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Transition Operator for Matrix Potentials: An Application to the Pion-Nucleon Interaction
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The transition operator corresponding to a separable nonlocal and of a matrix-type potential is studied

theoretically. It is shown that the transition operator possesses the same r {or k) dependence and

properties of separability and nonlocality as the potential and that it is also of a matrix type. This
transition operator is then explicitly calculated. A numerical application is made to the simple but

physically important case of the low-energy pion-nucleon interaction. The behavior of the transition

operator coefficients versus the incident energy are discussed in detail for S, I', and D waves.

1. INTRODUCTION

Several nonlocal interactions between quantum
particles have been proposed in the past few
years' ' and have been shown to be very useful. '
The main justifications for using such a type of
interaction are the following: (i) The "true" physi-
cal interactions have to be considered between par-
ticles having some space extension rather than be-
tween point (well-localized) particles and it is
known that the interaction between nonpoint parti-
cles is nonlocal; (ii) in many cases, the problem
of two interacting particles which are more or
less elementary is in fact a many-body problem
so that the resulting potential is of an optical and
noniocal type; (iii) it is well known that if reiati-
vistic corrections are taken into account or if re-
tarded effects or source recoil are correctly
treated (in mesonic theories for example), non-
locality effects appear. Finally, one needs to
emphasize the simplicity of the calculations. In
many cases a nonlocal separable potential allows
us to get through the whole analytical calculation
without any approximation. '

In Sec. 2, we propose a nonlocal separable po-
tential which is characterized by being of a matrix
type and so is a generalisation of the existing non-
local potentials (the utility of this type of potential
has been pointed out elsewhere in the particular
case of the nucleon-nucleon interaction and its
applications to nuclear matter and finite nuclei' ).
The transition operator being often more useful
than the potential itself in practical applications,
we then present a study of the remarkable proper-
ties of this transition operator corresponding to
a matrix potential. A general, explicit, and sim-
ple method for calculating its coefficients will be
given.

In Sec. 3 we make an application of these re-
sults to the case of the pion-nucleon interaction.
This example has been firstly chosen for its im-
portance in the interactions of pions with nuclei
which has now drawn attention due to the imminent

availability of intense pion beams at meson fac-
tories. As a matter of fact, it seems useful and
justified to start from realistic pion-nucleon in-
teractions to obtain good pion-nucleus potentials.
At present, very simple pion-nucleon potentials (as
for example those of Refs. 5 and 6) have been exten-
sively used. In particular, the velocity-dependent
Kisslinger optical model' allowed a better under-
standing of (i) the sensitivity of elastic v'-nucleus
scattering to the pion form factors'; (ii) the pion
elastic scattering from carbon' ' and oxygen, " the
relative neutron-proton distribution in light nu-
clei'" "; (iii) the sensitivity of the pion-nucleus
total cross sections to the assumed off-shell be-
havior of the pion-nucleon scattering amplitude";
and (iv) the energy variation of the effective nu-
clear radius arising from P-wave pion-nucleon
interaction. " However, the nonlocal optical po-
tentials of the Kisslinger type cannot be used in
all cases'~ "and a lot of problems are still to be
solved. " This is one reason why more sophisti-
cated pion-nucleon potentials have been pro-
posed. "'' In Ref. 15, Landau et al. propose a
general method to construct absorptive separable
potentials directly from the phase shifts and ab-
sorption parameters. The result for the pion-nu-
cleon system is an S- and P-wave complex inter-
action satisfying the relativistic Schrodinger equa-
tion and fitting phase shifts and absorption pa-
rameters up to 2.5-GeV/c pion laboratory momen-
tum. From another point of view, the restrictive
case of the low energies seems to be of interest
because in nuclear physics applications, such as
the pion-nucleus scattering, energies greater than
200 MeV (pion laboratory energy) are rarely in-
volved. In addition, the availability of simple
analytical expressions for both the potential and
transition operators is certainly of importance
for these further applications. Thus, we here
use the "realistic" potential of Ref. 2, which fits
the experimental nucleon phase shifts up to the
first energy resonance. This potential is nonlocal
separable and a particular case of the matrix-
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type potential proposed in Ref. 4 and leads to an-
alytical calculations very easy to handle. The in-
terest of considering the transition operator (t)
of a pion-nucleon potential is that, in most non-
relativistic theories of the interaction between
m mesons and nuclear matter or finite nuclei, the
knowledge of the matrix elements of t on and off
the energy shell is needed and that the result de-

pends appreciably on the off-shell behavior of t.
The numerical results for the coefficients defining
t are presented for the relative S, I', and D waves
of the pion-nucleon system; their physical mean-
ing is discussed, particularly the relative impor-
tance of the real and imaginary parts of t versus
the energy.

