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The results of calculations of rotational energies contain unphysical contributions from the
rotation of the center-of-mass part of the wave function. A simple method is presented to
remove those unphysical contributions in the case of projected Hartree-Fock calculations.
Corrections to several existing Hartree-Fock calculations are computed.

For a finite many-body system the Hamiltonian
separates into the sum of two operators, one de-
pendent on center-of-mass variables only, and
one which depends only on the intrinsic coordi-
nates,

H =H cm. 4 gtint) . 1)

This implies that the physical wave function has
the form of a product of two factors, one depen-
dent upon the center-of-mass coordinate R alone,
and the other dependent on the intrinsic coordi-
nates 75,-. Thus we may write the wave function as

¥(R, E) = F(R)¥M (L), (2)

On physical grounds, we know that the ener-
gies associated with a rotational band must arise
from a rotation of the intrinsic wave function,
win)(E.), alone. However, in calculations of ro-
tational energies, the wave functions used do not
factor as in Eq. (2), and the full wave function
¥(R, ;) is used in place of the wave function
¥ (E,). This use of an unfactorable ¥ (R, %) leads
to unphysical contributions to the energies arising
from the rotation of the center-of-mass parts of
the wave functions.

We examine this problem for the case in which
one uses the method of projecting states of good
total angular momentum® from an axially sym-
metric, Hartree-Fock wave function. We show
that under certain simplifying assumptions, the
unphysical contributions of the center-of-mass
parts of the wave function can be removed by
simple matrix inversion.

The method of angular momentum projection
consists of using the relationship

2J+1

f aQ DIE(@R®)| ox) ,
3)

to project a state of good total angular momentum,
| ¥, from a state, |$x) which is not an eigen-
state of the total angular momentum. The wave

l ‘I’MK) =

{ oo

function is normalized, since
2J +1
Nox =g [ d@DEx@6x[R@)60).  (4)

Here DJ,(Q) is the Wigner D function given by
Dyx(Q) =(JM |R(Q)|IK) , (5)

where R(2) is the rotation operator, which in
turn may be expressed in terms of the three
Euler angles a, 8, and y as

R(Q) =e-ic¢.l,e—i BJy e—isz . (6)

The energy is then calculated by taking the ex-
pectation value of the Hamiltonian, H, with the
states |y, i.e.,

Ex =(Wux H [ ¥ . (7

Calculations of the energies Ef have been car-
ried out for several light nuclei with |¢,) gener-
ated from Hartree-Fock calculations.?™* In these
calculations center-of-mass contributions to the
energies may enter through two types of errors.
First, the full Hamiltonian H may have been used
in place of the intrinsic Hamiltonian H (9 where
H(:‘m) is

2

2Am

and P is the total momentum operator. Second,
the projection in Eq. (3) may be taken to be a pro-
jection onto fotal angular momentum. The physi-
cal energies are, fhowever, the energies of the in-
trinsic states, which are eigenfunctions of the in-
trinsic angular momentum. We shall first see
how to correct for the error arising from the use
of H in place of H(™,

The expectation value of H"), taken with the
states | ¥y, is

H(int) =H - (8)

(W | H™ | W) =( T3 Klle
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We now employ the definition of |¥%x), Eq. (1),
and the orthonormality and addition theorem for
the D functions given by

8
[ 49D (@D @) =5 SO, (10)
and
Dy x(Q,) =2 Dyyr,(R,)D%, (), (11)
u

where the angles Q,, Q,, and §, are related by
R-l(ﬂl)R(ﬂz) =R(93) . (12)
These immediately give the result that the center-
of-mass term in Eq. (9) is
P2
2Am

(27 +1) ¥
T [ aapiz@)

<‘I’fur| |‘I’.A.;K> =

Pz
X{px | mR(9)|¢K> .

