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It is shown that a given approximate eigenfunction E of a many-body Hamiltonian can be
ixnproved by exploiting the separation of the exact eigenfunction in internal and c.m. coordi-
nates. The method given leads reliably to a lower energy fox the ground state, without re-
quiring the solution of an additional dynamical problem. The best internal wave function
gg%'F) is taken to be the internal factor of the separable wave function that has the largest
possible overlap with E. The existence, uniqueness, and construction of the BIWF axe de-
rived. A canonical expansion E =pa;4, P, is described, in which 4'; are orthogonal functions
of the c.m. cooxdinates, and g; are orthogonal functions of the internal coordinates. The
canonical expansion is shown to converge faster than any other. It is applied to the discus-
sion of the "projection" ox "generator-coordinate" txeatment of c.m. motion using arbitrary
c.m. wave functions, It is shown that the Gartenhaus-Schwax'tz pxescription is not equivalent
to the use of any intex'nal wave function, and gives systematically wox"se x'esul'ts fox' off-diag-
onal rnatx ix elements than for expectation values.

I. INTRODUCTION

In the nonrelativistic quantum-mechanical treat-
ment Gf Rn lsolRted systemy the Hamiltonian cRQ

Rlvfays be wx'ltten ln the forIQ

where I' and M are the total momentum and mass,
respectively, and Hnt acts only on internal vari-
ables. This separation is illustrated (quite ade-
quately for the purposes of the present payer) by
R system of t%'0 gsrticles Inovlng ln One dimension.
The coordinates, masses, and momenta of the
particles Rx'8 respectively denoted by gg I& Rnd

p, fox' g =1, 2. Then the c.m. coox'dinate 8 and
total momentum P axe defined hy

I+I +M+2 ~ ~ p
M

In this particular example, the only internal co-
ox'dmate is

H;nt Rcts Only OQ the 1nterQRl coordinates. 748
~idity of the following considerations is not
restricted by the presence of Only R single ln-
tex'QR1 coox'dlnRte J' ln the example chosen for
illustration.

Rotational invariance and, other mell&noun
symmetries are often valuable in simplifying the
solution of the Schrodinger equation. In the same
%ay, one Mould like to exploit the separRt1on Gf

H that Eq. (1) expresses. An exact eigenfunction
E of the Hamiltonian H, which satisfies

vrill always be of the form

FJ,i(R, ~) = e'~'"r/i(r),

vrhere I"is an eigenvalue of the total momentum.
Here g(i ) will be called the internal wave function.
It is naturala to look for an eigenfunction of H;„t
rathex" than of B. Exact eigenfunctions of H;„t
are abvays of the form

Rnd lt8 conjugate momentum is

p-qK h
~

Bey

fSQSg 2P=
Ng+%2

Let V(r) be the interaction between the particles.
Then Eq. (1) is satisfied with

It is easily seen that II;„tcommutes w'ith both
A and I'. 'Zhis is a formal way of saying that

Because H;„tdoes not act on A, any c.m. wave
function 4(ft) is acceptable. Therefore, it is the
8'8pQJ"CATEtg 1n A Rnd t' thRt 1S essent1Rl to good
c.m. behavior, x'ather than the particular form
e'~ fox' the c.m. wive funcbon.

Many approximation schemes for the many-
pRx'tlcle px'obleIQ in quantum InechRQics 18Rd to
wave functions that lack the property (2). An
important example of such a scheme is the shell-
model method, in which a translationally non-
invariant single-particle potential is introduced.
Several approaches to the resulting "c.m. proMem"
have been devised. In discussing these, it is
necessary to clearly recognize that Eq. (2) is no
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more essential than other fundamental properties
of the exact eigenfunction. Every approximate
eigenfunction of the Hamiltonian violates at least
one fundamental requirement on the exact eigen-
state (namely the factorizability of its time de-
pendence). It is nevertheless possible to make
meaningful calculations using such a wave function.
Similarly, the separability property (2) need not
be required of an approximate wave function. How-
ever (as will be shown) Eq. (2) can be used to im-
Pxove a given approximate wave function.

Most treatments of the c.m. motion involve the
construction of an internal wave function P(r) from
the given approximate wave function E(R, r). Many
such treatments belong to the class of "projection
methods" or "generator-coordinate methods". ' In
methods of this type, the internal wave function is
taken to be

y(r)=X dR~(R)+F(R, r),
where N is a normalization constant and g(R) is a
c.m. wave function. Varions authors have chosen
the c.m. wave function@(R) in various ways. '
Popular choices have been 5(R), e'~ s, and a har-
monic-oscillator ground state.

