
PHYSICAL REVIEW C VOLUME 8, NUMBER 2 AUGUST 1973

Truncation of Configuration Space and the Nature of Effective Tvvo-Body Interaction*'

Raj K. Qupta
DePartment of Physics, Panjab University, Chandigarh, India).

(Received 18 September 1972)

Using the renormalized G matrix (the G„) results of Kuo (for the d-s shell) and of Kuo
and Brown (for the f-p shell), a re-renormalized effective G matrix (the Geff) for only two
active orbits is calculated numerically, which would be valid for use in (d5/2s f/2)" and

(f7/2 p3/2)" configurations. The operators G„and G,f& as well as the bare G matrix (the GI,) of
Kuo and Brown, which thus define the transformation chain G& -Gy Geff are then ana-
lyzed in the light of truncation of the shell-model space. The analysis shows that the ef-
fect of this truncation can largely be taken into account by the addition of a pairing-force
term to the effective two-body interaction. The relative change in T =1 and T =0 parts of
the interaction due to the truncation of configuration space in various ways is also dis-
cussed. Finally, a comparison between the available empirically fitted effective interac-
tions and our theoretical G,f& interaction is carried out.

1. INTRODUCTION

Ever since the advent of the nuclear shell model,
one of the practical problems in describing the
various nuclear properties has been the choice of
configuration space and the corresponding effec-
tive nuclear force. The problem has become more
involved with the growing use of realistic nuclear
forces. Usually one likes to keep the calculations
simple by limiting the configuration space. How-

ever, a theoretical justification for using very
simple configuration space can only be given if
one knows how to reduce a respectable realistic
interaction to an effective interaction, to be used
only in the restricted configuration space. Qen-
erally, in most shell-model calculations a need
for increasing the configuration space is felt (ei-
ther in the sense of including core excitations or
by including higher-energy configurations) because
the theoretical predictions with effective interac-
tions have failed to agree with experiments. In
recent years several attempts have been made to
investigate the effect of truncation of shell-model
space on various nuclear properties in the frame-
work of the so-called pseudonuclei. ' ' It has been
shown that for many nuclear properties the effect
of truncating the configuration space can be count-
erbalanced or absorbed by suitably modifying the
effective two-body interaction. However, although
this apparently works very well where the config-
uration mixing is only of two-particle-two-hole
type, it is not possible to conceal the configura-
tion mixing by modifying the effective interaction
when the mixing is also of one-particle-one-hole
type or if one wants to study properties such as
inelastic electron scattering. '

The crux of the problem of truncating configura-
tion space, however, lies in the possibility of find-

ing an equivalent satisfactory effective interaction
in the reduced space. In this paper we make an

attempt to investigate this effect of truncation of
shell-model space on the nature of two-body effec-
tive interaction. For this purpose, we choose to
work with the G matrix calculated with the Hama-
da- Johnston potential by Kuo and Brown. ' ' We
consider two examples (1d„,2s„,)'» and

(1f7„2ps&2)2~r configurations, and begin with the
values of the G matrix in which the effects of very
high-lying configurations are implicitly included, "
referred to as the bare G matrix. Tables I and II
list these numbers, respectively, for the 'd, /2s&/2

and the f,»P, &, configurations (denoted as G,). As
a second step, one can reduce the configuration
space by excluding excitations from the so-called
core configurations [(1s)'(1P)" in tl " case of d-s
shell and (1s)'(1P)"(1d2s)" in the ease of fP-
shell] and modify the effective interaction by in-
cluding the core-excitation effects in the effective
two-body matrix elements. Such a G matrix,
which may be used in the limited shelj. -model
space (the complete d-s and the complete fP-
shells in the present two examples) has been cal-
culated by Kuo' and Kuo and Brown. ' We refer to
it as the renormalized G matrix. These numbers
are also listed in Tables I and Il (denoted as G„).
As a next step, one would like to truncate the shell-
model space further to include only the very mini-
mum two orbits and thus obtain the two-body ma-
trix elements which, for the two examples under
study, would be valid for use in (1d,&32s,»)" and

