pairing interaction is adjusted so to describe the trend of the
neutron pairing gap in Tin isotopes. This interaction is known
to describe a large variety of pairing effects in nuclei [28].

Fig. 1 displays the GMR energy obtained from the Sn
measurements (times A1/3 to correct for the slow lowering
of the GMR with the nuclear mass [16]). Microscopic CHFB
predictions using two functionals are also shown: SLy4 [29]
(K∞ = 230 MeV, which describes well the Pb GMR data),
and SkM* [30] (K∞ = 215 MeV). Without pairing, the SLy4
interaction overestimates the Sn GMR data. Pairing effects
(CHFB calculations) decrease the centroid of the GMR, getting
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FIG. 1. (a) Excitations energies of the GMR in stable 112−124Sn
isotopes calculated with constrained HF and constrained HFB
methods and the SLy4 interaction, compared to the data. (b) Same for
112−136Sn isotopes, using the CHFB method and the SLy4 and SkM*
interactions

closer to the data. This confirms the results of [17], where a
self-consistent HFB+QRPA approach was used to describe
the Tin data. It should be noted that using a less general
BCS approach for the pairing channel increases the GMR
energy [15,17,31]. This is due to the problematic treatment
of high energy single-particle states in the BCS model. It is
therefore important to use the full HFB approach to correctly
describe pairing effects on the GMR, especially for the pairing
residual interaction. Fig. 1 shows, as expected, that SkM*
predictions with pairing effects are in better agreement with
the Sn data.

The striking feature of Fig. 1 is the peak of the GMR
centroid, located at the doubly magic 132Sn nucleus, using
the CHFB predictions. This indicates that pairing effects
should be considered to describe the behavior of nuclear
incompressibility, and that vanishing of pairing make the
nuclei stiffer to compress, confirming our previous statement
on the stiffness of 208Pb. The importance of pairing effect
can be understood in a simple way: since the nuclear incom-
pressibility is defined as the second derivative of the energy
functional at saturation density [6], there is no obvious reason
why the pairing terms of the functional would play no role
in the nuclear incompressibility. Nuclear incompressibility is
indeed very close from a residual interaction (as a second
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FIG. 2. Nuclear incompressibilities KA in 112−132Sn isotopes
calculated with the CHFB method and the SkM* interaction, as a
function of the pairing gap � predicted by the HFB calculation.

derivative of the energy functionals with respect to the density),
and it is known that pairing effects are relevant in residual
interactions [28]. This is straightforward in nuclear matter
where K∞ is expressed from the F0 Landau parameter [32].
However, on Fig. 1, the GMR centroid is shifted to lower
energies for more neutron-rich nuclei than 132Sn, also because
of the appearance of a soft L = 0 mode, predicted in QRPA
calculations beyond 132Sn [33].

To further investigate the role of pairing on nuclear incom-
pressibility, Fig. 2 displays KA (defined by Eq. (1)) with respect
to the average pairing gap calculated using the HFB approach,
from 112Sn to 132Sn. A clear correlation is observed: the more
superfluid the nuclei, the lower the incompressibility. Hence it
may be easier to compress superfluid nuclei. This may be the
first evidence of the role of superfluidity on the compressibility
of a Fermionic system. A possible interpretation is that Cooper
pairs can modify bulk properties, as known from nuclear
physics phenomenology [4].

The decrease of incompressibility in superfluid nuclei raises
the question of a similar effect in infinite nuclear matter:
for now, incompressibility is given independently from the
pairing part of the functional. However, considering present
results, equations of state used for neutron star and supernovae
predictions should take into account pairing to provide their
incompressibility value. The comparison with GMR data
shows, as mentioned above, that the functional as a whole
(including pairing effects) is probed. The question of the
behavior of K∞ with respect to the pairing gap is raised: it
seems clear from nuclear data that nuclei incompressibility
KA decreases with increasing pairing gap. This should be
investigated in nuclear matter.

It should be noted that recent attempts have been performed
to extract the Ksym value, and its corresponding quantity in
nuclei (Kτ ): the incompressibility in the Sn isotopic chain
has been studied using the macroscopic (liquid drop) formula
of nuclei incompressibility KA derived by Blaizot [6,19,34].
However the effect of pairing demonstrated above shows
that the current macroscopic approach may not be well
designed: on Fig. 2, pairing effects induce ∼10 MeV change
on the nuclear incompressibility KA. Hence the macroscopic
expression of nuclei incompressibility KA should be extended
to these terms, since the appropriate definition of nuclei

incompressibility is the second derivative of the microscopic
energy functional [6]. Presently, the microscopic approach is
more relevant to extract Ksym: the extraction of K∞, Ksym and
the density dependence of the functional are related, as stated
in Refs. [12–14]. The GMR data on isotopic chains should be
used on this purpose.

It is not possible to describe the GMR centroid of both
208Pb and other nuclei with the same functional, as stated
above. The puzzle of the stiffness of 208Pb may come from its
doubly magic behavior. In Fig. 1 there is a sharp peak at doubly
magic 132Sn, and it would be very interesting to measure the
GMR in this unstable nucleus. It should be noted that such
experiments are now feasible [20]. A possible explanation of
the 208Pb stiffness is that the experimental data of EGMR is
especially increased in the case of doubly magic nuclei, as
observed in 208Pb compared to the GMR data available in
other nuclei (such as the Tin isotopic chain). This difficulty to
describe with a single functional both doubly magic and other
nuclei has already been observed on the masses, namely the so-
called “mutually enhancement magicity” (MEM), described in
[35,36]: functionals designed to describe masses of open-shell
nuclei cannot predict the masses of doubly magic nuclei such
as 132Sn and 208Pb, which are systematically more bound that
predicted. In order to consider MEM, it may be necessary
to take into account quadrupole correlation effects due to
the flatness of the potentials for open-shell nuclei [37]. KA

being related to the second derivative of the energy with
respect to the density, it would be useful to find a way to
predict the GMR beyond QRPA by taking into account such
quadrupole correlations. This may solve the current puzzle of
the stiffness of 208Pb. It should be noted that it would also
be relevant to measure the GMR on the Pb isotopic chain in
order to provide a similar analysis than the one on the Sn
nuclei.

In conclusion, it is shown that superfluidity favours the
compressibility of nuclei, using a fully microscopic CHFB ap-
proach on the Tin isotopic chain. This may be the first evidence
of a sizable effect of superfludity on the compressibility of a
Fermionic system. Pairing effects should be described using a
full microscopic HFB treatment. Doubly magic nuclei exhibit
a specific increase of the GMR energy, due to the collapse of
pairing. 208Pb is therefore the “anomalous” data compared to
the others. It is not possible to disentangle pairing interaction
from the equation of state when providing the nuclear matter
value of K∞. Indeed the pairing gap dependence on the
nuclear matter incompressibility should be investigated, since
it is shown that incompressibility decreases with increasing
pairing gap in nuclei. Additional theoretical investigations are
called for in order to predict the GMR including the mutually
enhancement magicity effect. The macroscopic extraction of
Ksym may be ill-defined and should be extended to include
pairing effects. Experimentally, measurements of the GMR in
unstable nuclei should be performed in doubly magic 132Sn, as
well as extending the measurement on the Sn and Pb isotopic
chains.

The author thanks G. Colò, M. Grasso, J. Margueron,
Nguyen Van Giai, P. Ring, H. Sagawa and M. Urban for fruitful
discussions about the results of this work.
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