It will be shown that projection methods with
arbitrarily chosen g(R) have little claim to special
merit. Their use is not always disastrous, how-
ever, because if F satisfies Eq. (2) exactly, the
choice of g(R) does not affect the resulting internal
state g(r). For example, all projection methods
will give the same results when applied to an anti-
symmetric shell-model state constructed from a
ground-state harmonic- oscillator configuration,
because for this case the wave function is separ-
able. ' If the separability of E is not exact, the
choice of g(R) does make some difference, but if
F is nearly separable, the difference is likely to
be small. The present work therefore concentrates
on the nontrivial case where F is not separable.

Ernst, Shakin, and Thaler' have described a pro-
jection method in which g(R) is chosen to minimize
the expectation (g~H;„,(P& . Not surprisingly, this
choice of g(R) leads to the P(r) that has the largest
possible overlap with the true ground state of H;„,.
However, by insisting too heavily on the separa-
bility requirement [Eq. (2)], this approach leads
to an unnecessarily difficult procedure. Pre-
sumably, as much effort as possible has already
been devoted to the calculation of F(R, x). If it
were technically feasible to minimize (P(H;„,~g&

with an internal wave function g of the same
generality as E, this would more easily be done
directly, without the intrusion of an unseparated
wave function E(R, v). After all, it is easy to con-
struct a family of internal wave functions. What is
not so easy is to diagonalize II;„,in a space of in-

2. OPTIMAL SEPARATION OF INTERNAL

AND c.m. VARIABLES

The proposed construction of the best separable
approximation 4(R)g(r) is most compactly de-
scribed by introducing Hermitian c.m. and internal
density operators D and d, defined by the kernels

(r~d~r'& = drF(R, r)F(R, r')*,
(R ~D (R'& = drF(R, r)F(R', r)~.

(4a)

(4b)

It is assumed that E is a bound state, so that
fdRfdr~E~'=1. The following mathematical re-
sults are proved in Appendix I:
(a) The operators D and d have the same eigen-
values A, The eigenvalues are all discrete, and
satisfy

1 &A., &A., -A., o- ~ ~ ~ &0.

The only possible point of condensation of eigen-
values is A, =0. The corresponding eigenfunctions
4, and g, can be taken as orthonormal sets, satis-
fying

(+g I@,& -( 0( (gg& —&g; .

(b) Of all possible normalized separable wave
functions 4'(R)P(r), the one that has the greatest
possible overlap with F(R, r) [i.e., the maximum
value of JdR J dr E(R, r)*4(R)g(r)J is obtained by
choosing 4'(R) =40 and P(r) =go. That is, the opti-
mal c.m. and internal wave functions are, re-
spectively, the eigenfunctions of D and d that
belong to the largest eigenvalue.
(c) E can be expanded in the form

ternal wave functions, and in the method of Ernst,
Shakin, and Thaler this task remains to be done.
Given F(R, r), the real need is for a reliable
method of choosing g(R} without further dynamical
calculation. The present paper will describe such
a method.

The rational choice of g(R) always involves a dif-
ficult calculation. Indeed, the method to be de-
scribed is perhaps more useful as a standard with
which other nondynamical methods can be com-
pared, than as a tool for practical calculations.
In Sec. 2, the method is described, and in Sec.
3 it is applied to the discussion of projection
methods. Section 4 contains a discussion and
critique of the Gartenhaus-Schwartz prescription,
which is shown not to correspond to the use of any
internal wave function.
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where 4, and |EI, are normalized eigenfunctions of
D and d, respectively, and

~ a, ~' = Xl . (Note that
both the 4,. and the P, are orthogonal sets. )
(d) Of all possible N-term sums of the form

(wltll ItII Rll ol'tllollorlnR1 set Rnd 4I arbitrary)~ tile
one that minimizes JdR Jdr[ E„E~'-is

(Va)&re*& Igp =&g.s.+&,

where ~ is small. Then it follows that
2

where e is small and positive. In Appendix D con-
ditions (7) are shown to imply that

dR dr E*H-,E- dr H,.„&q&0,

provided that e «1 and 6«E, —E„,, E, being the
energy of the first excited state. It follows that if
E is a sufficiently good approximation to IjI.,.. the
B1WF

Imp
leads to a lower expectation value of H,„I

than is obtained from the original nonseparaie
wave function E. If

~ a, )' is not close to unity,
the lowering of the ground-state energy may be
considerable.

that is, the first N terms of (5).
It is convenient to refer to EII. (5}as the "canon-

ical expansion of F". Result (d) shows that the
canonical expansion of E converges more rapidly
than any other.

