
PH YS IC AL RE VIEW C VOLUME 8, NUMBER 1 JULY 1973

General Formalism for the Transition Matrix of Nuclear Reaction Theory and Its
Application to the Study of Potential Scattering

B. B. Perez
Neutron Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

(Received 2 May 1972)

One develops a general integrodifferential equation for the transition matrix of nuclear re-
action theory in terms of the physical parameters of the nuclear reaction. One derives, as
a corollary of the main result, a system of equations which describes the motion of the poles
and residues of the collision matrix as a function of the parameters entering in the reaction
formalism. Some applications to the study of the potential-scattering problem are also shown.

I. INTRODUCTION

In the last ten years there has been an in-
creased activity in the development of new meth-
ods to compute resonant cross sections based on
various nuclear reaction theories. The problem
at hand is that of calculating resonance parame-
ters and cross sections from the Hamiltonian
pertinent to the nucleus and its interaction with
the incoming projectile.

The present work arises from the concern about
the role and choice of the several parameters
which enter in the various nuclear reaction form-
alisms. Examples on the effect of the channel
radii and boundary condition numbers are given
in the work of Lejeune and Mahaux. ' Tobocman
and collaborators, ' ' and also Takeuchi and Mold-
auer' have pointed out and discussed the relation-
ship between the convergence of R-matrix expan-
sions and the value of the channel radius. These
are by no means the only parameters of interest.
One is also concerned with the strength, deforma-
tion, and diffusiveness of the channel potentials,
and last but not least with the analytical proper-
ties of the collision matrix as a function of energy
and angular momentum. Within the framework
of R-matrix theory, some of these problems have
been studied by Wigner, ' Teichmann and signer, '
Altman, ' and Mockel and Perez. ' The results of
these investigations is a general differential equa-
tion, frequently a Ricatti-matrix-type equation
which, starting from a given initial configuration,
defines, the R matrix at any "later" value of the
parameter of interest. There is at least one tech-
nical and one philosophical reason to repeat this
kind of treatment for the transition T matrix. '
The technical point has to do with the numerical
problems arising from the singularities of the
R matrix on the real energy axis. Despite the
fact that there are several devices to go around
these singular points, the problem can be avoided
altogether by the use of the T matrix. From the

philosophical viewpoint, the transition matrix
has the attractive feature of being a function di-
rectly related to observable quantities such as
phase shifts and cross sections.

Historically, the usual approach to this general
problem goes in two steps. First, one performs
a nuclear structure calculation from which one
obtains the channel eigenfunctions, y„which
depend on the internal and angular coordinates of
the system. Expansion of the total wave function
in terms of the channel functions leads to a set
of coupled radial Schrodinger equations, the so-
called coupled channel of Breit, "Newton, ' Tam-
ura, "Buck, "and Feshbach, "among others. The
second step has to do with the use and interpre-
tation of the channel equations in the light of the
various nuclear reaction formalisms.

There are two main avenues of approach to this
latter problem. The first approach consists of
the direct use of some nuclear formalism. The
second utilizes shell-model eigenfunctions in the
framework of an appropriate nuclear reaction
theory.

In the first category the use of the Wigner-
Eisenbud R-matrix theory" was proposed by
Haglund and Hobson" and investigated with great
detail by Buttle" and by Lejeune and Mahaux. '
The general idea is to develop the radial solu-
tions in terms of R-matrix states obtained via
the solution of the uncoupled-channel equations
which satisfy rigorous R-matrix boundary condi-
tions. This procedure yields the contribution of
the nearby levels. The contribution of the slowly
varying background, due to the levels unaccounted
for in the calculation, is estimated by the intro-
duction of a background R matrix obtained in a
prescribed manner.

The second category employs as a basic tool
the shell model applied to the calculation of nu-
clear continuum states (Mahaux and Weidenmul-
ler"). There are, in principle, well-known prob-
lems involved in this approach. Firstly, one has
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to generalize the shell model so that the continu-
um part of the total wave function can be properly
generated. Second, the shell-model functions
have the wrong asymptotic behavior. There are
various methods to avoid these pitfalls. In this
connection, two subcategories of methods can be
distinguished. First, one can consider those
theories which do not use an interaction region.
To this class belong the Bloch-Gillet" theory,
the projection-operator formalism of Feshbach, "
and the reaction theory derived by MacDonald. "

The second subclass contains the techniques
which separate configuration space into an "inner"
or interaction region and an asymptotic region.
These theories are essentially 8-matrix theories.
Takeuchi and Moldauer" compute the shell-model
functions for a Woods-Saxon potential with the
requirement that the logarithmic radial deriva-
tives of the single-particle states should have a
certain fixed real value at the boundary radius.
On this basis one obtains the R-matrix states
from which the collision matrix can be computed.

