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Consideration is given to the approximation in which an arbitrary potential is replaced by
a separable potential. A method is presented which permits the construction of a rank-N
separable potential which has the property that the resulting T matrix is exact on the energy
shell and half off the energy shell at N selected bound state and/or continuum energies. This
construction yields a T matrix that is correct off the energy shell in the vicinity of the N on-
shell points.

I. INTRODUCTION

Go(oo) =((u-ho) '. (1.2)

Here ho is the kinetic energy operator. We may
put co =E+is if we desire the solution appropriate
to the outgoing wave boundary condition for the
Lippmann-Schwinger equation (we use units with
K ' = 2m = 1 and thus E = 0'}, viz. ,

ls.".l &=
I »+G.'"(E)vl4". l &.

Equation (1.1) also has the formal solution,

t(oo) = V+ VQ(&o) V,

with

(1.3}

(1.4}

We begin by defining the T matrix in the angular
momentum decomposition, t(&u), for an arbitrary
two-body potential V, through the operator equa-
tion,

t = V + VGo(m) t,
with

It is obvious that we have used the equation,

14&=Go(-es) VI4& (1.10)

(1.12)

(1.13)

The quantity,

D((u) = &41(V —VG ((u) V]14&,

has the property

llmD((d} = (41 + E'e) ~ (d -Es ~

We may also define the form factors

(1.14)

to obtain Eq. (1.9).
Indeed with X ' given by Eq. (1.9}, the T matrix

for V o, t(oo), is

VI4) &4 I
V

&4 I VG, (e )vl4&

VI4& &4 IV

&g lvlG, (-e ) - G, ((u)]VI& )

V14& &4 I V

&411:v-VG.( }v]14) '

and

9(s)) =(u&-H) ',

H =ho+ V.

(1.5)

(1.6)

= Go '(-~s) 14&

= -(es+t o) 14&

and rewrite Eq. (1.12) as

(1.16)

v~ = VI4»&41v,
will give rise to a T matrix with a pole at ~=
(and the appropriate residue) if g is chosen as

(Ifl ) = &4IVG.(-~.)v14&

(1.6)

(I 9)

It is well known that in the vicinity of a bound
state pole at (d = -~~, with bound state wave func-
tion 14&, we may write,

t( )
V14&&41V

07+ 6'g

Further it is easy to see that the separable poten-
tial,

I ( } lga& &go I

& gs I I Go(-ee) —Go(~)] I gs&

The separable representation given above has
been designated in the literature as the unitary
pole approximation (UPA). ' This approximation
has been studied for singlet and triplet nucleon-
nucleon interactions. ' Further, the UPA provides
the first term of a more general expansion, the
unitary pole expansion, ' whose accuracy has also
been checked numerically.

Because the separable representation of two-
body interactions is so useful particularly in the
solution of the three-body problem, it is impor-
tant to understand how one may achieve an optimal
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representation of a reaBstic interaction in terms
of separable interactions of low rank. The method
we develop here is capable of dealing with two-
body potentials which are of a general nature and
which may have any number of bound states or
resonances.

II. SEPARABLE REPRESENTATION

tr = lv) x&v1 . (2.1)

The outgoing-wave eigenfunction, lgs"! ), of H =It,,
+'U satisfies the Lippmann-Schwinger equation

le.".l,)= II.& ~~!"(E}l&& 14.".l,&,

where k~'=E. For such a separable potential Eq.
(2.2) has the solution

(,) ~
XG,' "(E}lv&(v lks&

14s,!,&-I s&+I
&& I«+&(E)

The outgoing-wave eigenfunction, lgs''! &, of the
Hamiltonian B=h, + V is given by

(2.3)

We pose the problem as to whether we can find
a rank-one separable potential for which the eigen-
function of the corresponding Hamiltonian is identi-
cal to the eigenfunction of the original Hamiltonian,
Eq. (1.6). This can be accomplished at one value
of the energy parameter. Let us define a separable
potential 'U as

5),=Z&eilMleg& &tt, lI'les&=Z&eglI'le~& &e~lMlea&
f

(2.11}

At the energy E„,1$„&is an eigenstate of both X=&,
+Q and H=h~+V, since obviously

and

tilt ) = I 14 )

(P, IU =
& 4, 1

I' .

(2.12)

(2.13}

Thus the two half-shell T matrices, & pl t(E„}1ks )
and & pI t (E„)Iks ) are clearly equal. If we diago-
nalize the Hermitian matrix M by means of a uni-
tary transformation U, we then find that

~=K vl j,&&j, lMlj, &&j, lv, (2.14)

positive energy, it is evident that this result holds
equally well for a bound state, and in that case
yields the unitary pole approximation discussed
in Sec. I.

