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It is shown that a given approximate eigenfunction F of a many-body Hamiltonian can be
improved by exploiting the separation of the exact eigenfunction in internal and c¢.m. coordi-
nates. The method given leads reliably to a lower energy for the ground state, without re-
quiring the solution of an additional dynamical problem. The best internal wave function
(BIWF) is taken to be the internal factor of the separable wave function that has the largest
possible overlap with F. The existence, uniqueness, and construction of the BIWF are de-
rived. A canonical expansion F =) a;¥;; is described, in which ¥; are orthogonal functions
of the c.m. coordinates, and y; are orthogonal functions of the internal coordinates. The
canonical expansion is shown to converge faster than any other. It is applied to the discus-
sion of the ‘“projection” or “generator-coordinate” treatment of c.m. motion using arbitrary
c.m. wave functions. It is shown that the Gartenhaus-Schwartz prescription is not equivalent
to the use of any internal wave function, and gives systematically worse results for off-diag-
onal matrix elements than for expectation values.
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1. INTRODUCTION

In the nonrelativistic quantum-mechanical treat-
ment of an isolated system, the Hamiltonian can
always be written in the form®

H= Hy + (2M)7'P?, (1)

where P and M are the total momentum and mass,
respectively, and Hi, acts only on internal vari-
ables. This separation is illustrated (quite ade-
quately for the purposes of the present paper) by

a system of two particles moving in one dimension.

The coordinates, masses, and momenta of the
particles are respectively denoted by x;, m,, and
p; for i =1, 2. Then the c.m. coordinate R and
total momentum P are defined by

My X, + M, X,
R=T00T0% | =P +P,.

In this particular example, the only internal co-
ordinate is

r= xl - xz H
and its conjugate momentum is
p =U .21 — 22
my n)’
in terms of the reduced mass

-

u my+m,
Let V(r) be the interaction between the particles.
Then Eq. (1) is satisfied with

Hy =Qu)" 0%+ V).

It is easily seen that H;,, commutes with both
R and P. This is a formal way of saying that

[

H,, acts only on the internal coordinates. The
validity of the following considerations is not
restricted by the presence of only a single in-
ternal coordinate 7 in the example chosen for
illustration.

Rotational invariance and other well-known
symmetries are often valuable in simplifying the
solution of the Schrddinger equation. In the same
way, one would like to exploit the separation of
H that Eq. (1) expresses. An exact eigenfunction
F of the Hamiltonian H, which satisfies

HF =EF,
will always be of the form
Fpr(R,7) = e*P'RBy(r),

where P’ is an eigenvalue of the total momentum.
Here () will be called the internal wave function.
It is natural® to look for an eigenfunction of H,
rather than of H. Exact eigenfunctions of H;,

are always of the form

F‘cxact (Rs 7) = ‘I’(R)d) (7’) . (2)

Because H,, does not act on R, any c.m. wave
function ¥(R) is acceptable. Therefore, it is the
separability in R and 7 that is essential to good
c.m. behavior, rather than the particular form
e*P'® for the c.m. wave function.

Many approximation schemes for the many-
particle problem in quantum mechanics lead to
wave functions that lack the property (2). An
important example of such a scheme is the shell-
model method, in which a translationally non-
invariant single-particle potential is introduced.
Several approaches to the resulting “c.m. problem”
have been devised. In discussing these, it is
necessary to clearly recognize that Eq. (2) is no
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more essential than other fundamental properties
of the exact eigenfunction. Every approximate
eigenfunction of the Hamiltonian violates at least
one fundamental requirement on the exact eigen-
state (namely the factorizability of its time de-
pendence). It is nevertheless possible to make
meaningful calculations using such a wave function.
Similarly, the separability property (2) need not
be requived of an approximate wave function. How-
ever (as will be shown) Eq. (2) can be used to im -
prove a given approximate wave function.