The use of shell-model eigenfunctions in R-
matrix theory has been also made possible by
means of other devices. Tobocman and Nagarajan'
force the shell-model functions to satisfy appro-
priate boundary conditions by introducing the lat-
ter as constraints in a variational principle, or
through the use of the Green's function to relate
the wave function inside the interaction region to
its logarithmic derivative at the boundary. A

generalization of this approach is the extended A-
matrix theory of Garside and Tobocman. ' In this
method one introduces three channel radii for
each channel, each of them performing one spe-
cific function. The extra parameters that appear
in this case are treated either as free parameters
of the theory or optimized by means of a variation-
al principle.

Fortunately for the scientific historian, Lane
and Robson in a series of papers" "have de-
veloped a comprehensive formalism in which
utilizing the very clever Bloch's 2 operator"
they were able to unify the various nuclear theory
formalisms as well as their application to cross-
section calculations. The usefulness of this ap-
proach has been illustrated by Purcell. " The
purpose of this work is twofold: First, to convert
the multichannel coupled equations into a set of
equations in terms of the Green's function; sec-
ondly, on the basis of the relation between the
Green's function and the T-matrix operator, to
generate a formalism allowing the evaluation of
the variation of the transition matrix versus
changes in the parameters entering in the theory.

In Sec. II one derives the relation between the
collision and transition matrices with the multi-
channel Green's function. Section III is devoted
to obtaining the variation of the T matrix by the
use of invariant-imbedding techniques similar
to the method employed by Mockel and Perez. '
The "equation of motion" of the poles and resi-
dues of the T matrix are derived in Sec. IV. In
Sec. V we discuss the generation of the Kapur-
Peierls theory parameters" from the R-matrix
parameters, utilizing the equations of motion
previously derived. This problem is of interest
in order to find the statistical properties of the
U-matrix poles and residues. Finally in Secs.
VI and VII one derives and generalizes various
expressions related to the scattering of spinless
particles by a central potential.

The present work makes extensive use of
Bloch's Z operator and from this viewpoint it
can be incorporated into the comprehensive form-
alism of Lane and Robson. It is then hoped that
its appearance will not increase the entropy of
the field of nuclear reaction theory.

II. COUPLED-CHANNEL FORMALISM AND THE COLLISION MATRIX

Our starting point is the set of radial coupled-channel equations (see, for example, Tamura, " and New-
ton')

(D, '+g, )Q, (~,) -Z v„-(&,)Q, -(+,) =0,

where

cP

2M, d~' '

M, is the reduced mass in channel c, E, =E —Q, (Q, is the threshold energy for channel c),

V.. (~,)=(y. lV(r)+2M, lq. ).l(l +1)
2M, r,

In Eq. (3) I, is the channel angular momentum, and the round brackets indicate that the integrations are
performed over the angular and internal coordinates, keeping the radial coordinates constant. The chan-
nel eigenfunctions, y„are those defined in the Lane and Thomas article. "
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We now introduce the adjoint-channel Green's functions G,', (r, Ir, ), satisfying the radial equations

(D, '+E,)G,', .(r, Ir, .) -Q V,', (r, )G,'-, .(r, Ir, ) =-5(r, -r, .)5„ (4)

and the boundary conditions

G:. (r. lr. ~) I,.=. =-B.G:. (a, lr. ),
d

(5)

where the boundary-condition functions B, are those used in the Kapur-Peierls formalism2':

LcBc=
2M, a, (6)

H =D2 —V+K

(H'+Z)G+ =-M

with

(~« ='c5-) ~

L, =S, +iP, ,

where S, and P, are the usual shift and penetration factors, respectively. Following Bloch,"Eqs. (4)
and (5) can be combined in the form:

(D, '+E, )G,', ~(r, lr, )-Q V;,-(r,)G,', (r, lr, )+Q $«-(r, lr, }=—5(r, -r, )5„
c

with Bloch's 2 operator defined as

2„.= —5(r, —a, r)(5, .+B,.),
d

2M, dr,

Utilization of an obvious matrix notation leads to our writing Eqs. (1) and (8) in the compact form:

HQ=O,

(7)

(8)

(9)

(11)

(12)

(13)

H'=(H+)', Vcc =(V.*C )'= Vc" (14)

In Eq. (13) 2 is a matrix of elements defined in Eq. (9), M is a diagonal matrix of element 5(r, -r, .), and

P is a column vector of components Q,(r,}
After these preliminary developments we can now proceed with the derivation of the relation between the

channel Green's functions and the collision matrix U„. To this end we apply Green's theorem between
Eqs. (11}and (13). One obtains on account of (12) and (14), the result

P, (r, .)5(r, r, .) =Q [G,'-,(r, -lr, )D, 'P, (r, -) —Q, .(r, -)D, 'G,',(r, ~ lr, )
Ctt

-Z'"(r") "'"G "(r'"Ir)]. (15)

Operating on Eq. (15) with J,
' "dr, , followed by an integration by parts yields

y(r, ) =Q (G,'-, (a, -lr, )[5,-y, -(a, -)+B,-y, -(a, -)]
c

ac"
—Q, (a, -) g dr, -5(r, ~ -a, .)(5, . +B,-)G, -,(r, -lr, )].c"'&c" 0

In view of the boundary conditions (5) the last term in the curly bracket above vanishes, leading to the
relation