The central result of the present work is that

Imp(r) is the best possible internal wave function
that can be derived from E(R, r) by purely kine-
matic means. By multiplying Eq. (5) by%'p(R)*
and integrating with respect to 8, it follows that

q, (r) =a, dRe, (R)*F(R,r).
Therefore Ij„the best internal wave function
(BIWF), is obtained by applying the projection
method (3) to F with g(R) =+p(R).

The BIWF will be a better approximation to an
exact eigenstate of H,-„,than is the nonseparable
wave function E, provided that E is already very
nearly an. eigenstate of H;„,. A more precise
statement applies when E is an approximation to
III„,the ground-state wave function, which be-
longs to the eigenvalue E~.s. of H;„,. Suppose that
the Pp derived from E is a good approximation to
pp, , so that

In summary, the BIWF Imp [which results by Pro-
jecting with the optimal choice of g(R), namely

+p(R}] will always be an improvement on the non-
separable state E, provided that E is vexy nearly
Rn eigeHLfunctlon of H;„.It 1s rather x'emRrkRble

that one can gain an improvement without expend-
ing further effort on dynamical calculations. How-

ever~ tile calculation of IIIp is Iluite 1Rbol'lolls.
First, D must be constructed. This will involve
integration over all internal coordinates, which is
difficult, though easier than the constxuction of
the matrix of H;„,in internal states. Next, the
largest eigenvalue Ao of D and its corresponding
eigenfunction C~ must be found. Because D is a
Hilbert-Schmidt operator, ' it can be arbitx arily
well represented by a finite matrix. Therefore
there is no theoretical obstacle to this step, and
it is appreciably easier than the diagonalization of
R many-body internal Hamllton1an. The evaluation
of IjIp from Eq. (6) is comparatively easy.

Our choice of g(r) =Imp(r) differs froln the intel nal
wave function constructed by Ernst, Shakin, and
T11Rler. Tile fIlllctloll E(R~r) cR11 be regRI'ded Rs

a family of functions of r, labeled by a parameter
A. The internal wave function of Ex"nst, Shakin,
and Thaler is an eigenfunction of H;„,in the sub-
space of Hilbert space that is spanned by the
family E(R, r). Our internal wave function ItIp(r )
lies in the same subspace, but is not necessarily
an eigenfunction of H. , in this subspace. There-
fore, IjIp(r) will not give as low a ground-state
energy as the Ernst, Shakin, and Thaler wave
function. However, IjIp(r) is much easier to calcu-
late, and also guarantees a lower ground-state
energy than E(R, r).

3. COMPARISON OF ARBITRARY AND

OPTIMAL PROJECTION METHODS

The chief use of wave functions is to calculate
matrix elelllellts of physlcRlly llltel'estillg opel'R
tol's. Tile canonical expRIlsloll of E(R, r) will liow

be used to discuss matrix elements of operators
between wave functions obtained by projection
methods of the type (3) using arbitrary c.m. wave
functions g(R). The BIWF Pp will be taken as a
standard of comparison. Any operator A can be
expanded as a sum of products of operators that
act only on the internal coordinates with opera-
tors that act only on the c.m. By the separation
property (2), it follows that the matrix elements
of any operator between eigenstates of H;„,can be
expressed in terms of matrix elements (between
c.m. wave functions} of operators that act only on
the c.m. , and matrix elements (between internal
wave functions) of operators that act only on the
internal coordinates. Because the c.m. motion



C. M. VINCENT

can be specified at will, matrix elements of
operators that act only on internal coordinates
are of prime interest. Let A;„,be such an internal
operator. Supposing E to be nearly separable,
F-4,P, can be regarded as a small quantity of
first order. The arbitrary-projection method
leads to an internal wave function that may be ex-
panded in terms of the canonical internal states
g, as follows

4(r) =Z a&&gl+&&0& (r).
j=0

For the expectation of A;„1,this gives

&ylA'. Ie& =Z a;&gI+i& ~~*&+;Ig&&e( I». Iy; & .