Most treatments of the c.m. motion involve the
construction of an internal wave function zp(}f) from
the given approximate wave function F(R,7). Many
such treatments belong to the class of “projection
methods” or “generator-coordinate methods”.® In
methods of this type, the internal wave function is
taken to be

90 =N [aR gR)F (R, 7), 3)

where N is a normalization constant and g (R) is a
c.m. wave function. Varions authors have chosen
the c.m. wave function g (R) in various ways.®
Popular choices have been 8(R), e*?'%, and a har-
monic-oscillator ground state.

It will be shown that projection methods with
arbitrarily chosen g (R) have little claim to special
merit. Their use is not always disastrous, how-
ever, because if F satisfies Eq. (2) exactly, the
choice of g(R) does not affect the resulting internal
state (). For example, all projection methods
will give the same results when applied to an anti-
symmetric shell-model state constructed from a
ground-state harmonic-oscillator configuration,
because for this case the wave function is separ-
able.* If the separability of F is not exact, the
choice of g(R) does make some difference, but if
F is nearly separable, the difference is likely to
be small. The present work therefore concentrates
on the nontrivial case where F is not separable.

Ernst, Shakin, and Thaler® have described a pro-
jection method in which g (R) is chosen to minimize
the expectation (¢| Hi, |¢) . Not surprisingly, this
choice of g(R) leads to the y(r) that has the largest
possible overlap with the true ground state of H,.
However, by insisting too heavily on the separa-
bility requirement [ Eq. (2)], this approach leads
to an unnecessarily difficult procedure. Pre-

~sumably, as much effort as possible has already
been devoted to the calculation of F(R,). If it
were technically feasible to minimize {y|H, |¢)
with an internal wave function y of the same
generality as F, this would more easily be done
directly, without the intrusion of an unseparated
wave function F(R,7). After all, it is easy to con-
struct a family of internal wave functions. What is
not so easy is to diagonalize H;, in a space of in-

ternal wave functions, and in the method of Ernst,
Shakin, and Thaler this task remains to be done.
Given F(R,7), the real need is for a reliable
method of choosing g (R) without further dynamical
calculation. The present paper will describe such
a method.

The rational choice of g(R) always involves a dif-
ficult calculation. Indeed, the method to be de-
scribed is perhaps more useful as a standard with
which other nondynamical methods can be com-
pared, than as a tool for practical calculations.
In Sec. 2, the method is described, and in Sec.

3 it is applied to the discussion of projection
methods. Section 4 contains a discussion and
critique of the Gartenhaus-Schwartz prescription,
which is shown not to correspond to the use of any
internal wave function.

2. OPTIMAL SEPARATION OF INTERNAL
AND c.m. VARIABLES

The proposed construction of the best separable
approximation ¥(R)y(r) is most compactly de-
scribed by introducing Hermitian c¢.m. and internal
density operators D and d, defined by the kernels

(rldlr?) = far PR, »)FR, 7', (42)

RIDIRY = [dr FR, " FR,7)*. (4b)
It is assumed that F is a bound state, so that
JdRr[ar|F|?=1. The following mathematical re-
sults are proved in Appendix I:

(a) The operators D and d have the same eigen-
values A;. The eigenvalues are all discrete, and

satisfy
12220 20,2 ¢ 20,

The only possible point of condensation of eigen-
values is A =0. The corresponding eigenfunctions
¥, and y; can be taken as orthonormal sets, satis-

fying

DY =0, @ =0 Y ,
and

(1) =Co, 9, =6,; -

(b) Of all possible normalized separable wave
functions ¥(R)y(r), the one that has the greatest
possible overlap with F(R,7)[i.e., the maximum
value of [dR [dr F(R,7)*¥(R)y(r)] is obtained by
choosing ¥(R) =¥, and (») =4,. That is, the opti-
mal c.m. and internal wave functions are, re-
spectively, the eigenfunctions of D and d that
belong to the largest eigenvalue.