If we wish to reproduce the wave function at a
number of different energies, E„,we may easily
generalize the above procedure. The result is

~=K pie &&&, IMle, &&a, lp, (2.10)
&sf

where lg, & stands for lgs&, ,& or lgs,.& and the ma-
trix M is defined by the relation

14",',) = l}t &+G.'"(E}P'l4'. ,&. (2.4)

If 1$~, s& and lgs",' ) are to be identical, then com-
paring Eqs. (2.3) and (2.4), we see that we must
have

where

1k'& =Z Uolte&

Thus if we define X, to be

(2.15)

G.'"(E}I'14';!,&
= G.'"(E)Iv& (2.5) (2.16)

This equality need only hold to within a multiplica-
tive constant, which we can set equal to unity with-
out loss of generality. We can achieve the equality
given in Eq. (2.5) if we choose lv) to be

(2.6)

and

we may rewrite Eq. (2.14) as

& =Z Ivy»«v~ I.

(2.17)

(2.18)
With this choice of lv) it becomes possible to
equate Eqs. (2.3) and (2.4), so as to determine X.
We find immediately that

For the interaction given by Eq. (2.14), or equiva-
lently, Eq. (2.18), the wave function lps'", ) is
given by

or

~(y,; I«, ' (E)vip,'. ,&

' (2.7) 14.",,',&= ll.&+4 "(E)2 lv, »„(E)&v,I@&

(2.18)

~= I l~.';!,& (e.".!,II Is.';!,&)-'&~.';!.ll
Although we have derived this result for a single

(2.9}

(I/&) = &4s,'!,I
I'l~s&+ &fs.'!,ll'G' "(E)I'l&a.'a, &

= Qs'. a', I I'Ifs. a,& (2.8)

Thus we have obtained a solution to the problem
posed viz.

where I'o(E} is defined by the relation

Zl „(E}&C,III «.'"(E)y-'lid, &=5„ (2.21)

In the case where 'U is taken to be of rank one,

and the corresponding T matrix is given by

&Plf(E)l»=Z&plv», (E)&v, ll), (2»)
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Eqs. (2.19)-(2.21}reduce to

(,) ~~, G,'"(EW'i&sr. ~ax& &(('s~ &sill'14&

(2.22)

&PIV l(js(;,'„,& &4~x;,'„,IV I k&
=

&y, ,„,l[I yG, (E)y]ly, ,„,&

.

(2.23}

The procedure outlined above thus allows one to
find a separable potential of rank N, which repro-
duces the exact wave functions at N predetermined
energies.

III. EXPANSION OF AN OPERATOR IN TERMS
OF A COMPLETE ORTHONORMAL

SET OF STATES

8 ( ) =P8P=(P8P)(P8P) '(P8P),

where (P8P) ' is defined so that

()(8P) '(P8P) =(P8P)(P8P) '=P.

(3.7)

(3.8)

We must now, of course, further restrict our-
selves to operators 8 and states

l v& such that
(P8P) ' exists. From Eq. (3.7), it is easy to see
that we can construct another approximation to 8,

8r(» = 8P(P8P) ')()8. (3 9)

Clearly 8~(p) and 8z(p) share the property that

P~g (p)P P8z'(p)P P8P ~ (3.10)

However, the operator 8~(p) has the further prop-
erty that

However, all other matrix elements of 8~(p) vanish.
At this point it is instructuve to rewrite the iden-

tity, Eq. (3.5) as

The considerations of the previous sections sug-
gest that it may prove profitable to discuss the ex-
pansion of a general operator in terms of a com-
plete orthonormal set of state vectors. We postu-
late a discrete set of orthonormal states (l N&}
which are complete in the Hilbert space under dis-
cussion. An operator 8 may be expressed in
terms of these states as

and

P8~(p) q =P8q

q8x(p) P =q8P ~

whereas

p8, (p) q =qe, (p) P=o.

(3.1 1)

(3.12)

(3.13)

8= P lN) (Nl 8lM& (Ml.
NgN

(3.1)

We now consider a subspace of the full Hilbert
space, spanned by a finite subset of the states
( l N &] . We indicate this set of states as (l v&},
and the subspace they define as Xp. From these
states we may construct a projection operator P,
which Projects onto 3'.p. We write P exPlicitly as

p=Z I ~& &~l. (3.2}

We also define the complementary projection oper-
ator q, by the relation

p+q =1.