2. TRANSITION OPERATOR FOR A NONLOCAL

SEPARABLE MATRIX POTENTIAL

A. Definition of the Potential

A general form for a two-body potential operator conserving the spin S', the isospin T', T„and the total
angular momentum J', J, can be written

W=—p p~'„'"Iv,,„)ILS;~~)&L'S; ZMI&v...II'„
I LL'vM 0

where p, is the reduced mass of the relative particle, &~ is the projection operator onto the isotopic state
T, v stands for the quantum numbers SJT, L is the relative orbital angular momentum coupled to the spin
S (J= L+ S) and the kets I LS; JM) are eigenkets of L', S', J', and J, :

I LS; JM) = g I LmL) I Sm, &&LmL Sm, I ZM&.
mLm S

To have a real and Hermitian potential, the A coefficients (in fm ~ 'L "~ must satisfy

(~LL 'v
)

4 gLL 'v gI 'L v
1j tj — jf (3)

If L= L' these coefficients correspond to the "depth of the potential well" in the (Lv) states; if I 0 I, ' they
describe the intensity of the tensor force in the (LI 'v) coupled states (e.g. , 'S, +'D, for the two-nucleon
system). The number of terms in the potential (i and j= 1, n) and the choice of the kets I v;L„) leading to
the r (or k) dependence of the potential will be defined in the practical applications. In relative coordi
nates (r) the potential of Eq. (1) can be expressed in a matrix form

&rl Wl r' ) = Z [&~l v„.)&~lv. .) &~lv. .)j
LL'v M

&v ~ l~')II. I.2 In 1L v

~LL' xLL' . . ~ xLL' (v Ir')2I 22 2n , 2L v

&&Ir s;zm)&L s;z~l ~')J.' (4)

~LL' v ~LL' v . . . ~LL' v
&V

We remark that the usual nonlocal potentials are particular cases of the matrix-type potentials defined
here. If we cancel all the matrix elements ALL ' except the first two diagonal (i.e., if we set ALL "
=BLL 6,, and i =1, 2 only in the whole formulation) we find the potentials of Refs. 1-3. Of course, for the
systems where I is conserved L =L' everywhere.

B. Properties of the Transition Operator

We now propose a demonstration of the following important result: If a potential operator Wis defined

by Eqs. (1)-(3), i.e. , is nonlocal, separable, and of the matrix type, then the transition operator t' has
the same properties and the corresponding r (or k) dependence are the same for Wand t'. From the mathe-
matical point of view, this means that we can write similar expressions for both v and t' operators,
namely,

Q)L,',""(u,)Iv,.L. „)ILS;zm)&L's; zMI &v.L. „Ip„
~ LL'vM jj
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where the t«coefficients will be shown to be complex functions of the incident energy E, =h'k, '/2p, and

implicit functions of the "form factors" of the potential ((k~v,.~,&).

The transition operator satisfying the Lippman-Schwinger equation may be defined by

t' =W+WG 't' =Wg (G'W)" = Q t„'
n=O n=O

with

I q&d q(ql
EO -HO 226 A k0 —g 2 26

and

52

(6a)

(6b)

(6c)

where G' and 6 are the Green's operators corresponding to a divergent and a convergent wave, respec-
tively, (c &0). It is sufficient to show that each term t„' defined by Eqs. (6) has an expression of the same
type as the potential. For n=0, the assertion is evident and it can be verified directly for ~=1. Let us
suppose (induction hypothesis) that the assertion is true for n —1, i.e. ,