(¢) F can be expanded in the form

FR,7) 2 a, ¥y, Ry, (7), (5)
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where ¥; and y,; are normalized eigenfunctions of
D and d, respectively, and |a;|2=x,. (Note that
both the ¥, and the y, are orthogonal sets.)

(d) Of all possible N-term sums of the form

N-1
Fy =iZ)=o b, 9, (R)¢, (r)

(with ¢, an orthonormal set and ®; arbitrary), the
one that minimizes [dR [dr| Fy—- F|? is

Nel
Fy =}Z_;Oai ¥4y,

that is, the first N terms of (5).

It is convenient to refer to Eq. (5) as the “canon-
ical expansion of F”. Result (d) shows that the
canonical expansion of F converges more rapidly
than any other.

The central result of the present work is that
¥o(7) is the best possible internal wave function
that can be derived from F(R,7) by purely kine-
matic means. By multiplying Eq. (5) by ¥,(R)*
and integrating with respect to R, it follows that

bor) =a, [AR¥(R)*F(R,7). (6)

Therefore y,, the best internal wave function
(BIWF), is obtained by applying the projection
method (3) to F with g (R)=¥,(R).

The BIWF will be a better approximation to an
exact eigenstate of H,, than is the nonseparable
wave function F, provided that F is already very
nearly an eigenstate of Hi,,. A more precise
statement applies when F is an approximation to
g, the ground-state wave function, which be-
longs to the eigenvalue Egs. of Hin,. Suppose that
the y, derived from F is a good approximation to
Pgs.s SO that

[ dr s Hoto=Ego a, (1a)
where A is small. Then it follows that
2
J‘dr‘pg*s‘po =1"€’ (7b)

where € is small and positive. In Appendix II con-
ditions (7) are shown to imply that

defd’rF*HmF— fd'rl[):H,-ml[)o>1]>0, (8)
where

71“(1 - laolz)(E1— E;:.s.) 3

provided that € <« 1 and AKE, - Egs., E, being the
energy of the first excited state. It follows that if
F is a sufficiently good approximation to ¢, , the
BIWF y, leads to a lower expectation value of Hiy,
than is obtained from the original nonseparable
wave function F. If |g,|? is not close to unity,

the lowering of the ground-state energy may be
considerable.

In summary, the BIWF y, [which results by pro-
jecting with the optimal choice of g(R), namely
Yy(R)] will always be an improvement on the non-
separable state F, provided that F is very nearly
an eigenfunction of Hi,. It is rather remarkable
that one can gain an improvement without expend-
ing further effort on dynamical calculations. How-
ever, the calculation of y, is quite laborious.
First, D must be constructed. This will involve
integration over all internal coordinates, which is
difficult, though easier than the construction of
the matrix of H,, in internal states. Next, the
largest eigenvalue A, of D and its corresponding
eigenfunction ¥, must be found. Because D is a
Hilbert-Schmidt operator, © it can be arbitrarily
well represented by a finite matrix. Therefore
there is no theoretical obstacle to this step, and
it is appreciably easier than the diagonalization of
a many-body internal Hamiltonian. The evaluation
of , from Eq. (6) is comparatively easy.

Our choice of y(r) =y,(r) differs from the internal
wave function constructed by Ernst, Shakin, and
Thaler.® The function F(R,7) can be regarded as
a family of functions of », labeled by a parameter
R. The internal wave function of Ernst, Shakin,
and Thaler is an eigenfunction of Hj, in the sub-
space of Hilbert space that is spanned by the
family F(R,7). Our internal wave function ()
lies in the same subspace, but is not necessarily
an eigenfunction of Hi, in this subspace. There-
fore, y,(r) will not give as low a ground-state
energy as the Ernst, Shakin, and Thaler wave
function. However, i,(r) is much easier to calcu-
late, and also guarantees a lower ground-state
energy than F(R,7).

