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Neglecting level-level correlations, we show that consistency conditions derived from general properties
of the S matrix determine the distribution of resonance parameters. This is also true in the presence of
direct reactions. Formulas are given for average cross sections, autocorrelation, and cross-correlation
functions.

I. RESULTS

With the aid of a unitary transformation we re-
duce the problem of calculating fluctuation cross
sections (often called compound-nucleus cross
sections) in the presence of direct reactions to
diagonal form, i.e., to the well-known Hauser-
Feshbach problem' without direct reactions. In
doing so, we use Moldauer's sum rule' for reso-
nance reactions, which plays a central role in the
theory. We neglect level-level correlations
throughout. It follows from the unitarity, analy-
ticity, and time-reversal invariance of the S ma-
trix that this can consistently be done only in the
case of weak absorption in all channels. More-
over, the resulting consistency conditions, togeth-
er with the assumption that the partial-width am-
plitudes follow a Gaussian distribution, completely
determine the distribution of resonance parameters.

Explicit formulas are given from which fluctua-
tion cross sections, polarizations, etc. , can be
found easily. We also calculate cross-correlation
functions between cross sections relating to differ-
ent channels. These do not vanish in the presence
of direct reactions. We show that the "direct"
cross section defined in Ericson theory is given
in terms of the average S matrix element. Until
recently, the rel. ation between these two quantities
has been the subject of debate. '

II. HAUSER-FESHBACH THEORY

A. Definitions and Previous Results

For fixed values J" of spin and parity of the com-
pound nucleus, the unitary and symmetrical S ma-
trix has the form

S,» =S»» —i Q gp»g~»/(E —$~), (1)

where the background matrix S' ', the partial-width
amplitudes g,„and the complex resonance ener-
gies $„=E„——,'iI'„are assumed constant, and where
E is the energy of the system. The average over
energy is indicated by a bracket and given by

(S.,) =S".,' —(w/D)(g„, g„,)„,

where D is the average level spacing. The index
p, on the bracket denotes an average over levels.
We introduce Satchler's transmission matrix'

P,»
= 6,»

—Q (S„)(S»,) .

Moldauer's sum rule' for resonance reactions
takes the form

(»/&)(gp. g„)p =gP.,((S*) ').».
C

The fluctuating part of S is given by S" =S —(S).
The unitarity of S implies

P„=g(S„",S,",*). (5)

Following Moldauer, ' we define N„= I'„'Q
~ g„, ~

'.
A calculation quite similar to the one performed
in Ref. 5 shows that under neglect of level-level
correlations' one gets

(S,",S,"~*)=(2v/D)(N„g„. g„» g~ g„*,(D g„»~') ')„.
k

(6)

For c =a, d =5, this agrees with Eq. (59) of Ref. 5.

B. Transformation to Diagonal Form

In the presence of direct reactions, (S) ar:d (S*)
are both not diagonal. Since these two matrices
do not commute, they cannot be simultaneously
diagonalized by the same transformation. Let U

be the unitary matrix which diagonalizes the Her-
mitian matrix P of Eq. (5),

(UPU'). , =6.,p„O «p, 1. (7)

(U(S)U )„=6„(1—p,)"'exp(2ip, ), (6)

where the P, are real. If some eigenvalues of P

Defining the symmetric matrix A = U(S)Ur and

noting that U~U=1 implies U~U*=1, we can write
Eq. (7) in the form (AA*),» =5,»(1 —p,) =(A*A)„.
This and the symmetry of A. show that A is nor-
mal' and, hence, can be diagonalized. The eigen-
vectors of A, of A.~, and of AA~ coincide so that
these three matrices can be diagonalized simul-
taneously. Since AA. ~ is diagonal already, we have
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coincide, U can be chosen such that Eqs. (7) and

(8) both hold. Note that U*(S*)Ut is also diagonal.
We introduce the quantities v„, =Q, U„g». Multi-
plying Eq. (4) from the left by U, from the right
by U~, we find

(2v/D)(v„, v„,)„=5„P,(l -p, )
"'exp(2f p, ) . (9)

This and Eqs. (2) and (8) imply that US'"U is also
diagonal. Using Eqs. (5), (6), and (9) in Eq. (7),
we obtain

(2v/D)(x„, x„,)„=5„p.. (12)

It is thus consistent both with our results ob-
tained so far and with the fact that for thermal
neutrons the lg„, l' obey a Porter-Thomas distri-
bution to assume that the variables x&, and x„, are
uncorrelated for acb, and that each has a Gauss-
ian distribution centered at zero with variance (12).
The distribution of g„, with

v„,=exp(ig, )x„„where the x„, are real and obey the
conditions

(2v/D)(N~vp, v~~) p
= 6,b PN ~ (10) g» =+exp(vPb)x»Ug~

b

(13)

Transformation with U thus reduces the problem
to diagonal form, i.e., to the form which is char-
acteristic of Hauser-Feshbach theory without di-
rect reactions.

C. Distribution of Resonance Parameters

Several authors" have shown that the N„defined
below Eq. (5) obey the condition N„~ 1. It then fol-
lows from Eqs. (9) and (10) that

P -P (1 P) '"-
This relationship is fulfilled (with the equality sign)
to lowest order in P„ i.e., in the case of small ab-
sorption in all channels, while it obviously fails to
hold if higher-order terms in p, are considered.
This shows that the neglect of level-level correla-
tions is not justified' unless P,«1 for al1. a. For
the case without direct reactions, a similar con-
clusion has been reached by Moldauer. "For I'»D,
the effect of level repulsion is negligible. ' Our re-
sult thus implies the existence of correlations be-
tween g„, and g„ for JL(. W v unless all p, «1. Since
the nature of such correlations is not known, one
has little choice but to neglect them. We accord-
ingly keep only lowest-order terms in p, . The re-
lation (11) then becomes an equality which implies
N„=1 and (lv„, l')„= l(v„,')„l. The last equality
shows that the v„, are, for fixed a, distributed
along a straight line in the complex plane. This
fact and Eq. (9) together show that we have

2vr/D =p P. =Tr(S'). (14)

This consistency condition is implied by the ne-
glect of level-level correlations.