In this expression there are cross terms between
the large component g,(r) and the first-order small
terms P, (iso) Th.erefore the deviation from the
BIWF result is of first order. There is therefore
no reason to believe that the projection method
with arbitrary g(R) gives any improvement. In
fact, for the cross terms to be absent, it is neces-
sary for g to be orthogonal to all +j that belong
to nonvanishing eigenvalues of D (except 4~). An
example of the failure of arbitrary projection
methods is mentioned by Ernst, Shakin, and
Thaler. ' They remark that the use of an arbitrary
g(R) does not necessarily lower the ground-state
energy. The case of off-diagonal elements is
similar to that of diagonal elements, and nothing
new emerges from it.

4. CRITIQUE OF THE GARTENHAUS-SCHKARTZ

PRESCRIPTION

In calculating matrix elements of internal opera-
tors between internal wave functions, explicit con-
struction of the internal wave functions can ap-
parently be avoided by a method due to Gartenhaus
and Schwartz (GS).' For two nonseparable approxi-
mate eigenfunctions of H;„,denoted by E, and J"„
GS point out that the functions defined by

=limUAE„(n =1, 2)
A

depend on r only, where the unitary operator UA

depends on the parameter A as follows:

U jA (,JtP+PR)

For any internal operator A;„1,GS derive the for-
mal result

&g oaslA;„,loess& =lim&Enl UA 'A;„,U~ IFs& (o, li= lp 2).

(9)
The method is appealing, because

lim U~ A;„tUA
A~~

is easy to evaluate. In fact, since A. t commutes
with R and P,

lim UA A, ;„,UA =A;„,.
A~~

Equation (9) then gives

&0 2'l». ~ I 0 os'& =&&.IA;.tlag& (~,tt= 1, 2). (»)
We now show that Eq. (10) cannot be correct as

written, because there exist no internal wave func-
tions that will make the left-hand side equal to the
right-hand side for all possible internal operators
A.;,t. Taking the particular case of a diagonal
matrix element (a = P), and making a canonical
expansion of E„,we can write

&+-IA;. IFA=Z I I'&e;IA. Ie & (»)

Equation (11) is not the expectation of A;„tin any
pure internal state (or wave function) but is in-
stead a weighted average of expectations in many
different internal wave functions. In other words,
the state of iztexna/ motion represented by E is
not representable by a wave function; instead, it
must be represented by a statistical ensemble of
internal wave functions.

It is easy to show that

&&. IA. IF &=tr(A. d.),
where d„is the internal density matrix defined
by Eq. (4a). This density matrix represents a
state describable by a wave function p(r) (pure
state) if and only if it is of the form

(r ld Ir') =y(r)y(r')*.

It follows from Eq. (12) that

tr(d ') =(trd„)'.

(12)

(13)

Is it possible that the internal density matrix some-
times corresponds to an internal wave functions
Appendix III shows that Eq. (13) (the condition for
d„to be representable by a wave function) is satis-
fied if and only if E„(R,r) is separable. Hence,
except in the trivial case of separable E„,d„does
not correspond to any internal &eave function This.
establishes our conclusion that it is impossible to
find internal wave functions P ~ and P 8 such that
Eq. (10) holds for all possible A;„,.

Tl~e nonexistence of g ~ and g ~8 that satisfy
Eq. (10) should not be surprising. Singular limit-
ing operations often lead to such paradoxes. (For
example, the unitary operator e'A" tends to zero
in the limit A-~, in the sense that its matrix
elements between any square- integrable functions
tend to zero. ) Previous authors do not seem to
have been aware of this defect of the GS method.
However, Palumbo' has commented that the GS
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matrix elements [Eq. (10)] are equal to those that
result from direct use of the uncorrected wave
functions E and Es . From this, he concludes that
the GS method cannot satisfactorily correct for
c.m. motion. Furthermore, Ernst, Shakin, and
Thaler' have shown that Eq. (9) gives a different
result if UA and UA

' are replaced by U„and UA

where A, and A, tend to infinity independently.
Although the GS method does not correspond to

the use of internal wave functions, it is not com-
pletely invalid. To compare the GS result with

the BIWF result for expectation values, we write

&F I&;. I
F ) =&q..l &;. Ie .)+Z Is( I'

)=1

«e- I&;. It- &- &e..l&. Ie..) ).

The first term is the BIWF result. If we regard
a, (i e0) as small quantities of first order, we see
that the GS result differs from the BIFF only by
terms of second order. In this sense, the GS

prescription gives better results for diagonal
matrix elements than projection methods with

arbitrary choice of g(R).
Next consider off-diagonal matrix elements. In

this case, E, and E, must each be expanded in terms
of eigenfunctions of the corresponding density
operators d„D,and d„a,. These expansions can
be written

F„=ga„,y„,(R)y„,(r) (a= 1, 2) .