(13)

At this point we must make some simplifying
assumptions concerning the wave function |¢y).
First, we assume that |¢,) factors into an in-
trinsic term multiplied by a term which is de-
pendent only on the center-of-mass coordinate,
so that

(R, E | ox) =FRYG™AE,). (14)

This is known to be nearly correct for spherical
Hartree-Fock wave functions. In the spherical

case, F(ﬁ) is well approximated by the ground-
state wave function of the harmonic-oscillator
basis being used.® Thus, for the nonspherical
case, it is reasonable to assume that F(R) is ap-
proximately the ground-state function of a dis-
torted harmonic oscillator. We assume that the
distortion is volume conserving and that the cen-
ter-of-mass density has the same general shape
as the total density. This enables us to equate
the quadrupole deformation (defined by the ratio
of the mean value of the quadrupole moment to
the mean value of the monopole moment) of the
center-of-mass wave function to the total quadru-
pole deformation. This completely specifies F(ﬁ)
as

F(_ﬁ) = N-1/2 p-a2X2 5 -a2¥2 , ~4222 ’ )
where
3/2
N=-1£l-§— ) (16)
= 1 —%9)1/3<ﬂ 1/2
b -< 1+ 7 ’ (17)
3/2
a2=(W;[w> /b, (18)

and where 9.is the quadrupole deformation given
by

(05l (@Z2-X2-Y?)|0y)

P x| XF+Y7+2%) [ 9)

(19)

We may expand F(ﬁ) in states of good angular momentum, as

F(R) =D F, R)YoR).

(20)

If we notice that the rotation operator R() is expressible.as a product of the center-of-mass rotation
operator, R*™(Q), and the intrinsic rotation operator, R("(Q), we have

p? (27 +1)

J Ty _ 3R A-3F J* 5y P2
Wipo| 5t [ W) = SN, fdn f d Rf a’A-3E ; ; DRI @)F L (R)Y£o(R) 57—

where we have considered the case K =0 for simplicity.

XRem (Q)F (R)Y o) ™™ (DR ()9 (E),
(21)

TABLE I. The Hartree-Fock energies and their corrected values for **Ne as computed from the Hartree-Fock cal-
culation of Ref, 3 for @ =0.518 fm™! and ©=0.54, The energies are renormalized to E;_.y=0 in all cases,

E
ol H ) (¥ o HED [ @800 E§™ (experimental) N, NG
J=0 0.0 0.0 0.0 0.0 0,098 0.099
J=2 1.09 1.06 1.08 1.63 0.367 0.371
J =4 3.79 3.70 3.77 4.25 0.334 0.335
J=6 8.43 8.28 8.39 8.79 0.156 0.154
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By doing the angular integrals and using the identity

D5,(Q)D3x (@) = 2; [<L0J0]J°0) 2D (@), (22)
we obtain
p? - 2741 , .
Yool 550 it = Noo L et B (70| LOJO) [Nj#V (23)
where
- ( (14, d £(L_+1_)>} 2
and
i 2J’ 1 ’ - i > s in >
N}xlnt)=_8?+ f dQDgo*(ﬂ)f d34 3§¢*(m)(§)R(mt)(Q)¢( t)(g). (25)

We recall that Ny, represented the probability that the state |¢, was in an eigenstate of total angular mo-
mentum J. The number N, represents the probability that the intrinsic part of |¢,) is in an eigenstate
of the intrinsic angular momentum with eigenvalue J’ independent of the structure of the center-of-mass
part of |¢y).

We need only the numbers E&™ and N{™ in Eq. (23) to calculate the corrections Wi | P2/2Am|¥5).
Eg™ is given in terms of simple integrals over the functions F(R) explicitly exhibited in Eq. (15). The
number N'™ can be calculated by considering the norm of |¥7)

2J+1 , in
Yol Vo) =Nyo= 3 55y Z ™70 LOJO) [N, (26)
with
Ngm= [ RaR|F, @R, @7)
0

The derivation of Eq. (26) is identical to the derivation of Eq. (23). As N;, and NS™ are known, Eq. (26)
can be inverted to give N@“", and hence, through Eq. (23), the corrections to the energy.