=s=kE
n

J
A0 h

n

or

8r(, )= Zl~&&)18lv&&vl,
V ~ P

8r(p) =P8P.

(3.4)

(3.5}

Clearly, matrix elements of 8 and 8~(p) between
states in Xp mill be identical, i.e. ,

&ul8«»l~&=&ul8I) &. (3.6)

In the usual way, we may approximate 8 by trun-
cating the series in Eq. (3.1). If 8 is Hermitian
and we wish the approximate operator to be Her-
mitian, then we must truncate the left and right
series in the same may. Thus we write FIG. 1. The s, q, p space represented as a three-

dimensional Euclidian space in which the s, q, p axes
are taken to be orthogonal. The lines p =s =k z„andq =s
=k+ are the lines along which the T matrix, (p)t {s2)) q),
is given exactly by the separable approximation under
discussion. These are, of course, the 'half-shell" lines.
The line P=q =s is the "on-shell" line. The shaded vol-
ume around the point s =p=q =k~„is the region around
the completely on-shell point for which the difference
between the separable approximation and the exact re-
sult is negligible.
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Thus 8~~~) has the property that

P8~~~) = P8 (3.14)

8x(p) P 8P o (3.15)

8x(x) = 8r(i) =8 ~ (3.16)

Of course, both 8X~~) and 8+(p) share the property
that in the limit p= 1,

'0= Vx(pl = VP(PVP) PV ~ (3.21}

which would reproduce 8 only if
I g& = la).

The connection of these remarks with the result
of the previous sections must by now be self evi-
dent. If we take X to be the space spanned by the
N-state vectors [I)t),&] of the previous section' and
further choose 8 to be the potential operator V,
then we see that

An interesting insight into this construction may
be obtained by taking the operator 6 to be separa-
ble, i.e., we assume

Now since

ep= VP,

it follows immediately that

(3.22)

(3.20)

(3.17)

The choice

p= In&(~l (3.18)

then yields

ft (,)
= la&&a I =ff, (3.19)

for any choice of
I q& such that (a I rt&v 0. On the

other hand Q~~&) would be

fir( )
= In&&nl &tin&(nl,

(kl ~ ly, &= (kl vip, &
= &kit (E, ) lk„& (3.23)

I)";l,&
= I)',&+fGl "(z)lk&

d)(kit�

(E)lk &. (3.24)

and hence both V and 'IU have identical half-shell
matrix elements at the energies E&. It follows
trivially from the Lippmann-Schwinger equation
that the wave functions (rl)1), &—= (rig@',"„,

&
must

also then be identical since

IV. OFF-SHELL CONSIDERATIONS

We have seen that at the energies E„,corresponding to the states I)t)s("„&used to construct 'U, the half-
off-shell T matrix, (pit (E„)lks), is reproduced exactly by 0. One may use the effective-range formula to
generate the first term in an expansion of the fully on-shell T matrix about the energy E„.The effective
range formula' for the lth partial wave may be expressed as

R

d»
[k""cot6(k)] I), , —=,'- p(ks„)= [(1)s„, '(r) —ps ~ '(r) —u'(ks, r)] dr+ -,' p(ks„,R) .

0

Here )C)» (r) is the asymptotic form of )t)» (r)=-(rl)t)~, ) continued in to the origin, viz. ,

, „(r)= ks (ks r) [cot6(kz„}j,(kz„r) n, (ks„r)],

(4.1)

(4.2)

with j,(kr) and n, (kr) the usual spherical Bessel functions and u(kr) =k'(kr)n, (kr). Also, p(k, R) is given by

d d
—,'f)(k, R) =lim [k' —k'] ' u(k, R)—u(k, R) —u(k, R) u(k, R)—

k~0

Since )1)z ~ (r) is a solution for both potentials V and '0, p( z ) is identical for both potentials. Thus the
derivative of the fully on-shell T matrix t(E„)is correct.

The three-dimensional space associated with the three variables of the fully off-shell T matrix,
(Plt(s')I q), is depicted in Fig. 1. At the center of the shaded volume is the point P = s =q =ks„,where E„is
the energy of one of the states I)c)s(", ) used in Eq. (3.18) to construct the separable potential '0. Since'0
produces the exact half-off-shell T matrices, (pit(E„}lks) and (ks„lt(E„)I q), the use of '0 in place of V is
exact along the dashed lines p=s=kz and q=s=kz . Further, Eq. (4.1) demonstrates that the rate of
change of t along the on-shell line P=q=s is also given correctly by W. Thus, we know that 'U correctly
produces the first terms in an expansion of (pit(s }I q) hbout the fully on-shell point in three linearly inde-
pendent, but not "orthogonal, "directions (i.e. , along the three lines, P=s=ks, q =s=kz, and P=q =s).
We may write an expansion in the three "orthogonal" variables, p, q, and s, of the function v(p, q; s') de-
fined by