Because 4„.and +» are eigenfunctions of dif-
ferent operators, the functions with i4j need not

be orthogonal. In the expansion

fj
the cross terms between large and small compo-
nents of the wave function survive. Therefore,
the GS result for an off-diagonal matrix element

differs from the BIWF result by terms of fi~st
order in a„(ix0) and a„(je0). Thus we conclude
that the GS result is systematically less reliable
for off-diagonal elements than for expectation
values.

5. DISCUSSION AND CONCLUSIONS

Surprisingly, it has been shown that a given
nonseparable approximate eigenfunction of II,
can be improved without further reference to H;„„
by exploiting the separation property of the exact
eigenfunction. To be sure of an improvement, one

must project with the optimal c.m. wave function
4', (R). If the calculation of 4, (R) is impracticable,
one may calculate approximate matrix elements of
observables without correcting the wave functions
for c.m. motion. Then, as always, it is appro-
priate to use internal operators. The resulting
procedure is exactly the GS prescription for cal-
culating matrix elements. For diagonal elements,
this turns out to be preferable to correcting for
c.m. motion by a projection that uses an arbitrary
c.m. wave function. It is therefore better to dis-
regard the c.m. "problem" than to treat it arbi-
trarily.

It may be possible to extend the present analysis
to other forms of collective motion —in particular,
rotations of atomic nuclei. The separation proper-
ty (2) will no longer be exact, and the rotational
coordinates (analogous to R) will no longer be

uniquely defined. However, there is hope of using
the present theory to define a best intrinsic state
[analogous to g(r)] .
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APPENDIX I: DERIVATION OF RESULTS (a)-(d)

(a) If (t), is an eigenfunction of d belonging to the eigenvalue A, , then the function

e(B)=f dv g, (~)"E(R,~)

is an eigenfunction of D (belonging to eigenvalue A, , ), because

ao(a) = J dH (a(Dl&')o(&')

dR' dr'ER, r' ER', r' * dr, r *ER',r

B,r' dr dR'ER', r ER', r' *g, r *

dr'ER, r' dr r d r', r *= dr'ER, r' dg, r'

dr 'F(R, r')x, )t), (r')*.
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Hence 4(R) =A., 4(R) is proportional to 4', (R), the ith normalized eigenfunction of D. Similarly, every
eigenvalue of D is an eigenvalue of d. D is a Hilbert-Schmidt operator by Schwarz s inequality, because

dR dr I" A, r ' dR' Cr' EA', r'

Therefore the eigenvalues A., are all discrete, and zero is their only possible limit point. The fact that
trD =+",1„=1implies that A.„-Ofaster than n '.

(b) The overlap

a= dr dREA, r *4 8

can be written as a matrix element

a=&@l&ie&-=safer@&&&&&&l&ir&&&r&

of an operator Q which maps internal wave functions into c.m. wave functions. 0 must have the kernel

&R(Q(r) = F(R, r)*.

By direct calculation,

If we define an orthogonal projection Q by

(14)

(15)

Q'=0= Q' H(R)*=O,

we can use E&ls. (14) and (15) to obtain

(s(' =&y I d ly) —
&y (QtQQ(y) . (16)

Both terms on the right of E&1. (16) are nonnegative. Therefore (a(' will be greatest when the first term
is maximized and the second term is minimized. For normalized g, the first term is maximized by taking

g = |i,(the eigenfunction of d belonging to its largest eigenvalue). Fortunately, the second term can simul
taneously be reduced to zero by choosing 4=N(Qi(&)*, which is normalized if (N('= (&g(QtQ(g)( '. This
gives

O' = N(Qy) ~ = N dr F(R, r)P* =9, .

The maximum possible value of (a(' is simply the maximum possible value of &P(d(g), which is A,
„

the
largest eigenvalue of d (or D)

(c) F(R, r) may be expanded in terms of g,. (r), any complete orthonormal set of functions of r, as fol-
lows

F(R, r)=g F, (R)y,. (r).

In general, the coefficient functions

F; (R) = dr F(R, r)&1&, (r)*.
are not orthogonal functions of A. However, when the g, are chosen to be orthogonal eigenfunctions of d,
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the scalar product of I, and E,. is

dRE&(B)*F (Bi)= dR drfdv F('R, r)" ((r)F(R, r') (f(r')

dr dr'(I),*(r'.)(r'Id lr)y, (r)

= X( dr )I)i (r))i); (r) = l(, t 5() .