(lf,~,2p, &2)" configurations. Such a calculation for
the G matrix has not been made in the past and we
refer to it as the renormalized effective G matrix
(denoted as G,«). Thus the purpose of this paper
is twofold: firstly to calculate such a re-renor-
malized effective nuclear interaction which would
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complete the transformation chain 6,-C„-6,ff
and secondly to analyze these operators in a few
different possible ways, in order to get some sim-
Ple feeling for the nature of two-body effective in-
teraction due to this type of renormalization of the
force. This is done in Secs. 2 and 3, respecti;ely.
Finally, in Sec. 4 we carry out a brief comparison
between the G,«and the empirically determined
effective interactions. A summary of our results
is given in Sec. 5.

cedure through which the effective Q matrix for
the case of only two active orbits, ean be obtained
in a simple manner by making an explicit trunca-
tion and using the available results (the G„, re-
ferred above) of a large configuration space.

The original eigenvalue problem is

2. CALCULATION OF THE RENORMALIZED
EFFECTIVE 6 MATRIX FOR ONLY TWO

ACTIVE ORBITS

TABLE I, Two-body matrix elements for the basis
space I,'1d &&22s~&2) . All energies are in MeV and the
notation is

(»(i2: ~~ I&li'(i 2: ~*) —= (2i(F2 zi'(~i'2: ~~) ~

where 5=- 145&2 and 1=—2s&&2.

Effective
Hamada- Johnston interactions

Configuration cT T Gy 6& 66«Vp qgM V~HO

5555
5511
1111
5555
5551
5151
5151
5555

1 -1,24 -2,44
-0,63 -0.97
-2.05 -1,95
-1.01 -1.03
-0,56 -0.85
-1,17 -1.29
-0.29 0.17
-0,43 -0.05

-3.52
-1.18
-2.00
-1.25
-1.10
-1.69

0.17
-0.52

-3.41
-1.04

2 g 17
1Q2 1

-0.88
1g 17
1.16

-0,08

-4.04
-1.59
-2.55

0.71
2 y7 1

-0.51
1.12

-0.56

Using the prescription given by Kuo and Brown
in a series of papers, one should in principle be
able to calculate the Q matrix for any choice of
the shell-model space. However, the physical
operators in a small space would be different than
the operators in the full space. Though the theo-
retical expressions for the effective operators to
be used in a limited basis space are now avail-
able' " (derived by using perturbation theory)
there are many difficulties such as the conver-
gence of the perturbation expansion for the oper-
ators. " In the following, we give a numerical pro-

&4 lk()&=& 8

Here N defines the dimension of the space (fixed
by the G, matrix, in our problem). For example,
when two identical nucleons are distributed over
the four orbits (f»„PS)„f»„P„,} of lf2P shell,
X=8 and j=1 to 8 for J =2', 7 =1 states, since
eight such states can be formed.

Now, we wish to transform this probl. em to a
smaller space which we shall refer to as the mod-
el space. Our procedure is to use the results of
the original. eigenvalue problem such that the ef-
fect of truncating the configuration space (sd
-d„,s„, and fp- f»,p„,) is counterbalanced by
renormalizing the effective interaction. We,
therefore, write the eigenvectors of the model
space as the projection of g» onto the model space,

where d is the dimension of the model space. For
the example cited above, if the configuration space
is reduced to only (f»„P»,}orbits, d = 3 and j = l
to 3. If we now assume that the interaction re-
mains Hermitian, the eigenvectors P» have to be
reorthogonalized. This can be done by using the
standard Gram-Schmidt method" of orthogonaliza-
tion. %e start our Gram-Schmidt procedure from
the lowest-lying level (justified, in the following)
for each (4, T) and on normalization obtain the
eigenvectors of the model space, say,

5555
5511
1111
5151
5555
5551
5151
5555

0 -0.30 -1.03
-0.27 -0.60
-3,01 -3.18
-0.53 -0.62
-0.79 -0,86
-1,24 -1.56
-3.12 -3.69
-3,42 -3.66

-3.70
-1.95
-4.08
-3.24
-1.55
-1.87
-3.70
-3.66

0.01
-4.27
-3,67
-3.70

0.38
-3,53
-2,60
-4,26

-2,94
-0.78
-2.18
-6.74
-2.35
-2.56
-1.62
-3.60

4»"'=Z &»m(j)N

where

y(m)
(

y(m) )

The model-space eigenvalue problem can then be
denoted as

The single-particle energies used in this calculation
are given in Table III.