Then,

Zp,""(&.)l~;„&l~;~M&«'S; ~II (~.. .II', .
l I L'vN t j

t.' =«. ,G 'W= «. , Iq&d'q(qlG 'lq'&d'q'(q'I W

where we set

2 5 Zo,'," '(&.)l~;,.&l~;&~&l(I-'~;~~I(U...II'„
l 1,1' vile tj

(8)

and

&~IL U(P ) Q Qp~Ll(P )qk ill
(y )AIL'V

i j

(10)

Vfe have used the relation

(-~G ~-
&

2p 5(q —q )
g2 y 2 q2~260

Equation (8) shows that if the operator t„', is nonlocal separable and of a matrix type then t„has the same
properties and the same r (or k) dependence. It follows that the transition operator t ' must have the
form given in Eq. (5). The p. coefficients are combinations of the o coefficients of Eq. (9) and consequently
are functions of the incident energy and of the form factors of the potential through the complex coefficients
q,.',

~ "(k,).

C. Explicit Derivation of the p Coefficients

of the Transition Operator

We indicate here a general but simple method to calculate the coefficients p,',~~ ' of the transition opera-
tor as written in Eq. (5).

The expressions of W, G', t' as written in Eqs. (1), (6b), and (5), respectively, with the above property
and definition [Eqs. (10) and (Il)], lead to the following development of the operator WG't'.

2

Z ZKZ &; 'q,","(",)««,", "("o)ll~;i.&115'JM&(&'5'~~I(~,i"lf'r
+ LL, 'v~ ~j
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We substitute Eqs. (1) and (12) in Eq. (6a) and, identifying this expression of t' with that of Eq. (5), we

obtain

(13)~jLL U(k ) yIL v+Q gyLj qv2j +Uj/L v(k )i'j'
The practical utilization of the preceding equations is very much simplified if, for a given set of quantum
numbers v =SJT, we consider the ALj,

L " coefficients as elements of a matrix (A.) constructed with subma-
trices (X)LL ". In the usual case when two values at most are possible for the orbital momentum, then

(y)LL V (y)LL U

()„)L I, v (y) LI V

(14)

LL'
where the (A.} ' submatrices are explicitly written in Eq. (4). In the same manner for each v, we define
the (p') matrix with the coefficients jjI,',.LL "(k,} as matrix elements and the (q') matrix with matrix ele-
ments q,.',

LL "(k,) defined by

(15)

Thus, Eq. (13) and the preceding definitions lead to the simple matrix equation

(p') = [1 —(&)(q')l '(&). (16)

It is easy to show from this equation and from the symmetry relations of the A. and q coefficients [Eqs. (3)
and (10)] that

p, ."LL'v(k ) =p. 'L L'(k ).

3. APPLICATION TO THE PION-NUCLEON INTERACTION

A. Details of the Calculation

We use the pion-nucleon potential of Ref. 2 which, as mentioned above, is a particular case of the gen-
eral matrix potential of Sec. 2. The corresponding potential operator reads [see the remark under Eq. (4)]

2 2

g f3, "lv,LI,&lf;,'.; dwarf&(. 1.,'; &Ml(v, LI, l
I—'„

i=1 I JNT
(16)

where p, is the reduced mass of the pion-nucleon system and L4T correspond to the relative orbital angular
momentum, the total angular momentum, and the isospin (T=-,', —,'), respectively. The kets lLS; JM& are de-
fined from Eq. (2) and the single value for the spin is S =-, . The r dependance of the potential has been
chosen

(rlv. &
—rL jc "~iLIr

So, if we adopt the following normalization conventions

(rljc&= (2jj)-2&2ejk. r

and

(19a}

rd'rr = k

the I2 dependence of the potential is"

(19b)

1
(klv jLIr&- I.

~ L
2

ZI2

jL(kr)(rlv, LI r&r'dr
p

I j (2k)L I
Il2 2'jL+I ~ I Pjj IT( ) ' (19c)

We see in Eq. (19c}that the k dependence of the potential (klv, LIr) satisfies all the analytic conditions re-
quired for a separable interaction"': (i) It is a positive-definite function of k' vanishing as k" when k' goes
to zero; (ii) it has a branch cut from O' = Ijj,«r2 to -~-; (iii) it goes to zero when k2- ~. For S waves, it
corresponds to a Yukawa-type potential and, for L ~ 1, to a modulated Yukawa-type potential. This allows
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us to obtain a good fit of S-P-D waves to experimental phase shifts without changing the values of the in-
verse range parameters n,.~J ~.