D. Cross-Section Formulas

Equation (6) contains the most general expres-
sion of interest in Hauser-Feshbach theory. From
this expression, one can calculate the fluctuation
part of cross sections, polarizations, polarization
transfer experiments, etc. (None of these quanti-
ties need vanish in the presence of direct reac-
tions. However, fluctuation cross sections remain
symmetric about 90' c.m. since different J" val-
ues do not interfere. ) Using Eqs. (12) and (13),

is then specified completely. We see that the basic
quantities of the theory are the uncorrelated real
random variables x„,. The existence of direct re-
actions implies correlations between the complex
random variables g&,. However, the nature of
these correlations is under neglect of level-level
correlations completely specified by the unitary
transformation U and by the P„ i.e. , by the ma-
trix (S). It follows, in particular, that when a
group of channels is connected through direct re-
actions the corresponding partial width amplitudes
must be correlated, and conversely. Note that the
case without direct reactions is contained in the
treatment given above in a trivial way, since then
U=—1. Summing Eq. (12) over all a, we find

we find

&g„.g„bg„*.g„*g(Z I g„bl') ')„=Z(x„)'x„b'(Zx, ') ')„
k jk t5

X [(I —5yb) y*,UU ( bb&,UUbz +Us„Ub, )

+exp(2~0, ~~ eb)U,*.U,*bU„U'b. 1

The calculation of the expectation value on the
right-hand side involves only integrations and can
be carried out in the way described by Moldauer. "
Thus, (S,",S,",*) is known. If the number A of chan-

nels contributing to the sum Q x„ is large, and
if the (x„')„ofall contributing channels a.re com-
parable in magnitude (these two assumptions are
jointly referred to as A» 1), we may replace the



sum Q„x„„*by its expectation value. From Eqs.
(6), (12), (15), and the Gaussian distribution of
the xp~ one then finds the x'esult

&S.",S,",*)=(D/2vi")(P. ,I „,+I „J„+G„G,*„),

(16)

where G„=Q,U,',U',*,p, exp(2ip, ). This result is
consistent with Eq. (14) since A» 1. In the ab-
sence of direct reactions (U-=l), Eq. (16) gives a
Hauser-Feshbach cross section vrhich coincides
arith the standard value~ for inelastic scattering,
while the elastic cross section' is enhanced by a
factor of 3, which arises because the g~ are dis-
tributed along a straight line. ' For U 4 I, the val-
ues of the G,~'8 depend on the phases px. When

comparing Eq. (16) with the ayproach of Ref. 12,
where we put n =1 = P, we notice that the a,ssumy-
tions made in Ref. 12 (no level-level correlations,
Gaussian distribution for the g„, and I",= I") are
implied by those xnade here. In particular, A»1
implies I q

= I ~ Solving Eq. (10) of Ref. 12 in the
limit A» 1 for X~, we find from Eq. (16) of Ref.
12 our present Eq. (16) if n=i =P. The approach
of Ref. 12 and our Eq. (16) are thus consistent

vnthin their common domain of validity A» 1.
similar remark applies to the comparison of our
Eq. (16) and the results of Ref. 13, except that
there the additional assumption (g„g„),= 0 has
been made for I"»D. (Note, however, that the

g ~ of Ref 13 diff 81 froxn our gag ) Fox onx gpgy

the validity of such an assumption deperids upon
the values of the px. This additional assumption
has also tacitly been made in Ref. 14. %'8 have
shovfn thRt this Rssumptlon fails to hoM 1n the cRse
U=—l.

All our results (and those of standard Hauser-
Feshbach theory) can be derived only if P,«1 for
Rll g. Standard Hauser-Feshbach theory has, of
course, been applied vrith success outside this
x'Rng8

III. ERICSON FLUCTUATIONS

Since the distxibution of the g&, is knovm com-
pletely, the calculation of correlation functions
for vax ious cross sections under neglect of level-
level correlations is straightforvrard. We confine
ourselves to the Kricson limit I'»D, although it
is not ~icult to calculate correction terxns of

order D/I'. Using A»1, we find

&o.~(E)o"(E+~)& —&o..& &o:& = [I /(I'*+8')1

&&O&S.",S,",*& ~'+[(I -ie/I")&S,"„S,",'&(&S,*,) - 6,„)(&S ) -6„)+c.c.]}.

Equation (1V) shows that in the presence of direct
reactions cross correlations involving diffexent
channels do not vanish, and that they a,re asym-
metric about e =O. Indications for nonvanishing
cross correlations haveq 8+g. q been found 1n ref.
I5. It would be of interest to analyze these and to
check our Eq. (1V). In the autocorrelation function
E„(e) [put c =a, d = b in Eq. (IV)] the term asym-
metric in 8 vanishes, and E„(0)has the value

f

o,",(2Of,"'+o,",), where under omission of kinemat-
ical and geoxnetr1cal fRctors %'8 hRve Gag
= [(S„&—6„['and o,",=&[S,"~['& for direct and
fluctuation CX'oss section~ respect1vely.
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