The single-particle energies adjusted to obtain this
interaction are E& =-4.313 MeV and E~ =-3.265 MeV.~sn

H(m)y(m) E y(m) (4)

where 0' ' is some model Hamiltonian acting in
the truncated space. Equation (4) says that H( '

acting on the orthonormalized projected wave func-
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tions P~ ' produces the same energies E& as the
full Hamiltonian H acting on P&. (Of course, all
the energies E& would not be obtained for the trun-
cated space. ) The Hermitian interaction H™,thus
obtained by solving Eq. (4) would give all the
"right" eigenvalues and the "right" eigenvectors
for the lou est state of a, given (8, T), but slightly
"wrong" eigenvectors for the higher state of the
given (8, T) [where we have used the words "right"
or "wrong" in the sense of these numbers match-
ing or not matching exactly with the full-shell
eigenvalues Ez and their truncated eigenvectors,
given by Eq. (2)]. Apparently, if we start our
Gram-Schmidt procedure with any other level of
a given (J, T), this is equivalent to choosing differ-
ent g&

' for the same model space. The interaction
H' ' would consequently be different. However,
our calculations show that the resulting change in

H' ', due to a different choice of the basis state
for the Gram-Schmidt orthogonalization procedure,
is insignificantly small. [For example, the two-
body matrix elements for J =0, T =1 states in d-s
shell (refer to Table I) changes from -3.52, -1.18,
and -2.00 MeV to, respectively, -3.55, -1.14,
and -1.97 MeV; and similar order of differences
occur in the other G„„numbers. ] We, however,
choose to orthogonalize our eigenvectors with re-
spect to the lowest-lying level for each (8, T) since
this might have an advantage in calculations for
systems of three and four active nucleons, be-
cause their low-lying states might have particu-
larly large coefficients of fractional parentage
involving the lowest-lying states of the two-active-
nucleon system. "

Alternatively, "one can generate an interaction
that exactly fits not only the eigenvalues E& of the

TABLE II. Two-body matrix elements for the basis space
same as in Table I with 7= 1f7&2 and 3=—2P3/2,