The transition operator is, from Eq. (5),
2 2

Z P ' (k )I&;ger)IL'2'~M&(~2 '~~I (~ I grIP
~ j, j=l QJNT

where we use p, ,',
~~ instead of p, ,',.

~~ ", since I =I.', S=-,'. In this particular case, Eq. (17) gives

~&LXT(k ) ~&ADJT(k )

(20)

(21)

The p, coefficients are complex and solutions of the system of algebric equations, obtained from Eq. (13):

p,",'(k, ) =B~d, , +B~gq,',~(k,)p,'' (k,), . . (22)

where the JT superscripts are implicit from now on. The real and imaginary parts of the q functions are
easily separated:

q,.',~(k,) =q~, (k,)+i k,P,~(k,)P,~(k,), (23)
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FIG. 1. Transition operator coefficients (in fm +~
) versus energy of the pion in the laboratory (in MeV). They are

calculated from the potential of Ref. 2 determined by the fitting of the pion-nucleon phase shifts (see parameters in Ta-
ble I). Each of the upper five figures shows the real and imaginary parts (respectively, in solid and dotted line) of the
unique p, coe ficient which is different from zero when a one-term potential is used: @22 for the Sll, P13, P31, and D15
waves and p =@&&

for the D35 wave. The three other groups of five figures compare the real and imaginary parts of each
of the three complex coefficients p& &, p& 2, and p2 2 of the five waves S31, P11, P33, D13, and D33 for which a two-term
potenti-1 has to be used. These curves are discussed in Sec. 3.
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"
{v;ilq&q'dq{ql»~&

qiz 0 k2 2
0 0

(24)

The evaluation of these integrals is not obvious; it is possible to show after a lengthy and complicated cal-
culation that the q, (ko) may be related to the functions H, z(r., k) defined in Ref. 2 [see Eqs. (13) and (14) of
this reference]:

oo

H, z (x, k) =j z(kr) n~(kr')(r'~v, . z&r''dh'+n z(kr) j~(4')(r'~v, ~)r ".dy',
0

where j~ and n~ are the spherical Bessel and Neumann functions with the phase conventions of Schiff."
We find

q~, (k,) =k, (~~v, ~&H, ~(r, k, )r'dz .
0

This means that the q~. (k,}defined in Ezl. (24} are the same as those used in Ref. 2 where they are ex-
plicitly given for I.=0, 1, 2. In the Appendix, we shall give the detailed solution of Eq. (22).

(25)

B. Numerical Results and Discussion

The real and imaginary parts of the p, ,',~(k,)
coefficients of the transition operator f' (denoted
p, I",

' and p, ', ,". , respectively) have been numerically
calculated for the 10 (I -2T-2Z} waves considered
in Ref. 2 (I.=0, 1, 2). They are plotted versus the
energy of the pion in the laboratory on Fig. 1. We
consider this energy up to about 180 MeV which
corresponds to the first resonance (P33 wave) and

consequently to the validity range of the potential
parameters. '

Several general observations may be made on
the behavior of the transition operator in this en-
ergy range. (i) First, we note that the real and

imaginary parts of the off-diagonal terms v, ,
'. ~,.(k,)

are of the same order of magnitude, while the
imaginary part is small compared to the real part
for the diagonal term iz, ,(k,):

(

coefficients and are of the same order of magni-
tude in the case of the diagonal (i Oj) coefficients.
(iii) For a given wave, the numerical value of
p, ~",' (or p.,'",') is of the same order of magnitude
as the numerical value of the potential parameters
8, (or 8,) except for P33, while the off-diagonal

0 -24.54

-2.9
—2,5

TABLE I. Comparison between the pion-nucleon po-
tential parameters (Ref, 2) (B,. ) and the real parts of
the corresponding coefficients of the transition operator

(p" ). The unit is fm for both B, and p, &"~, for
this last quantity the minimum and maximum values are
given. We recall that B& and 82 correspond to the in-
verse ranges a~ =1.5 fm ~ and e& =3.5 fm ~, respectively.