P,(r, ) =g G,'.,(a, -lr, )[5, Q, -(a, )+B,-@,'.(a, )]
C

(16)

(17)

which gives the radial channel wave function in terms of the channel Green's functions and the associated
boundary conditions. %e now split in the usual manner the channel wave functions into incoming an««-
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going components, i.e.,
1/2

C C

(18)

where the incident- and outgoing-wave coefficients y, and x„respectively, are related via the collision
matrix

x, =Q U„y,
C

with

(19)

g(+) ~(-) g
C C (20)

d L d &(y }.C C ~ C C
C C

Upon insertion of Eq. (18) into (17) and use of the relations (20, (22), and (6) one obtains

x, =Q e'~«~"~~[ e'~' "~ 5„,+i q,(r, )q, «(a, ) xG,', «(a, ~ ~r, ) e'L"~+'~ ] y ~

C

(21)

(22)

(23)

and by direct comparison of the above result with the relation (19), one comes up with the following ex-
pression for the collision matrix

U„(a, ~r, ) =8'i~'"' '~"~"'~~5
~ +i@,(r, )q, (a,)XG'(0, ~r, )8'~""""~'~"'~

where

(«P.(«.))
"*

(24)

(25)

Alternatively, from the relation below, between the transition matrix, T„, and the collision matrix,
UCC,

(26)

one obtains

T«(a, .~r, ) =i q, (r, )q, (a, )G,', (a, (r, ) . (27)

Clearly the general T matrix T„(r)r') is closely related to the Green's function in that it connects a "dis-
turbance" occurring at r', with the "response" at the radial location, r. For r =r' =a, it becomes the
usual transition matrix. In view of the relation, Eq. (26), and the unitarity of the collision U matrix, the
T matrix is constrained to satisfy the general optical theorem [T T*+2He(T) =0]. This constraint insures
the independence of the cross section from the channel radii introduced in the formal computational
scheme. The usefulness of the Bloch Z operator is now illustrated in two examples. First we expand the
Green's function in Eq. (27) in terms of the eigenfunctions X~,(r, ) satisfying the wave equation"

(D, '+e )X,(r,) -Q I'„(r,)X„,-(r,) =0
~I

(28}

and the boundary conditions (5), with the complex eigenvalues

&x=0) —&&x. -

Upon introduction of the expression

G,', .(r. ~r, .) =g gV'X'„(r, )X„,.(r, .)

(29)

(30}

into Eq. (27) one obtains the well-known expression for the T matrix in the Kapur-Peierls formalism

I P Zkcg Lc''
CC (31)
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where the complex partial widths g&, are given by

with the reduced complex widths defined as
@.2 1/3

&wc 2M, ~)i.c ac ~

2M, r,

(32)

(33)

In a second example we utilize a set of eigenfunctions which do not satisfy the boundary condition (5). We
choose the internal eigenfunctions of A-matrix theory, satisfying the equation

(D, '+Ez)f ~,(r, ) —g V;-,(r, )f'„, (r, ) = 0,
C

(34)

h2 bc +~.f i.(r.) I., =
2M

—' f ~.2Mc a, (f ~. =f i.), (35)

where both the eigenvalues E~ and the boundary-condition number, b, , are real. Then use of the expan-
sion

G„(r,Ir, ) = Q g'iq f ~,(r, )f &, , (r, ) (36)

leads to

2

(E~ E~) gqi, Q Q [ t P~„+',(S „—h „)] xf & „(a „)f&„„(g „)gzi,", &',

C
tl' ) II 2M, "a,-

which with the definitions

(37)

~Ac 2M Xc c t
C C

~XX' 2pc ~X ~X'

&~~. =-(~, -&.)r~. r~"
&~x =Z &~). c~

(38)

(39)

(40)

(4I)

and Eqs. (36) and (37) provides us with the following expression for the T matrix

T„.=i Q (I g, I g, )" Agx ~, (42)

where A z), is the Wigner level matrix

(A„,.) '=(E, -E)6„+(a„--,'&r„, ). (43)

III. DERIVATION OF A GENERAL INTEGRODIFFERENTIAL EQUATION

FOR THE TRANSITION MATRIX

The goal of this section is to find the variation of the transition matrix upon changes of the parameters
entering in the formalism. To this end we follow a technique previously utilized by Mockel and Perez'
and form the matrix functional N(r) in the form:

dr, -G(r, "Ir~(r,), r, ) ~[H'(r)+S(r)] G'(r, -lrs(~0)i ~)

fIC i i(T0)

N(7) =- dr, G'(r, -Irs(r), T)[H(r, )+Z(v.,)] G(r, -I (r), rr, )
0

J (44)

or

N(7) =G'(r (7) Irq(v'), r) —G(r8(ro) Ir (r,), 7,), (45)

where T represents any of the parameters pertinent to the theory, such as energy, angular momentum,
coupling constants, and so forth, and we introduced the Green's function G(r, I r„, 7.), which satisfies the
equation