(1f&g2 2p3&) . All energies are in MeV and the notation is

Configuration
Hamada- Johnston

G„ Gers Gers

Effective
interaction

7777
7733
3333
7777
7773

7733
7373
7333
3333
7373

7777
7773
7373
7373
7777

7777
7733
3333
7373
7777

7773
7733
7373
7333
3333

7373
7777
7773
7373
7777

-0.87
-0.47
-1.00
-0.66
-0.28

-0,17
-0,63
-0.23
-0.45
-0.21

-0.30
-0.15
-0,22
-0.12
-0.12

-0.23
-0.08
-0.65
-0.27
-0.21

-0.39
-0.24
-0.68
-0.44
-1,83

-0.10
-0.60
-0.75
-2 ~ 08
-2 ~ 18

-1~ 81
-0,78
-1.21
-0.78
-0.50

-0.27
-0.86
-0.32
-0.38
-0.03

-0.09
-0.31
-0.05

0.14
0.23

-0.52
-0.28
-0.64
-0.29
-0.21

-0.48
-0.30
-0.60
-0.51
-1~ 83

-0.16
-0.50
-0.82
-2 ~ 16
-2.20

-2.40
-1.01
-1.64
-0.86
-0.59

-0.29
-1~ 02
-0.37
-0.58
-0.03

-0.17
-0,37
-0.27

0.14
0.13

-1.66
-0,70
-2,88
-1.09
-0.58

-0,72
-0,46
-1,33
=0.77
—2,03

-0.23
-0.61
-0.86
-2,19
-2.20

—3.01
—1.25
-1~ 76
—1.12
-0.68

—0.36
-1.06
-0.40
-0.60
-0.03

-0.27
—0.43
-0.30

0.14
0.08

-1.88
-0,78
-2.90
—1.09
-0.67

-0.77
—0.48
-1.35
-0.79
-2 ~ 04

-0.23
-0.65
-0.90

2+22
2027

—2.75
—1.22
—1.72
—1~ 04
-0.72

-0.58
-1.03
—0.58
—0.64
—0.17

-0.36
-0.38
-0.19

0.15
0,20

2 ~ 71
b
b

-0.60
—1.55

-0.70
-1.04
—0,92

2y77
—2.47

The single-particle energies used in this calculation are given in Table III.
"These matrix elements were taken to be equal to their corresponding G„counterparts (Ref. 25).
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TABLE III. Single-particle energies, derived from
experiments, for both the d-s andf-P shells.

Energy
Configuration (Me V)

Energy
C onfiguration (Me V)

«d g/2

2S g/2

0
0.87
5,08

«f 7/2

2p 3/2

2p i/2

«g 9/2

«f 6/2

0
2.1
3.9
5.9
6.5

full space but also uses the untreated, nonorthog-
onal truncated eigenvectors given by Eq. (2). Such
an interaction would, however, be non-Hermitian
but for "many-body" shell-model calculations
could be made Hermitian by some averaging pro-
cedure. From a private communication with Bar-
rett and Halbert we understand that they (in col-
laboration with McGrory) are carrying out such
calculations and refer to this method as Brandow's
method. They make their interaction Hermitian
simply by averaging it with its own transpose.
This then gives somewhat "wrong" values for all
the eigenvalues and somewhat "wrong" values for
all the eigenvectors, though in many cases the
"slightly wrong" answers are almost "right. " We
thus find that our projection method, which main-
tains an Hermitian interaction, seems better in
that (i) it gives a greater number of "right" eigen-
values and eigenvectors for the case of two active
nucleons and (ii) our choice of orthogonalizing the
wave function with respect to the lowest-lying
state for each (d, T) might provide an advantage
for its application to low-lying states in systems
of three and four active nucleons.

We have applied this method to both the 1d-2s
and lf 2p shells. The-G„matrices for the two
shells are taken from Kuo' and Kuo and Brown, '
respectively. The single-particle energies used
in the calculations are listed in Table III. The re-
sults of our calculation are given in Table I for
the d-s shell and in Table II for the f-p shell (de-
noted as G,«). In Table II, G,«refers to the case
of g,/, orbit omitted in the original calculations of

gj and Zj and G'„, to the case when this orbit is
also included in the calculations of Pj and Ej

As a further application of our method, we have
tested the idea" that for the J=0+, T =1 ground
state, the effects of leaving out d, /~ orbits in 1d-2s
shell calculations are absorbed by modifying only
the d' part of the eigenvectors, and that in the case
of f ps-hell (with ga/2 omitted) the effects of limit-
ing the configuration space (f p--f„,p„,) are
shown in the components of their respective or-
bital angular momenta. Specifically, for the J =0,
T =1 states in the complete d-s and f psh-elis,

pj =alj(ds/2) +as/(ds/2) +as/(sl/2), (j =1,2, 3)

blj(f'//2) baj(fs/2) +bsj(ps/2) +baj(pl/2)

(j=1,2, . . . , 4) (5b)

the model states in the truncated space can be writ-
ten as

4 ( ij 2/ ) (ds/2) 3/( 1/2)

(blj baj ) (f7/2) (b3/ baj ) (p3/2)

where the eigenvectors now remain normalized.
Using the procedure described above, the G,«ma-
trix elements can then be calculated. The results
of this calculation are given in Table IV. We have
also included in this table, the corresponding G,rr

matrix elements from Tables I and II. It is inter-
esting to observe that the two sets of numbers are
very much identical.