.(p qs)=s "cot5(s) -'
'

-' '"I""'lq&
p q & sit(s') I s&

' (4.3}

One can, of course, equally well expand (pit(s')I q& inst'. ad of 7(p, q; s'), but the result for 7 is consider-
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ably simpler. The leading terms in an expansion of v. are

7 (P, q; s') = kg" cot6(ks ) + (P' —ks '), 7 ( P, ks,' ks ')
I ~ &s + (q' —ks„'),7(ks, q; ks ') I, &

2 a 2

(4.4)

where we have made use of the fact that 7(p, q; s') is a functions of p' and q'. The derivatives with respect
to p' and q' are derivatives of the half-shell T matrices which are given correctly by +. These deriva-
tives may be written in terms of the wave functions fs„&s„,(r) by

—7(p, k; k ') = 7(ks„,q;ks„')=—p(ks„)/2= ks„cot6(ks ) t dr(ks r)l', (ks„r)[gs ~ (r) —ps, (r)]. (4.5)
4p

The term involving the derivative with respect to s can be written in terms of Eqs. (4.1) and (4.5) by

using

, 7(s, s; s')I, ,s„=,7(p, k sk s')l~ ~ +, 7(ks„,q; ks„')I,, +, r(ks, ks;s')I, , (4 6)

This gives for the leading terms in the expansion of r(p, q; s')

(4.7)7'(p, q; s') akx2'"'cot6(ks ) + ~(p +q~ —2ks 2)p(ks„)+ ~(s2 —ks„~}[p(ks ) —2p(ks„)],

where p(ks„)and p(ks ) are given in terms of Ps ~ (r) in Eqs. (4.1) and (4.5).
~is is the complete generalization of the effective range theory, as it gives the expansion of the fully

off-shell T maArix in terms of the wave function at one energy. Since '0 correctly reproduces the wave
function at the energy E„,it correctly reproduces the fully off-shell T matrix in the region near ks [the
shaded volume in Fig. (1)]where Eq. (4.7) is valid.

As the half-off-shell T matrix can be written (klVlgs'", ), it is clear that the knowledge of the wave

function lgs'+', ) is equivalent to the knowledge of the half-off-shell T matrix. We may write the fully off-
shell T matrix in terms of the wave function defined by

(pit(s')lk) =(PIVI&,', ).
From the equation for lg,', & in momentum space,

(Pit.':,', &= I»+(s'-P'+fr) '(Plt(s')I»,

(4 6)

(4.9}

we see that the expansion of (pit(s')lk& in Eq. (4.7) also gives an expansion of the "Bethe-Goldstone" wave
function (pl/&", & in a region of momentum space centered about p= s = k = ks„.

The Kowalski-Noyes representation of the fully off-shell T matrix follows immediately from the formula
for the scattering from the sum of two potentials and the use of the potential 'U. If we define the wave oper-
ator 0 as

0'"(s') = 1+9& "(s')V,
we have

„&=lk&+9'"(s')Vlk)=0'"(s')lk)

(4.10)

(4.11)

for the off-shell wave function. In terms of the wave operator, A~ (s'), for the separable potential, de-
fined by

0'„'p'(s')=1+(s'-h, —t)+tq} '&,

0 ' '(s') is given by

IL'"(s') =0'„'~'(s')+(s'-h, —g+tvy) '(V-~)A"'(s')
which yields for the fully off-shell T matrix with s2 equal to E„,

(Plt(E.}lq&= &Pit(E.) I q&+(plfl' "(E.}[V-&]fl'"(E.}Iq&

(4.12)

(4.13)

(4.14)

For t) taken to be of the form of a separable potential of rank one, (pit(E„)lq) is given by Eq. (2.23} to be

( l PIVOT 'sa .&(4s"a IVI q&

IV V[L/(E h )] Vle' "
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Now we note that

1

&n &n 0

=(Pg,',,„lvlk „&=(k„ltw.)lk „&*, (4.16}

so that

&pI«z &I,&

(pit(z. )lk.„&&k.„lt(z.)lq&*
(k,

„ I t(z„}I k,„)+
Thus in terms of the real off-shell factor defined by

E(k, , q) = (k „If(z.) I q&/& ks„lf(z.) lks„&,

the fully off-shell T matrix, Eg. (4.14), becomes

&Pl t(z.& I q& = E(ks„.P) & ks„lf(z.) I ks & E(ks„,q) +R(P, ks„,q) .