(H +Z)G =-M, {46)
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where all the operators and symbols have been previously defined. Notice at this point that the radial
coordinates r and r& are taken to be functions of the parameter 7. The same applies to the limits of inte-
gration in the second integral of the two introduced in the right-hand side of Eq. (44). Next, integration
by parts in Eq. (44) yields, in explicit form after use is made of the boundary conditions, the result

G:"(r (&)lrs(&) &)-G- (r (ro)Iran(ro)~ro)

C II

G,'-, (a, (r,)lr8(r}, r)B, .(T,)G, ; (a, -(r,)lr (r},r,)

—G, ,(a, .(r) lr (To), ro)B, (r)G,', (a, (r) lr8(TO), r)
(& 0) d dr ' ur, »

&
G;",tr I ~ ( }, ) r

&
rG, , le lr, (,r), ,))2Mc ~ 0

C d~ C C C C C

ac»«) d d

~0
dr, .

d G, , (r, -lr, (r, ), r,) d G,'., (r, lrz(r, },r)

f
ac»(7')

J dr, . G, -,(r, -lr (7), r,) [E,-.( )T6. .."—V,', -.(r, -l T)] G,'-, .(r, ~ lr8(v, ), r)
0

ac»(T0
dr, G,', (r, lr~(r), v')[E, (r,)5, ,- —V,', (r, -lT, )]G, , (r, ~ lr~(r), r, )

0

(47)

The above equation evaluated at r =T, yields, in view of the relation (14), the result

G,',(r, lr„r,) =G„(r,lr, , r, ) (48)

which is the expression of the reciprocity principle satisfied by the Green's function.
We now proceed on with our task of computing the derivative of the Green's function with respect to the

parameter r. To this end we apply the operator d/dr on both sides of Eq. (47) and use the well-know dif-
ferentiation formula

~a(7 ) ~a(T0) da(r)
dxf(x, r) = dx —f(x, r) + f(x, ro)dT „0 d0 dT T dT

0 0

(49)

One obtains after some algebra, involving simple integrations by parts and repeated use of the boundary
conditions (5) the result:

d 2M, - 2 da, d„—G,', (r„lrs, r)= G, -,(a, -lr„r) &,
' B,-' d' ——B,-(r) G,', .(a, ~ lrs, r)

d d dr-
+ G,'-, (r~lr', r d'+ d, G, -, .(r, lr', r

da, (r)
+ g G, ,(a, -lr~, T)[E, (v)6, -, -. —V,'-, ~ (a, -, r)]G,'-, .(a, ~ lr» r)

C
Il dT

&a d
~ u G. ..(r.r.lr. , r) —fZ. .„(r)5....,. —V:,.„.t .», I)G:». t.»I s, )

(50}

To evaluate the last two terms we multiply Eq. (13) by j'; dr, - and Eq. (46) by J„' dr, -. Assuming r
&r& one obtains:

(
d 2M
d, G,'-,(r'lrs, r) =; &, , B,-(r)G,'-,(a, -lr8, r)

r'=r a
a

+ g dr, . [E, (r)6,","—V,'-, -(r, ~, r)]G,' ,(r, lr8, r)-~
t» ref

(51)



14 R. B. PEREZ

and

2M ~

G, -, (r'Ir~» v) = E,
' B,-(v)G, , (rv, -Ir, v)d ~ ~ ~

9'8

(52)
g tr

+ g dr, -IE, - (v)5, , « -V, -, (r, , v)] G, ...(r, - Ir~» v)
III +8

Introduction of Eqs. (51) and (52) into Eq. (50) yields the final expression for the derivative of the channel
Green's function

d 2M-
d—Gr'«. (ra lr 8, v') = Q

C

dT~
6cc] r~ r 8dT

dr 8 6cc y rs ra
dT

G'' ' ' d +G'' ~ ' ' d
C

+ g G;, -(r~I a, -» v)
2Mc + dac"B «» +E «» 5 ««» V+ g «»(s» v)

dT

dg ttr

G,'-, (a, . Ir(( v)

dra ~c"
«: r» r ..I«. -( )». . ~ —v.'. ,-(. , )(G:...(.„(l „}}

tt III F
g

dr "c"
rv [z (»(» .-."v:. .(-..--,-.(]G:-.(.-l ., »()dT

C d
+ g dr, -G,', (r Ir, -, v) d

—[E,"(v)5,-, - —V,', -(r, -, v)] G,', (r, ~ Irq, v),
c c'" dT

(53)

where use was made of the reciprocity relation (48}and the expression (6}for the boundary-condition func-
tion 8, .

The result (53) shows that the variation of the Green's function is made up of the following contributions:
(a) variations due to changes in the radial coordinates r and r8, measured by their derivatives dr /dv
and dr8/d (bv) spherically symmetric changes of the channel radii, a„(c)the variations produced by

changes in the boundary conditions; and (d} variations which arise from changes in the channel potentials
V,'... as well as those variations which may arise from the potentials chosen within a particular channel
due to variations of Q, and hence E, .