3. NATURE OF THE EFFECTIVE TWO-BODY
INTERACTION SEEN IN THE

RENORMALIZATION OF G MATRIX

As already stated in the Introduction, in this
section we examine the operators G„G„, and G,«,
listed in Tables I and II, with a view to infer the
nature of effective two-body interaction. We do
this by studying the relative changes (i) in the two-
body matrix elements of each (J,T) for Ga- G„- G,«and (ii) in the centroids of certain sets of
these matrix elements. This is given in subsec-

TABLE IV. G,rr matrix elements for J =0, T =1 states in both (d5/2s&/2) and (f7/2p3/2} configurations, derived by
the use of Eq. (6), and the corresponding numbers from Tables I and II, respectively.

Configuration Table I
Gerr

Eq. (6a) Configuration Table II
Gerr

Eq. (6b)

5555
5511
1111

-3.52
-1.18
-2.00

-3.55
-1.14
—1.97

7777
7733
3333

-2.40
-1.01
-1.64

-2.36
«2 12

-1.69
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tions A and B, respectively. We have also car-
ried out our analysis by reparametrizing these
operators in terms of (i) radial integrals and
(ii) the parameters of Donnelly's velocity-depen-
dent potential, "using least-squares fitting pro-
cedures. The parametrization of the two-body
matrix elements in terms of the diagonal radial
integrals has been advocated by Pandya" for some
time and the properties of various radial integrals
for the d-s shell configuration have been discussed
by Pandya and Kulkarni. ' ' In our calculations,
we have assumed for simplicity only a central po-
tential, However, this part of our analysis turns
out to be rather approximate since the least-
squares-fitted parameters for both the radial in-
tegrals and the Donnelly potential, given an inex-
act reproduction of the operators G» G„, and G,«
(though most of the matrix elements are repro-
duced within 5-10%, some are in error by as
much as 509O). Since the results of this calcula-
tion could not be conclusive, we do not give any
further details here but summarize them in Sec. 5

along with the other results.

A. jj Two-Body Matrix Elements

We first proceed by comparing the matrix ele-
ments of 5555:JT and 77VV:JT configurations,
listed in Tables I and II (for notation, refer to the
table caption). We notice that when the core con-
figurations are removed (G~- G„), the major chang-
es occur in 5555:01 and 5555:10 matrix elements
for the d-s shell and in V777:01 and VV77:10 ma-
trix elements for the f-P shell, where by the word
change we mean the absolute change in MeV. In
each case a large attraction is added. For T =1,
J=0, 2, 4 states in the d-s shell, the spectrum
goes over from an almost rotational to a vibration-
al type. Next, when the d3/2 subshell is removed
(G„G,ff), the major change is once again in &=0,
T =1 and J=1, T =0 matrix elements and these ma-
trix elements become further attractive. Further-
more, if we compare G,«and G,'«matrix elements
in Table II, the effect of omitting the g91, orbit is
also seen in making only the 7777:01 matrix ele-
ment further attractive. In the case of other diag-
onal matrix elements, we notice that whereas the
matrix element 1111:01 remains essentially un-
disturbed, the 1111:10 is gradually depressed
(becomes attractive). For the f-P shell, however,
the 3333:01matrix element is depressed gradually
whereas the 3333:10 is depressed suddenly in go-
ing from G„ to G,«. The above noted changes in
the jj matrix elements, when analyzed in terms
of the centroids of the sets of matrix elements,
reflect on the nature of the effective two-body in-
teraction in an explicit manner. We might, how-

ever, mention here that the quoted changes in
G„-G„(and G„-G,«) depend on the particular
selection of very simple perturbation approxima-
tions, and would be different if a different selec-
tion had been made.

