
PHYSICAL REVI EVE C VOLUME 8, NUMBER 2 AUGUST 1973

Evaluation of the Nuclear Charge Form Factor. with Intrinsic Hyperspherical-Coordinate
Wave Functions'
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Evaluation of the nuclear charge form factor requires the evaluation of a many-body matrix element.
In this paper it is shown how this many-body matrix element can be reduced to an integral over
single-particle matrix elements when hyperspherical coordinates are used,

1. INTRODUCTION

The nuclear charge form factor is defined by the
matrix element

&(e) =(~&le"'" "'I+i&, (1)

where r, —R is an intrinsic coordinate and 4r is
the intrinsic nuclear wave function depending on
intrinsic coordinates. Evaluation of this matrix
element requires integration over intrinsic coordi-
nates which, due to the presence of the c.m. co-
ordinate R in the exponent, can be very difficult
to perform. Indeed exp[i q ~ (r, -R)] is an A-body
operator for an A-mass nucleus. Equation (1) can
be easily evaluated if one does not use intrinsic
coordinates, which can be done by requiring the
factorization of the wave function into the intrinsic
wave function and an arbitrary c.m. factor, ' say

+~=+S Xo.

In this case'

which is the matrix element of a one-body opera-
tor. In this way, however, the difficulty has been
shifted from the problem of using explicitly intrin-
sic coordinates, to the problem of obtaining fac-
torized wave functions. This is an easier problem
if one only demands approximate factorization,
but this approximation can cause la.rge errors at
high momentum transfer. ' In view of this fact it
can be worthwhile to try to use intrinsic coordi-
nates a,t the cost of a major complication.

No general method of evaluation of Eq. (1) is
known when intrinsic coordinates are used. The
purpose of this paper is to show that, with a par-
ticular choice of intrinsic coordinates, the intrin-
sic hyperspherical coordinates, E(q) can be evalua-
ated in terms of integrals of single-particle ma-
trix elements. The integrals involved are the
same occurring in the evaluation of the matrix ele-

ments of the potential. ~ ' Indeed the result we are
going to present is obtained by a modification of
the procedure developed in Refs. 4 and 5 for the
evaluation of matrix elements of two-body opera-
tors.

2. EVALUATION OF THE CHARGE
FORM FACTOR

A set of spin-isospin coordinates which we shall
denote by 0, complete the dynamical variables.
Using these dynamical variables 4r reads

q'z=Z &» q'»
K&

where

@», W' X». (—ar) U».(fl p„ fl.,) (6)

The UK, can be expressed in terms of the harmonic
polynomials of degree K, PK„by the formula

Ng~
UK~= —— pr &K„,

where NK, are normalization factors. These poly-
nomials are constructed as a superposition of
Slater determinants of the functions

'tpnf Iseult( PJ ) l(PJ ) y/gg( py)+p (1) 1 (8)

where

g„, = (-)"v 2 [I'(n+1)I'(n+ l+ —,')] '~',

and o.„,(j) is a spin-isospin function. Note that

y„, „,(p&) is not a single-particle function, be-
cause p&

= r& —R. Let us define the auxiliary quan-

The intrinsic hyperspherical coordinates' con-
sist of a hyperradius pz and a set of (SA —4) in-
trinsic angular coordinates which we shall denote
by 0& . The hyperradius is defined in terms of the~r'
single-particle coordinates r, and the c.m. coordi-
nate R by the equation

Zp P=r —R (4)
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tlties

()~ ..(a+)= I f«))'.[q s(i,)]8"""")),.[ws(i, )I,
07

where the label P stands for the quantum numbers nlmt[7. In terms of these quantities E(q) reads

)"(&)= Z ". *f&u.xk(a)& -(s o,)x "(s)
Nr'VIj'

(10)

In order to evaluate the P~.„(q,pz), first introduce into Eq. (9) integration over p, along with a 5 func-
tion and then a convenient representation of the 6 function

A

(e p)=2 " '"p '""'" "g && &p. p'"'5 gp' p' -&+[V ( p)]&, [4[(]p)) e"'" "
0 7' s=l

p dt de dpr pr P p p
QT

A

xexp i tg p, —tpz' —q ~ R I'„,„,[rp (p&)] e'
s=l

This enables us to get rid of the c.m. coordinate R in the exponent using the following identities

i q2 At
exp ———. dRexp[i(Atit'+q R)]=1,t 4A i n'

A'"dRdg dp p'" '=dr dr ~ - gr
pr 1 I 1 2 Ay

which gives
3/2 i 2

@AD ger

A

x Ff dr fd|, fd „[|y()p )] e8xp ~—.F~'))'.„,[ps(pi)]exp()i i).
OT s=1

(12)

(14)

From now on Ref. 5 can be followed step by step. For the sake of completeness we report the essen-
tial points leading to a computation in terms of single-particle coordinates. First, since the P~„are har-
monic polynomials

„[pg(pf)]=( ) P „(ps (
—.) pJ

Second, use the identity

PEIt +8 i 6 = ~&Pl t PZ „8 —. p~ (16)

where

1/2 ' 3/4 i/2

p&
= —. [2F(n+I)]'I'[F(n+ I+ 2)] '~'L„"'~ —.p&' —.p&' Y, (pz)(x„,(j),

the L„"'~' being Laguerre polynomials. This identity follows from the fact that the g are linear combina-
tions of the (I(). Note that [t)[(t/i)'" r&) exp [(-t/2i) r&'] is a harmonic-oscillator eigenfunction of complex
length (i/t)'". The evaluation of 6~.„„(q,pz) would have led to the standard evaluation of matrix elements
with harmonic-oscillator wave functions, if it were not for the presence of the many-particle arguments
pg.

To arrive at the final result it is only necessary to express

pg „8 —, pg exp



in terms of Slater determinants of harmonic-oscillator single-particle wave functions. This is obtained by
putting p~

= r& —R and expanding the Pr,„,with respect to R. Only a finite {and in general small) number of
terms are obtained. Explicit formulas for this job are given in Ref. 5. In order to show the type of ex-
pressions to be finally evaluated, we specialize to a "magic nucleus" and to K=K'=E;„ the lowest K har
monic, in which case there is a unique U~, so that the label v can be dropped

g 1/2

+&x~~ 8 = ~y e p~ ra

xg dr/«8 —. r exp ——.r gz —. r exp{i q r).
8

8

The sum over p runs over the single-particle states occupied in the ground state. In the general case one

has a linear combination of terms of this form.
The full evaluation of the charge form factox requires the integration over I, and pI of single-particle ma-

trix elements, as the evaluation of potential matrix elements requires the integration over I; and pI of two-
particle matrix elements. If the integration over I, is performed with the saddle point method, ' one is left
in both cases with the integration over pI.
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