The relation between parameter changes and the ensuing variation of the transition matrix is immediately
obtained from E(ls. (53) and (27). The result is:

2 half, dr, 6. .. d—T (, I », »)=I„(()%».t )(»,'v»,r' ' ' + —( (», -(,)», tr»)I}v, -, (, I «)».».
dT dT 6cc' d

C

B, ', , T, ,(a, -Irz, v) d—r8+ ', , T, ...(r~Ia, , v')
d

—i q, -a, ~ TI, - a, 'T„-r a, , 7
tt ltt

2~c" da,B, -'(v)+E, -(v) 5, ,"—V,'.,-(a, -, v)
dT
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"2M», , dr 'c» -1 I +dr, -rl, - (r, -)[E,-(r)5, -,"—V. .. (r, ~, r)]T,-,(r, ~ ~r[], 7)
C C "a

+ [r],(r„) ™ dr, - q, » r '(r, »)[E .«(7)5» r»
d7 J C C C C C C

r 8 I

—V,'-, -(r, -, 7}]T, -, -(r„(r.. . r)
a

dr, .[r], (r, -)q, (r, )] 'T„-(r (r, 5 v}
C» C-

x —[Z. -.( )5, , —V;, ,tr... )]) T.:,.( ... I 5, ), (54)

where r, is the largest of the two radial coordinates r, r&.
For what follows it turns out to be convenient to work with two versions of Eq. (54). First, we assume

the parameter, ~, to be the channel radius, a„; we also make r =a„rz=a... and assume that all the
channel radii are of the same length. This leads to the equation:

'(a„)=Z ra (a„la ( „) 5;,-„5,;, 5' ' + 5 )If[a,(a„l]) T-, (a„),5„,5, „If,-,5,-, da„

[(rl. ..( „)5, (a„)l T (a„)„,B, .: +T 5, , « —V,,;,- (a„))5, ,„
d

B,» 5 rr». T,-., r(a )
co

(55)

where T„(a„)=T„(a„]]a„).The second form of Eq. (54) is obtained by keeping constant the set of chan-
nel radii (i.e., r 55 a,)

d d—T„«r, ]rr, )= g —f5[5()5:(rr)])-T, ,, ;, (r Ir«r)5~. ..5, .„,.

d
+i [q, (a, )q, -(a, }] 'T, (r~~a, -, r) —B,- 5, , -T,-, (a, ~ ~r[]r r}

d7

+a
dr, .[r[,-(r, -)r], -(r, .)] 'T«. (rm~r, -r 7)

0
d

X [E rrr('7)5» rrr V+ r a (r5 rr
5

'7r )r] Ta rrr r(r5» (r ]]5 r)
dT

(56)

The relation (55) and (56) cover most of the cases needed in the applications to nuclear reaction theory

IV. EQUATIONS OF MOTION OF THE RESIDUES AND POLES OF THE TRANSITION MATRIX

The residues and complex poles of the transition matrix are, in principle, observable quantities, whence
the convenience of deriving equations for the variation of these entities as a function of the parameters
entering the theory. This problem was first studied for the R-matrix parameter by signer, ' Teichmann, e

and generalized by Altman' and Mockel and Perez. ' %e follow here the technique used in the latter refer-
ence. The starting point is Eq. (56) and the following expansion of the T matrix, based on Eq. (31):

.~ g),.(r, r)g~. (rs &)

where the residues g)„(r, r) are related to the radial eigenfunctions, y~, (r ), satisfying Eq. (28), by [see
also Eq. (32)]

g)..(r., ~) = ]},(r., ~)X~.(r., ~) (58)
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and the complex poles are defined in Eq. (29). Introduction of the expansion (57) into Eq. (56) yields

z„(r, ))(...(rs, v) ~ d () ( ) ( )( )(,.(~„v))(,. (rs, ))

, mm s..(~., )().v(~)z. . (~s, )) (59)

where

Q~v(~)= P
C ttC ttt

(60)

Next we introduce the identity

~ g..(»., »}Q.'(~)gv. (»8, ~} ~ g..(»., ~)Qii(~}g..(»8, ~)
e),(») -E „[&~(&)-El'

+ E)t7 —Eye fy7

X[gz,(», T)Qky(~)g), (»((»)+gX'»(»»)»}QV~gkc'("8)

into Eq. (59), take the indicated derivative in the left-hand side of (59) and finally proceed to equate terms
of equal powers in (e„-E}'. The result after putting c = c', r = r(), is:

d d 1
g~~(» 7)- In[(7 (r )] g~~(r» 7)+ Q [e„,(7) e),(7)]

-
[ Q~, (r) +~Q, ~(v)]g~, (62)

d—[e~(r) —E(r)] = -Q), ~(~) .
dT

(63)

The set of Eqs. (62) and (63) associated with the appropriate initial conditions at r =», defines an initial
value problem. One can consider these equations as the ones describing the motion of the generalized dy-
namical variables zz, and ez, subject to the "forces" Qz),-. In principle they allow a start from a solvable
R-matrix problem and henceforth generate the transition matrix for a given set of channel-coupling poten-
tials. An illustrative example of the use of the equations of motion will be given in the next section.