B. Centroid Calculations

Talmi ' has defined the parameters

Vo =(2j2j2j2j:01),
1 2J-1

(2J+ 1)(2j2j2j2j:Jl),j 1 z&o, even

(7)

2(j t1)
P= . (V, —V), (10)

(2j+2)V, —(2j+1}V,—2V,
2(2j+1)

which refer, respectively, to the quadratic term,
pairing term, and the isospin-dependent symmetry
term in the estimated ground-state binding ener-
gies.

We have calculated Vo Vy and V, as well as the
parameters n, P, and y using the matrix elements
5555:JT and 7777:JT for the operators G» G„,
and G,«, listed in Table I and II. The results of
the calculation are given in Table V. We observe
that for both the (d„,)' and (f„,)' configurations,
the centroid V, changes more strongly than V, and

V,. The truncation of configuration space thus
shows up in widening of the gap between Vo and
V„and hence in the variation of p, representing
an increase in the pairing component of the inter-
action. This result is similar to that obtained by
Cohen, Lawson, and Soper' from their study of
pseudonium isotopes. It is interesting to note that

1
V~ = . . Q (2J+1)(2j2j2j2j:+0).

(6)

These parameters can be used to calculate the en-
ergies of the lowest-seniority (v,) states for (j)"T
(and these calculated energies may be considered
as estimates of the ground-state energies):

((j)"T.&olH l(j)"T) vo)

o+
2

P+[T(T+1)—(—,')n]y,n(n —1) n

(9)

where [n/2] is a step function which is equal to n/2
for even n and (n —1)/2 for odd n, and the interac-
tion parameters are

(6j+5)V, +(2j+1)V, —2V,
4(2j+1)
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4. COMPARISON BETWEEN THE G, ff
AND THE EMPIRICALLY FITTED

EFFECTIVE INTERACTIONS

No doubt phenomenological effective interactions
are, in general, obtained with different aims in
mind. However, the final aim of a)1 such calcula-
tions should be to get a picture of the experiments,
consistent with some theory. In this section, we
aim at seeing such a consistency between the avail-
able empirically fitted effective interactions and
our theoretical G,« interaction which is designed
to reproduce some properties of G„ for one to two
active nucleons.

For the d-s shell, the 16 (d„,s», )' matrix ele-
ments were obtained by Arima et al."by fitting
a number of experimentally observed levels in
nuclei A =17-2o and by Wildenthal et al."by fit-
ting some of the observed levels in nuclei A =20-
28, in terms of the configuration (d„,s„,)"; thus
g =1-4 in the calculations of Arima et al. and 4-12
in those of Wildenthal et al. The two operators

TABLE V. The centroids and the interaction parame-
ters, calculated by use of Eqs. (7)-(10), for the {d&/2)
:JT and (f7/2): JT configurations.

Configuration Parameters
Hamada- Johnston

Cb G„a«

this similarity occurs despite the fact that pseu-
donium study involves omission or inclusion of
only core-excited states whereas our analysis of
the transformation G, —G„-G,« involves omission
or inclusion of the core-excited states as well as
some orbits outside the core. On the other hand,
the centroid, V, is lowered gradually with the trun-
cation of space. The relative magnitudes of Vy and

V, indicate more attraction in T =0 states, on the
average in agreement with the binding energy cal-
culations of Talmi. " Finally, the quadratic ener-
gy parameter n is shown to remain essentially in-
sensitive to the truncation of shell-model space,
whereas the symmetry energy term y changes by
a factor of about 2.