It follows that different E, (R) are orthogonal. By
result (a), F, is proportional to the normalized
eigenfunction 4,. of D. That is, there exist normal-
ization constants a; such that

It can be shown directly that

5=&F,IF.&-2 Ite&EIE.&.Z &e, ld[y, &. (21)

r,. =a, +, . (19}
By combining Eqs. (20) and (21), it follows that

From Eq. (18), it follows that

la, I'=x,

The canonical expansion (5) results when Eq. (19)
is substituted into Eq. (1V).

(d) The proof given is an adaptation of the proof
by Smith of a similar theorem relating to reduced
density matrices. '

In Dirac notation for scalar products, the quan-
tity to be minimized is

(F-F„lF-F„)= 1 —2Re&F I Fn& + (F„I E„&. (20)

Define the nonnegative quantity

N 1

(22)&F- F, IF-F.&
= I-2 &e. Idl~, &+5.

f =0

This quantity is minimized by maximizing the sec-
ond term, and minimizing 6. The second term is
an absolute maximum (for all possible orthonorrnaf
sets Q, ) when (j), =(I)„the I)t eigenfunctions of d be-
longing to its N largest eigenvalues. With this
choice of (t), , one can make 5 an absolute minimum
(in fact, zero). The correct choice is clearly

4, (ft) = drr(It, r)y, (r)" = F,(ft) .

By Eq. (19), this is

e, (ft) = a, e, (R) .

It follows that (F E~l E- E~-& is a minimum when
E„is the first f(t terms of the canonical expansion(5).

APPENMX II: PROOF THAT THE BIWF LOWERS THE GROUND-STATE ENERGY

Let 1I be the orthogonal projection on (I)„.. . the internal wave function of the ground state In Dir.ac no-
tation, Eq. (Va) becomes

&&.III;., Iy. & =&... +~,
and Eq. (Vb) becomes

&(j. I«I(j.&
=I- ~

For the expectation values with i 4o we have

&(j Iff;.,I(j, &=&(j, l«ff«ly, &+&y, l(1-«}a;„,(I-«)l(j), &

)E....&e, I« le, &.E,&y, l(1- «)ly, &,

because «(I), belongs to the eigenva ue E, , and (1—«)(j),. is a linear combination of eigenfunctions of H;„(
that belong to E, and higher eigenvalues. Now because (j), , is normalized,

trll = tr(lp„,&&(I),., I) = 1=&/ I«I(l), &++ &Q, I«I(I), & .

(23)

By applying Eq. (Vb), it then follows that

&y, l«lie, & ~ (t ~ 0). (24)
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By applying Eqs. (24) and (Va) to the inequality (28), it can be shown that

&y, I If., ly, &
—&y.lR. IO.» (E,—R, .)(I- ~) —A

Finally, Eq. (25) can be applied to the canonical expansion (5) to show that

(25)

&FIICK;., IF& Q-. Iffy;. ,Ie.& =Z lu I'(&e, IR., Ie &-&y. lff. Ie.&)

&g Is, I'[(E,-E,„)(I-s)-d, ]
f=l

=(I- Is. l')[(E, -Es. .)(I- e)-d].
If s and d, are neglected, this reduces to Eq. (8).

APPENDIX III: PURITY OF d AND SEPARABILITY OF F

Suppose d represents a pure internal state, so that

r)( 'd) ()rrtl'=-f mfa (l&rlslr &I' —
& lair&&r Idlr &')=0.

In terms of E(R, r), the integrand is

(28)

2I = dR F(R, r) ¹E(R, r') — dR E(R, r)*E(R,r) dR 'E(R ', r)*E(R ', r) (27)

If E(R, r) and E(R, r') are regarded as two functions of R (depending on parameters r and r'), Schwarz's
inequality" states that

g «p (28)

Therefore Eq. (28) can be satisfied only if I =0 for all r and r . However, the equality in Eq. (28) holds
only if F(R, r) and F(R, r ) are proportional (considered as functions of R). That is, choosing some fixed
value of r',

E(R, r) =G(r)F(R, r )

In other words, E(R, r) must be separable in R and r
The result can be generalized to apply to a ]ransition density matrix of the type

&~ld,.(r' f&dRE, (R, r)E, (A, r ), '

and density matrices

rl &a lr & fda 5„(R',r)E„(z-,r )' (a =),'2) .

The condition for d» to correspond to two pure internal states is

tr(d„d~t)—(trd„)(trd„)= 0.
Schwarz s inequality can be used to show that this implies that both E,(R, r) and Ea(R, r) are separable in
8 and r.
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