3. COMPARISON OF ARBITRARY AND
OPTIMAL PROJECTION METHODS

The chief use of wave functions is to calculate
matrix elements of physically interesting opera-
tors. The canonical expansion of F(R,7) will now
be used to discuss matrix elements of operators
between wave functions obtained by projection
methods of the type (3) using arbitrary c.m. wave
functions g(R). The BIWF y, will be taken as a
standard of comparison. Any operator A can be
expanded as a sum of products of operators that
act only on the internal coordinates with opera-
tors that act only on the c.m. By the separation
property (2), it follows that the matrix elements
of any operator between eigenstates of H;, can be
expressed in terms of matrix elements (between
c.m. wave functions) of operators that act only on
the c.m., and matrix elements (between internal
wave functions) of operators that act only on the
internal coordinates. Because the c.m. motion
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can be specified at will, matrix elements of
operators that act only on internal coordinates
are of prime interest. Let Aj, be such an internal
operator. Supposing F to be nearly separable,
F-¥y, can be regarded as a small quantity of
first order. The arbitrary-projection method
leads to an internal wave function that may be ex-
panded in terms of the canonical internal states

P, as follows

‘l’("):éai(gl‘l‘i)%(r)-

For the expectation of A;,, this gives
<¢‘Aint,¢>. =2 a¢<g|‘1’;) a}"(‘l’j|g)<¢; IAimlll)j) .
ij

In this expression there are cross terms between
the large component ,(r) and the first-order small
terms y; (i#0). Therefore the deviation from the
BIWF result is of first order. There is therefore
no reason to believe that the projection method
with arbitrary g (R) gives any improvement. In
fact, for the cross terms to be absent, it is neces-
sary for g to be orthogonal to all ¥; that belong

to nonvanishing eigenvalues of D (except ¥,). An
example of the failure of arbitrary projection
methods is mentioned by Ernst, Shakin, and
Thaler.® They remark that the use of an arbitrary
g (R) does not necessarily lower the ground-state
energy. The case of off-diagonal elements is
similar to that of diagonal elements, and nothing
new emerges from it.

4. CRITIQUE OF THE GARTENHAUS-SCHWARTZ
PRESCRIPTION

In calculating matrix elements of internal opera-
tors between internal wave functions, explicit con-
struction of the internal wave functions can ap-
parently be avoided by a method due to Gartenhaus
and Schwartz (GS).” For two nonseparable approxi-
mate eigenfunctions of H;,, denoted by F, and F,,
GS point out that the functions defined by

PSS =limU,F, (a=1,2)
Ao
depend on » only, where the unitary operator U,
depends on the parameter A as follows:

Uy = A RP+PR)
For any internal operator Aj,, GS derive the for-
mal result '
@ &%l A |9 G =Lim(Fo| U, " Ain G| F) (0, =1, 2).
9
The method is appealing, because
LimU™ A4, Uy

A> o0

is easy to evaluate. In fact, since Aj,; commutes
with R and P,
lim q\-lAint UA =Aint .

Ao
Equation (9) then gives
<1l) gS'Aint IIP%S) =<Fo¢ ,AintlFB> (a,ﬁ= 1, 2). (10)

We now show that Eq. (10) cannot be correct as
written, because there exist no internal wave func-
tions that will make the left-hand side equal to the
right-hand side for all possible internal operators
Ain. Taking the particular case of a diagonal
matrix element (¢ =8), and making a canonical
expansion of F,, we can write

(Fol A Fop i’j 1 12(ers | Aine | ¥y - (11)

Equation (11) is not the expectation of Ay, in any
pure internal state (or wave function) but is in-
stead a weighted average of expectations in many
different internal wave functions. In other words,
the state of infernal motion represented by F, is
not representable by a wave function; instead, it
must be represented by a statistical ensemble of
internal wave functions.