2,80
2.70

8 -1100 -702
12 -1200

The only exception to this rule is the P33 wave.
(ii) Second, we note that the absolute variations
of the real and imaginary parts of the p, functions
have always the same order of magnitude for a
given wave. The imaginary parts go to zero at the
origin and their absolute values increase smoothly
with increasing energy (except, once more, for
the P33 wave}. On the contrary the real parts dif-
fer from zero at., low energy and present a more
irregular behavior versus the energy particularly
for P33, D35 waves (all the p, I", ') and P11, D13,
D33 waves (izI",' only). It is clear from the above
remarks the relative variations of the imaginary
parts are far more important than those of the
real parts in the case of the off-diagonal (iw j)

P13

&31

&33

D13

0 269
261

307,9

0.097 0.0963
0,0966

0.3 -2100 -1725
0.4 -2300

0 -724 -667
737

-0.0303 0.030 24 0
0.030 26

-0.052 -0.0521 0.006 770
-0.0522 0.008 750
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~
p. I",l~ is between B, and B, (see Table I).
We see that the P33 wave is an exception to the

rules above and recall that in Ref. 2 it was pointed
out the poor agreement between experimental and
calculated values of the P33 scattering volume.
The low-energy behavior of this particular wave
seems to be perturbed by the existence of a reso-
nance. The imaginary part of the p. coefficients of
the transition operator are important and have a
sharp minimum (li. i~", and Ji, 2~'~l} or a maximum (li, i('2~),

near the resonance energy. It is the only wave
presenting extrema for the imaginary parts of
li, ,',~(k, ) between 0 and 180 MeV. This seems to
indicate a correlation between the behavior of the
imaginary part of the transition operator and the
existence (or the absence) of resonance in a given
energy range. Finally, in spite of the tormented
aspect of the P33 plots of the p, coefficients we
note that the three real terms on the one hand, and
the three imaginary terms on the other hand have
their extrema at the same energies (90 and 160
Me V, respectively).

4. CONCLUSION

It has been demonstrated that the transition opera-
tor for a nonlocal separable matrix potential takes
the same separable and matrix form as the poten-
tial and can be calculated analytically without any
approximation. This result has been used in the
numerical calculation of the transition operator of
a pion-nucleon interaction for the S, P, and D rela-
tive waves. It has been shown that the imaginary
parts are monotonic functions of the pion energy
except for the P33 wave for which they present
extrema at an energy a little lower than the reso-
nance energy. At low energy, these imaginaryparts
are negligible. The real parts may present ex-
trema in the considered (0-1SO MeV) energy range
and, for a given wave, they are placed at about
the same energy. Because of its simple analytical
form, this pion-nucleon transition operator may
be convenient in low-energy nuclear physics cal-
culations. It would be interesting to know the cor-
responding pion-nucleus potential.

APPENDIX

To facilitate the use of our results, we here give several supplementary relations concerning the p, ,',~(ko)
coefficients of the transition operator in the case of the pion-nucleon potential. These coefficients are the
complex solutions of the set of linear algebric equations.

2

Z [B'"q""(k ) —& i ]u ""(k.) = -B'"f (A1)

or, equivalently,

where the matrices are defined as in Eq. (14).
For each I -2T-2J wave the solutions of this equation are

' (D'"'(1 B,q, ",'-) D'B, q," i-[D "(1--B q," )+D "~B q,",']},B

(A2)

2 [D(r)q(r) +D(i)q(i) +&(D(r)q(i) D(i)q(r))]BB
(A4)

One obtains ii» from Eq. (AS) by permuting the subscripts 1 and 2. We have defined

Biqi i B2q22 +BiB2(qi i qa2 qi i q22 qi 2 +qi 2 }(r) (r) ( ) ( ) (i) (i) ( )2 (i)2

~ l (i) (i) I (.) (i) (i) (~) (.) (i)„+st-B,q, -B2q22+B.B2 ql q" +q q22 -2q, .q12'1 ~ (A5)

The f, g Z' superscripts and the dependence of li, , , q, , , and D on k, are implicit. The labels (i') and (i}
correspond to real and imaginary parts; for D they are given from the above equation and for q, , they are
given from Eq. (24) and Ref. 2. Equations (AS) and (A4) are, of course, valid for both p. ,', ~

(ko) and
p, , ~~r(ko). One needs only to use q,', (k,) or q, ~~r(k, )
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