thus obtained are listed in Table I (denoted as
VAcLM and VygMHG respectively) ~ The single-par-
ticle energies for V««were taken from experi-
ments (same as given in Table III) and for V~„zo,
these were treated as parameters along with the
16 matrix elements. The single-particle energies
thus obtained for V~„G are given at the bottom of
Table I. For the f psh-ell, recently McGrory and
Halbert" have obtained 23 (of the total 30)
(f„,p„,}':JT matrix elements by reproducing
some theoretical levels which were calculated
by using a modified form of G„acting in the space
of one to four active nucleons (A =41-44). This
effective interaction is listed in Table D (denoted
as V ff). The single -particle energies used are the
same as listed in Table III. The remaining seven
matrix elements, which could not be well deter-
mined (these are all for T =0 states) were taken
to be equal to their G„counterparts. " We might
mention here that, based on an earlier calcula-
tion, "these authors did not include the g», orbit
in their analysis and we have made a similar omis-
sion in our calculation of the G,«operator. Thus
we see that whereas the operator V,«has a direct
connection to a modification of G„, the operators
V„c„„and V~„G do not have any direct connection
with C„-G,«However, in view of our earlier re-
mark, a comparison between the G,«and these em-
pirically fitted interactions should be of interest.
We notice that whereas for the f Pshell -the com-
parison between the G„, and V,« is very good (as
expected, since both are obtained as modifications
of G„), it is rather poor for the d-s shell. Even
the two empirically fitted interactions (V„c„„and
V~„o) are significantly different from each other.
Apart from the obvious fact that these two opera-
tors are derived by fitting different experimental
data, this situation for the d-s shell might partly
be due to the fact that d3/2 plays an important role
in T =0 matrix elements and partly due to the poor
determination of some of these matrix elements
in the least-squares fitting procedure of Arima et
al." There is also a possibility" that this differ-
ence has its origin in the use of different single-
particle energies for the two calculations.

(d5/2) Vp

V2

Vg

P

vo
V2

Vg

P
7

-1.24
-0.63
-2.10
-0.95
-0.70

0.83

-0.87
-0.28
-1.16
-0.46
-0.66

0,51

-2.44
-0.40
-2.35
-0.72
-2.38

1.31

-1.81
-0.06
-1.15
-0.23
-1.96

0.76

-3,52
-0.78
-2.96
—1.10
—3,20

1.55

—2.40
—0.15
—1.35
-0.31
-2.53

0,88

5. SUMMARY OF THE RESULTS

Using the renormalized G„matrix calculations
of Kuo7 (for the d-s shell) and of Kuo and Browns
(for the f pshell), a r-e-renormaiized effective
Q «matrix for only two active orbits is cal culated
numerically, which would be valid for use in
(d,„s„m)"and (f„,ps„)" configurations. An analy-
sis of the transformation chain'. G,-G„-G,«shows
that the truncation of the shell-model space both
in terms of the core excitation and some orbits
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outside the core affects mainly the J=O, T =1 and
J=1, 7.

" =0 states due to the configurations 5555
and VVVV. It is further shown that the effects of
truncation of the space can be largely taken into
account by the addition of a pairing-force term to
the effective two-body interaction. This result is
similar to that obtained from the study of so-called
pseudonium isotopes, ' though there exists a quali-
tative difference in the nature of transitions ana-
lyzed in the two studies. Next, our renormaliza-
tion leads to more attraction for the T =0 part of
the interaction and the quadratic-energy term is
shown to remain essentially insensitive to the
choice of shell-model space. The reparametriza-
tion of the operators G„G„, and G,« in terms of
the radial integrals and the parameters of Donnel-
ly's velocity-dependent potential (using least-
squares fitting procedure) suggests the following:
For both the transformations G„-G„and G„-G,ff,
large changes occur in the s-state radial integrals
which are known to have pairing-force-like proper-
ties."' The analysis of the parameters of Don-
nelly's potential indicates that the truncation of
configuration space affects mainly the odd-state
forces —the velocity-independent part (mainly the
triplet-odd strength) becoming more and more
repulsive and the velocity-dependent more attrac-
tive. Renormalization for severe truncation of
configuration space to include only two orbits, also
leads to more attraction in velocity-dependent even-
state forces. Finally, a comparison between the
results of this calculation (G,«) and the available
phenomenological effective interactions shows
that the interactions fitted empirically by using a

very limited shell-model space can sometimes
turn out very different from those obtained by re-
normalizing realistic forces.

We conclude with a remark that it will be of in-
terest to look for the similar effects of truncation
of space on the nature of effective two-body inter-
action in terms of noncentral forces. This is a
subject of our next investigation.
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