It is easy to show that

<Fa le’nt ,Fo() =tr(Ain da) s

where d, is the internal density matrix defined
by Eq. (4a). This density matrix represents a
state describable by a wave function y(») (pure
state) if and only if it is of the form

O lde|7") =)l )*. (12)

It follows from Eq. (12) that
tr(dy?) = (trd,)? . (13)

Is it possible that the internal density matrix some-
times corresponds to an internal wave function?
Appendix III shows that Eq. (13) (the condition for
dy to be representable by a wave function) is satis-
fied if and only if F,(R, ) is separable. Hence,
except in the trivial case of separable F,, d, does
not covvespond to any internal wave function. This
establishes our conclusion that it is impossible to
find internal wave functions y $5 and y ¢° such that
Eq. (10) holds for all possible Ain .

TLe nonexistence of 5 and y $S that satisfy
Eq. (10) should not be surprising. Singular limit-
ing operations often lead to such paradoxes. (For
example, the unitary operator e**¥ tends to zero
in the limit A-, in the sense that its matrix
elements between any square-integrable functions
tend to zero.) Previous authors do not seem to
have been aware of this defect of the GS method.
However, Palumbo® has commented that the GS
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matrix elements [Eq. (10)] are equal to those that
result from direct use of the uncorrected wave
functions F, and F3. From this, he concludes that
the GS method cannot satisfactorily correct for
c.m. motion. Furthermore, Ernst, Shakin, and
Thaler? have shown that Eq. (9) gives a different
result if U, and U,™" are replaced by U and UAZ"I,
where A, and A, tend to infinity independently.
Although the GS method does not correspond to
the use of internal wave functions, it is not com-
pletely invalid. To compare the GS result with
the BIWF result for expectation values, we write

<FulAim I Fa) =<wao| Aint Izpoco >+4IE Iai lz
=1

X ((‘/)ai IAimI ¢’rx¢> - <d)otolAint I‘Puo) ).

The first term is the BIWF result. If we regard
a; (i #0) as small quantities of first order, we see
that the GS result differs from the BIWF only by
terms of second order. In this sense, the GS
prescription gives beiter results for diagonal
matrix elements than projection methods with
arbitrary choice of g(R).

Next consider off-diagonal matrix elements. In
this case, F, and F, must each be expanded in terms
of eigenfunctions of the corresponding density
operators d,, D, and d,, D,. These expansions can
be written

E, =‘2 O Pay (R)(poq (r) (a= 1, 2).

Because ¥,; and ¥,; are eigenfunctions of dif-
ferent operators, the functions with 7 #; need not
be orthogonal. In the expansion

(R lAintI I’é) =E al)'; ”2j<‘1'1j| ‘1’21> <¢1i |Aint lll)zj) ’
i

the cross terms between large and small compo-
nents of the wave function survive. Therefore,
the GS result for an off-diagonal matrix element

differs from the BIWF result by terms of first
order in a;; (i #0) and a,; (j #0). Thus we conclude
that the GS result is systematically less reliable
for off-diagonal elements than for expectation
values.

5. DISCUSSION AND CONCLUSIONS

Surprisingly, it has been shown that a given
nonseparable approximate eigenfunction of H;,
can be improved without further reference to Hin,
by exploiting the separation property of the exact
eigenfunction. To be sure of an improvement, one
must project with the optimal c¢.m. wave function
¥ (R). If the calculation of ¥, (R) is impracticable,
one may calculate approximate matrix elements of
observables without correcting the wave functions
for ¢c.m. motion. Then, as always, it is appro-
priate to use internal operators. The resulting
procedure is exactly the GS prescription for cal-
culating matrix elements. For diagonal elements,
this turns out to be preferable to correcting for
c.m. motion by a projection that uses an arbitrary
c.m. wave function. It is therefore better to dis-
regard the c.m. “problem” than to treat it arbi-
trarily.