V. APPLICATION OF THE EQUATIONS OF MOTION TO THE GENERATION

OF THE KAPUR-PEIERLS PARAMETERS FROM A GIVEN SET OF R-MATRIX PARAMETERS

The Kapur-Peierls" dispersion theory leads to a very convenient parametrization of the cross section.
This is especially true for the fissile nuclei, where level interference and channel effects are of impor-
tance (Adler and Adler"}. The only drawback of these types of cross-section parametrization is that very
little is known about the statistical properties of the Kapur-Peierls-type parameters. However, from the
existing relationships between these parameters and the R-matrix parameters, whose statistical proper-
ties are known, one can infer the statistical distribution of the former set by various techniques (Adler
and Adler, "Moldauer, "Garrison, "Hwang, "Harris, "and deSaussure and Perez").

We should like to show how a simple application of the equation of motion of the residues and poles of the
collision matrix affords a method to perform the conversion of the 8-matrix parameters into the Kapur-
Peierls-type parameters. The residues and poles in the R-matrix formalism arise from an eigenvalue
problem associated with real, momentum-independent values of the logarithmic derivatives at the nuclear
surface. In the case of the collision matrix formalism the boundary-condition functions B„Eq. (6), are
complex and momentum-dependent. Whence the transition between both formalisms is performed by let-
ting 7 = B, vary between»» = -(0 /2M, a, )f), = B, », and»= B, With the latter. identification the matrix ele-
ments Qz„, become, from Eq. (60)

dB,
Q„~,(B,}= P»l, „'(a,„)g„,"(a, , B,) ' 6, , ~ q, .~(a,„)g~...(a.. .B,) .

C Ctt ttt
C C & C dg C C C C (64}
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The various B, functions are interrelated via the channel momenta, k„with the energy of the incoming
particle. Hence

dB, - dB, - dE
dB, dE dB,

From the definition (6) of the boundary-condition function, B„aswell as from h, =[(2M/h')(E —Q,}]"',
Eq. (65) becomes

dB... k.
F(p, l p. )

(65)

(66)

with

F(p(, p& «&) = (dL+ «r /dp& «i)/(dL&/dp&) &

p, =k, a, .

(67)

(68)

Introduction of Eqs. (64) and (65) into the equations of motion (62) and (63) yields, after making r =a, =a...

~« tt..t»&=-Q Q (~. (».&- .t»&& 'n. '(.&„' ("(p l~:&(( . («.&s.:.(«.&(r. («.&).,
C

(69)

ei(B.) =g rl. . '(a. )
' F(p. lp..}g~."(B.) .d, k,

dB, ' „' ' k, .
C

(70)

For B,=B„, the complex partial widths gzc and poles ez become the corresponding quantities in the R-ma-
trix theory framework. Hence the initial conditions associated with the equations of motion (69) and (70)
are

g&,.(B..}= I;"'(h.),
e &,(B, o) =E q .

(71)

(72)

The above initial value problem can be solved numerically by means of various techniques. The solution
of this Cauchy problem will in fact "march" the solution from its R-matrix initial configuration to the resi-
dues and poles of the collision matrix.

Analytical approximations can be obtained by the use of perturbation techniques. To illustrate this point,
consider the generation of the Kapur-Peierls" parameters from a given set of R-matrix parameters for
s-wave neutrons. In this instance

L,(p, ) =iP, =ih, a, ,

B, 0=0,

(73)

(74)

whence from Eq. (67)

F(P. I P.-) = h."/h. .

Also from Eqs. (25) and (73}

LVC &s("} h'h
C

I/

In view of Eqs. (75) and (76) the equations of motion (69) and (70) become for s-wave neutrons:

(75)

, h'k,
g .(B.)=-g Z [e (B.) —e (B.)] ' ' g .(B.)g, -(B.)g .-(B,)

c c" C

h'k
dB e~(B.) = g ' gi. -'(B.)

C M,
(78)

Our perturbation method consists of expanding the complex partial widths and complex poles in powers of
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B„ i.e. ,
dg'Xc 1 2d g) c

gXc =gXc( }+ c d +2i c
0

d~X 1 2«X 1 3«x
c+8, , „c

(79)

(80)

where the pertinent derivatives can be computed from the equations of motion. The results, after putting

M, =M, .; k, =k, =k, are:

B I2k ~XX

M. ~ ~v.'"~) v
dB, 0 8 k ~ E),.-Eg

V&X

dB, 0 hk E);-E), '

(81)

(&2)

(
d2 M

( .— )- ""'""-'""'
(E E ) xv v (E~„E~)c 0 V~)

l)2 ~ ~VV' kX' p l/2

„„,(Ev. -Ev) "' „~„,(Ev -Ev}
(84)

c
~ (I, , -r„)r„„,' ~ + r, „,r, , r,„,

dBc' c ?I'~ ~ (Ev -E~)' ~ (Ev -Ei)(Ev -Ev)
y'~X

Introduction of Eqs. (81) up to (&5) in the expansions (79} and (&0), followed by separation of real and imagi-
nary parts, yields, taking into account the Eq. (6) for B„spe ci alized to s-wave neutrons:

~vv l/2 lg2+ xv' vc +rxv v'c
V' V.