(4.17)

(4.18)

(4.19}

This is just the Kowalski-Noyes' decomposition
of the fully off-shell T matrix, which here follows
simply from the scattering from the sum of two
potentials, 'U and V —V. The remainder term is
given by

R(p k ., q)=(plfl'„-,"(E„}[v-y]g '(E.)lq)

(4.20)

from which it is clear that R( p, ks, q) =0 if either
p=kz„orq=kz„.

The use of more than one wave function in the
construction of '0 will, of course, yield correctly
the factorable term in Eq. (4.14) plus an approxi-
mation to the remainder term, R(p, ks, q). Be-
cause one expects the factorable term in Eq. (4.14)
to dominate the remainder term near a resonance,
an appealing choice of the functions would be to
choose them at the real energies where reso-
nances occur. There does not exist, however,
any simple quantitative criterion' to estimate the
region where the factorable term does dominate.
One might choose the states to construct V as
those which are solutions to the Lippmann-Schwing-
er equation at the complex energies where the on-
shell T matrix is singular. " The use of eigen-
states at real energies, as suggested here, has
the advantage that one does not have to solve the
auxiliary problem of locating poles in the complex
plane and solving the Lippmann-Schwinger equa-
tion at these energies. Also, if the poles of the
T matrix are quite far from the real axis, the use
of a single function on the real axis might be able
to include the effects of several of these singulari-
ties over an extended energy region.

An alternate choice for the states used to con-
struct V could be the eigenstates of the kernel
operator St(E) = Go "(E)V, i.e.,

where 151,(z)) is regular at the origin and a purely
outgoing wave at infinity. Weinberg" has noted
that the Born series is divergent at any energy E
where there exists an eigenstate with eigenvalue
131,(E)1)1. He has therefore suggested that one
construct the separable potential Vp(pVp) 'pV by
choosing P to be that space spanned by those states
131,(E)& whose eigenvalues have magnitude greater
than 1. The wave function 1g~",' ) is the solution of
the integral equation

ly&'&, & =14 &'&,&+ « "(E)[v—y]10,"l,&,

with

[»..y]1+.".l.& =El@.';l.&

(4.22}

(4.23)

9&'~(z) =(z -», -y+iq) '. (4.24}

The Born series which arises from iterating equa-
tion (4.22) will now be convergent, since the states
131,(E)& are now eigenstates of the new kernel with

eigenvalue zero, i.e.,
I'"(E)[v-y]151,(E)&=0. (4.25)

The states 131,(E)& are inconvenient because they

depend on E, the energy at which one is solving
the problem. It has been noted, "however, that
the use of an energy-independent state which is
similar in appearance to

I R, (E)& can be used to
construct '0 and that this will lead to considerable
improvement in the convergence of the Born series.
The point is only that insofar as y = Vp(pVp) 'pv
is a good representation of y, then (V -'U) may be
expected to be a weak interaction for which the
Born series may converge.

APPENDIX

G,'"(E)vl 01,(z)& =x, (z)131,(z)&, (4.21)
Here we provide an alternate derivation of the

separable T matrix given in Eq. (2.20}. We begin
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with the Lippmann-Schwinger equation,

I ks».'a' s& = lhs&+ Go' "(E}V
I ps»;a's&,

and multiply this equation by V, to obtain

(Al)

Vly». '» &= Vll»s&+ «» "(E}Vlgs.'o's&.

We now replace (Vl»)»s",' )} by the truncated expan-
sion

(A3)

(vlf';l, &} = Z (E}vlf;&,
& =1

where the I»t;& are such that

Iflt»&=z» 14;&.

(A3)

(A4)

Z &4»IV- «o» "(E)Vly;&»»»(E) =&»}»IVI}o &. (A6)
&= 1

We may then obtain the coefficients a»(E} from the
relation

Thus, we may solve for the coefficients a»(E). The
result is

»»»(E) =g & y; I F(z) I»)»& & y, I vlf»s&,
f

where F(E) is given by

2&4»IF(z)lg»&&0»llv-v~» "(E)v]lya&=«o

(A6)

(A7}

The half-shell T matrix is, in this approximation,

&u lt(z)l) s&=&}t Ivlqs»', ,&

=g &h'I vip»&s»(z)
i=a

Z

&a'Ivies,

& &q, I F(z) lq, & &y, l via, &

f, k

= &1»'lf (E) I~»s&. (A8)

We have thus shown that the expansion, Eq. (A3),
is equivalent to the use of the separable potential'U.
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