It may be possible to extend the present analysis
to other forms of collective motion—in particular,
rotations of atomic nuclei. The separation proper-
ty (2) will no longer be exact, and the rotational
coordinates (analogous to R) will no longer be
uniquely defined. However, there is hope of using
the present theory to define a best intrinsic state
[analogous to ¥(#)].
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APPENDIX I: DERIVATION OF RESULTS (a)-(d)

(a) If y, is an eigenfunction of d belonging to the eigenvalue x;, then the function

@(R)zfd'r Zpg (7)*F(R,T)

is an eigenfunction of D (belonging to eigenvalue 1;), because

D<I>(R)=de’(R|DlR’)<I>(R')

:del fd’}"F(R,T')F(R',’V')*fd’)’ wi ('r)*F(R’,r)
=fdr’F(R,r’)[drde'F(R', PVFR', "), (r)*
=fd1"F(R,'r’)fd1f(r|dlr’) zp,('r)*=fdr’F(R,r')[dz/),(r')]*

= fdr'F(R, v ().
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Hence ®(R)=2,;®(R) is proportional to ¥, (R), the ith normalized eigenfunction of D. Similarly, every
eigenvalue of D is an eigenvalue of d. D is a Hilbert-Schmidt operator by Schwarz’s inequality, because

2

tr(D?) = de de'UdR F(R, 7)F(R', 7)*
<defdr|F(R,r)Fde'fdr'lF(R',r')z=1.
Therefore the eigenvalues ); are all discrete, and zero is their only possible limit point.” The fact that

trD =352, =1 implies that 1,-0 faster than ™!,
(b) The overlap

a= fdrde F(R, 7) ¥ (R)y(r)
can be written as a matrix element

a=(¥|21y) = [ar [ ar w@RXRI97) 4(7) (14)
of an operator © which maps internal wave functions into ¢.m. wave functions. £ must have the kernel

(RIQIr)=FR,r)*.

By direct calculation,

Q'e=d. (15)
If we define an orthogonal projection @ by

Q*=Q=Q", QU¥(R)*=0,
we can use Eqgs. (14) and (15) to obtain

lal*=Cypld [p) - ¥ 127Q0ly) . (16)

Both terms on the right of Eq. (16) are nonnegative. Therefore |a|? will be greatest when the first term
is maximized and the second term is minimized. For normalized ¥, the first term is maximized by taking

i = o (the eigenfunction of d belonging to its largest eigenvalue). Fortunately, the second term can simul-
taneously be reduced to zero by choosing ¥ = N(Qy)*, which is normalized if |[N|?= [(y|QTQ[yp)|~*. This

gives
¥ = N(Qy)* = Nfdv F(R, »)p* =¥, .
The maximum possible value of |a|? is simply the maximum possible value of (y[d[p), which is A,, the

largest eigenvalue of d (or D).
() F(R,7) may be expanded in terms of ¢; (), any complete orthonormal set:of functions of 7, as fol-

lows

F(R,r)=§ F,(R)y; (). (17

In geneval, the coefficient functions

F,(R)= f dr F(R, v)p, (r)*

are not orthogonal functions of R. However, when the i, are chosen to be orthogonal eigenfunctions of d,
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the scalar product of F; and F; is

Jar @y F®)= [ar [ar [ PR, 7y, 0 PR, 7 Wi6r)

= fdrfdr’gb}*(’i")(?”|dl?’)¢; )
=), fdrzp}‘(r)zpi(r):)\ib“.

It follows that different F;(R) are orthogonal. By
result (a), F; is proportional to the normalized
eigenfunction ¥; of D. That is, there exist normal-
ization constants a; such that

Fy=aq;%,. (19)
From Eq. (18), it follows that

'a; 12 = A.'- .
The canonical expansion (5) results when Eq. (19)
is substituted into Eq. (17).