(86)

im(g ) Q xv r 1/c

V X.

+
] p 2

XV4Q E -EV

(87}

(88)

1 1 ~ (r —I', „,)I', 1 ~ g I'„„,I"„,„„I'„
vx Fx. x, +

(E ~ E~) & (E E/)(2 (89)

The results contained in Eqs. (86) up to (89) were first obtained by Adler and Adler. " Notice that the ex-
pansions (79) and (80) in powers of B, correspond in fact to the expansion of the U-matrix residues and
poles in terms of the ratio r„v/(E v -E„), (X'g X) which measures the degree of level interference.

The present formalism has the advantage that one can handle with the same ease the higher angular
momenta. This is of interest for the extrapolation to the unresolved resonance region in fissile nuclei.

VI. SCATTERING OF SPINLESS PARTICLES BY A CENTRAL POTENTIAL

Nonrelativistic potential theory has been a valuable source of information in the study of the analytical
properties of the scattering amplitude. 6 The variation of the scattering phase shifts, 5„as a function of
energy, angular momentum, and range of the central potential has been studied by several techniques and
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authors (Robinson and Hirschfelder, "Calogero, "Devooght, '~ and Newton, ~ among others). Here we show
how all these treatments and results are particular cases of the general equations (55) and (56), particu-
larized to the single-channel case.

We first consider Eq. (55), which for the one-channel case (a, = a), becomes

T,(a)=2i ' +[2(I„/a)+ ~ (P,/a)] T,(a)-i
da ' a I'S, a

O' S' dx[E- V, (a)+ (L,/a}'-
d (L,/a)) T,'(a),

where we used the expressions (6) and (25) and defined the T function T, (a) = T. . .(a~ a) .
From Eq. (58), where the parameter r is now any parameter of the theory with the condition that the

channel radius is constant, one obtains

(9o)

(91)

T, (a, r) = —ln[P, (ka)] T,(a, r) -i
2

— ' T,'(a, r)

. 5f, "' 'T( ~ar, r) d T(r(a, r )
I( . P ~~P (k d ' P, (kr}/r

The above results are conveniently expressed in terms of the observable phase shifts. Upon use of the
Green' s function

(:,(a~r) =, e'(&~&'&~&& I(()r),
2M

(92)

where g,(r) is the solution of the radial Schrodinger equation pertinent to this problem, and has the as-
ymptotic behavior

(r),(r) =k 'sin[5, +t', (r)]
ya ~so

and from the definition (21}of the transition matrix and the relations (92) and (93}, one obtains

T,(a) —P(l (2) (~) + ('(~)&

where T,(a) is the transition matrix for r = r' = a. Also

( ~ )
. P,(kr)P,(ka), (~~),t,(, &I ( )ar

Introduction of the result (94) into Eq. (90) yields

—5,(ka) = — —k ——. — —P, (ka) ——P, (ka) ——L2(ka) (1+e 2'( 2)(~&+t&~&& )
d P2 (ka} 1 )I' d 1 2
da ' a Ri Ma da ' a ' aa, 222

( l
l, (ka))'.

P(k ) )f'

+ — —L, (ka) -d I„(ka) sin'[5, (ka)+$, (ka}] .1 1

(93)

(94)

(95)

(96)

This result is equivalent to the expression obtained by Calogero" for the derivative d[5, (ka)]/da. Calo-
gero's result~ is given in terms of the phases of the Ricatti-Bessel functions, instead of the appearance
of the more physically meaningful shift and penetration functions in our result.

Introduction of Eq. (95) into Eq. (91) yields

d—[5,(ka, r)+t', (ka, r)]=— d—lnP, (ka, r) i {s2n[5,(k r)a+),(ka, r)]}1 d

1 d S,(ka, r) sin2[5e(ka, r)+$,(ka, r)]P, ka, r) dr

+2 —, ' da 2,(al &—[t( )- a(a, a)))a2.(al.M P,(ka, r)
0

(9V)
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There are three cases of interest which can be obtained from the general result (97):
For v =l,

d 1 1 d 1 d—(5 )= —s+ — —ln(P) sin'(5 +( )- ——S sin'(5 +g )dl ' 2 2 dl ' ' ' p dl

for ~=k,

Ps "' 2l+dr p,(r), g, (r);a p

d 1 d 1 d—5 =-a+ ——ln(P )sin[2(5 +g)] — ——S sin (5 +$ )
dk ' 2 dk P, dk

p Sg

+2—' k dr g, '(r).a

For r =e, where s is the strength coupling constant of the potential; i.e., V(r, r}=e V,(r}, one obtains

(99)

—5, = —
2
—' dr g, (r) V, (r)g, (r).

4p

For s-wave neutrons, P, =}ta, S,=O, and one obtains from Eqs. (96) and (99), respectively,

5, = —
2 Vo(a) sin~(50+ $0),

d 2'
da

(100)

(101)

2i
& ,5=i }'csin[ 2(5, +$,) ]+4ik' dr g,'(r)-2ia.

4 p
(102)

The results (101) and (102) for s-wave neutrons have been given by Devooght" and Newton, ' respectively.

VII. SCATTERING LENGTH

FOR s-WAVE NEUTRONS

tanbp
n(a) = -lim

k~p
(103)

From Eq. (101) for the phase shifts, 5„one ob-
tains, for a definite negative potential,

To illustrate the use of the equations derived
previously, let us consider the derivation of an
expression for the scattering length for s-wave
neutrons. The scattering length4' u(a) is defined
as the limit

which is a Ricatti differential equation for the scat-
tering length with the initial condition o.(0) =0.
Equation (108) can then be solved with the only re
striction that the potential V(a) must decrease not
faster than a '. Besides the numerical integration
by the Runge-Kutta technique, for example, one
can obtain several analytical approximations
through the use of various techniques. We shall
use here a linearization procedure subject to a
large degree of generalization. To this end we
start splitting the solution into the zeroth-order
solution u 'i(a} and a small deviation Y(a), i.e.,

d 1
5, =

&
W(a)(sin5, cos$, + cos5, sin(, )' (104)

with

n(a) = o.&'&(a)+ Y(a),

where from Eq. (108)

(109)

)p=ka, (105)
n~' (a) = — da'W(a')a"

kp
(110)

(106)W(a)=, i V, (a)i.

Now we expand the phase shift, 5„ in powers of
the momentum, k, i.e. ,

Introduction of Eq. (109) into the Ricatti equation
(108) yields

Y(a) =Ho(a) + H, (a) Y(a)
d

tanbp=nk+ 3Pk . (107) with

Introduce Eq. (107) into Eq. (104) and equate equal
powers in the momentum variable. This procedure
yields

H, (a) = W(a)[ o~ i (a) —2au~' (a)],

H, (a) = 2 W(a) [ -a+ n(') (a)] .
(112)

(113)

——= W(a)[a2 —2an(a}+ a2(a)]
da

(108)
Integration of the differential Eq. (111)and use of
the relation (109) yields the following
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approximation
~O I

-(2'(a) = -(2( (a)+exp —
~

H, (a')da'
+0

a'

4 0
da'H, (a') exp +

+0
d42"H, (a")

(114)

This operation can be repeated by replacing n'(a)
by n"~(a) in Eq. (109) and repeating the previous
procedure. In order to illustrate the degree of
accuracy involved in the first iteration aal(a), con-
sider the case of a square well potential, V,(a) = V, .
In this instance the exact solution is, Messiah4' ~

with

(
aaaa

)

2m
V a2

g2 0

(115)

(116)

&+~~«~~j- y+ b2+ 4 b4+e

and keeping only terms up to b' yields

(118)

(2 ' (a) = -+ 5'a++, b'a+ ~2„52a+ „~ 5'a. (119)

The first term in Eq. (119) is the first Born ap-
proximation, while the whole expression coincides
with the first four terms of the exact solution (115)
upon expansion of tanb in powers of the parame-
ter b.

VIII. DISCUSSION AND CONCLUSIONS

The main result of this work is embodied in Eq.
(54), which gives an integrodifferential equation
for the T matrix in terms of the physical param-
eters of the system. Together with the initial con-
ditions, the problem of computing the transition

With the change of variables (116) various inte-
grals in Eq. (114) can be performed after expan-
sion of the exponential functions in the integrand,
one obtains:

(2(1)((2) 1
5222 4 4154 ( 2 + 52 +~ 54)eb Q+(lib)b 5

(117)

Expansion of the exponential terms in Eq. (117)

matrix, and hence cross sections, has been con-
verted into a generalized Cauchy problem. This
technique affords, in principle, a new alternate
method of solution of the coupled-channel equa-
tions.

The direct solution of Eq. (54) offers the advan-
tage of conserving unitarity within the limits of
the numerical approximations utilized.

Starting from Eq. (54) one has derived a set of
equations, the so-called equations of motion (62)
and (63) from which one can compute energy levels
and widths, starting from the corresponding quan-
tities in the R-matrix uncoupled case. An applica-
tion has been shown to the generation of the com-
plex residues and poles of the collision matrix in
Sec. VI. The procedure shown there can be easily
extended to higher angular momenta, which is of
interest in order to study the extrapolation from
the resolved into the unresolved resonance region.

To further illustrate the power of the method,
we have derived general differential-integral
equations for the phase shifts which describe the
scattering of spinless particles by a central poten-
tial. In this manner various results previously
derived by other methods for s-wave scattering
have been generalized and. unified. As a result of
this treatment, an equation for the scattering
length, n(a), as a function of the range of the po-
tential, a„has been obtained. By linearization of
this equation, one arrives at a first-order approx-
imation to the scattering length, which is equiva-
lent to the first four terms of the expansion of the
true solution in terms of the parameter, b, given
by Eq. (115).

In conclusion, the T-matrix treatment of the
coupled-channel equations affords several advan-
tages:
(a) It offers a large degree of flexibility in the
choice of boundary conditions.
(b) The formalism gives explicitly the dependence
of the T matrix on the pertinent physical parame-
ter.
(c) Unitarity is conserved.
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