(d) The proof given is an adaptation of the proof
by Smith of a similar theorem relating to reduced
density matrices.°

In Dirac notation for scalar products, the quan-
tity to be minimized is

(F-Fy| F=Fy) =1~ 2Re(F| Fy) +{Fy|Fy) . (20)

Define the nonnegative quantity

N-1
5= [ar
i=0

@0~ [ & F&, 0, 0

(18)

It can be shown directly that
N~1
6 =(Fy| Fy) ~ 2 Re(FIFN>+;3 (oldl ) . (21)
=0

By combining Egs. (20) and (21), it follows that

(Fe By P=Fy) =13 (9,1 d] ¢, +5. (22)
izo

This quantity is minimized by maximizing the sec-
ond term, and minimizing 6. The second term is
an absolute maximum (for all possible orthonormal
sets ¢;) when ¢,=9,, the N eigenfunctions of d be-
longing to its N largest eigenvalues. With this
choice of ¢;, one can make § an absolute minimum
(in fact, zero). The correct choice is clearly

8,(R)= f ar F(R, vYp, (r)* = F,(R) .
By Eq. (19), this is

®,(R)=a;%(R).

It follows that (F~ Fy|F ~ F) is a minimum when
Fy is the first N terms of the canonical expansion (5).

APPENDIX II: PROOF THAT THE BIWF LOWERS THE GROUND-STATE ENERGY

Let II be the orthogonal projection on ¢, , the internal wave function of the ground state. In Dirac no-

tation, Eq. (7a) becomes
QolHin |90) = Egs. + A,

and Eq. (7b) becomes
Wollllyo) =1~ €.

For the expectation values with ¢ #0 we have

g il 9 = oy (AT, ) + @, | (1 = I i1 = 10 |9,

>Ego {0, [T 9;) + B, | (1=l y,)

(23)

because IIp; belongs to the eigenvalue E,, and (1-1I)p; is a linear combination of eigenfunctions of Hj,
that belong to E,; and higher eigenvalues. Now because y,; is normalized,

trn=tr(l¢g.s.><«pg.s.l)=1=<zpoln!¢o>+§O<¢AHI¢‘> .

By applying Eq. (7b), it then follows that
(lp; “ﬂ%) <e (i =+0).

(24)
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By applying Eqgs. (24) and (7a) to the inequality (23), it can be shown that

<¢4 ‘Hint l‘/’i) - <¢0'Him‘¢o> > (E1 - ‘Eg.s,)(l - €)= A.
Finally, Eq. (25) can be applied to the canonical expansion (5) to show that

(25)

]

(F| Hing FY = () Hingl ) ;} [ @ |2 | Bl 3 = (o | Hine [0} )

>;2.; [a, [2[(E, ~ Eqs)(1- €)— A]

= (1 - Iao '2)[(E1 - Eg.s.)(l - 6) - A] .
If € and A are neglected, this reduces to Eq. (8).
APPENDIX III: PURITY OF d AND SEPARABILITY OF F

Suppose d represents a pure internal state, so that
tr(@®) - tray = [ @ [ (|(rlaly) 2= rlaln) olalr ) =0. (26)
In terms of F(R,7), the integrand is

2..[ deF(R,r)*F(R,r)][ de/F(R',r)*F(R',r)] . (27)

I= UdR F(R, 7)*F(R,7")

If F(R,7) and F(R,7’) are regarded as two functions of R (depending on parameters » and »’), Schwarz’s
inequality!! states that
I<0. (28)

Therefore Eq. (26) can be satisfied only if 7=0 for all » and »’/. However, the equality in Eq. (28) holds
only if F(R,7) and F(R,7’) are proportional (considered as functions of R). That is, choosing some fixed

value of /,
FR,7)=G)F(R,r").

In other words, F(R,7) must be separable in R and 7.
The result can be generalized to apply to a fransition density matrix of the type

rldylr') = fdzc F(R,7)F,(R,7")*,

and density matrices

(‘rldaa]r'>=de F(R,»)E,(R,7')* (a=1,2).

The condition for d,, to correspond to two pure internal states is

tr(d,dy) = (trd,,)(trd,,) =0.
Schwarz’s inequality can be used to show that this implies that both F(R,7) and E(R, ) are separable in
R and 7.
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