The second correction that must be made arises because the physical energies are not correctly given
by the expectation value of H () with respect to the states |¥},), as these states are eigenstates of the
total (intrinsic plus center-of-mass) angular momentum. The correct eigenstates to use are the eigen-
states of the intrinsic angular momentum. These are given by

fqb("")) (N}im))—l/z 2‘8717";1 fdQD,‘Gﬁ(SZ)R(m‘)(Q)[¢(“‘)) . (28)
The correct intrinsic energy is then given by
Efri"t) ¢(mt) IH(mt) |¢(mt) 2J+ 1 (N(mt))— f ao DZ;‘(SZ)@““‘) IH(mt)R(mt) (9) ' ¢(mt)> (29)
By using the now familiar algebra, we have for the quantity introduced in Eq. (9),
7 7 I 2J+1 Nyr em. ] ( 71 2 - (int)
Wio | H W) = (W 5 [ W) = ;j 271 N, & NETI O L0 PESY (30)

This relation may be inverted to give the intrinsic energies EE,":").

r

As an example, we have calculated the energies Hartree-Fock calculation is performed using H™

Ef,li“) for the projected Hartree-Fock calculation
of ?°Ne given in Ref. 3. The results are presented
in Table I. The corrections to the relative ener-
gies are quite small, the maximum being -0.04
MeV for the J =6 level. This is because the two
corrections made are of the same order of magni-
tude but of opposite sign and nearly cancel. If a

instead of H, however, then only the second cor-
rection is applicable. In this case, we see that
the corrections to the relative energies will be of
the order of several tenths of an MeV.

To examine this case, we consider the Hartree-
Fock calculations of Ripka.? In these calculations,
however, it is not immediately clear whether the
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TABLE II. The harmonic-oscillator parameter o

=(mw /M)12, the quadrupole deformation D, the uncorrect-

ed Hartree-Fock energies E; (Ref. 2), the corrected
energies Ef}"‘), and the experimental energies E; (exp).
All energies have been normalized to E;_y=0,

(67
Nucleus (fm™1) D J E, E E(;XP)
el 0.620 -0.30 2 3.24 3,28  4.43
4 11,10 11.39
20Ne 0.559 031 2 1,22 1,23 1.63
4 3.8 3.89 4.25
6 7.0 7.718  8.79
8 11,08 11,23
28gj 0.548 -0.30 2 0,70 0,71 1,78
4 2,30 2,32  4.62
6 4,76 4.80
8 17.95 8,04
367 0.496 -0.15 2 1,13 1,13 1,98
4 3.22 3,22 4.1
6 7.21 7.24
8 10.97 11.03

Hamiltonian used is a representation of H 0 orH.
As the '®0 core is taken to be inert, the Hartree-
Fock Hamiltonian takes the form

M
(@ |HUF| B =€obyp+ 25 (@, p|v|B, )
p=1

N
-E (a:'Vlﬁ’ V>’ (31)
v=1

where €, is the Hartree-Fock energy of the state
a, and the sum over u(v) is over particles (holes)
with '®0 taken as a vacuum. Now ¢, is replaced
by the experimental single-particle energies which
are intrinsic quantities. As v is inherently an

intrinsic quantity, Eq. (31) must necessarily repre-

sent the matrix elements of an intrinsic operator.
Thus we consider H "'F to be an approximation to

H (i“'), and therefore only the second type of cor-
rection, Eq. (30), applies. The corrected ener-

(int)

gies, E;"’, were calculated by inverting Eq. (30)
for the Hartree-Fock calculations of Ref. 2 for
the nuclei *C, 2°Ne, 2°Si, and 3®Ar. The results
are given in Table II. The corrections are seen
always to broaden the spacing between levels,

with the largest correction being 0.15 MeV for

the J =8 state of *°Ne.

We thus see that the center-of-mass correc-

tions to the projected Hartree-Fock energies are

small, but not negligible. In the case where one

uses the total Hamiltonian H, there are two cor-
rections which tend to cancel. In the case of a

single major shell calculation, we have identified

the Hamiltonian being used with H™ and have

found the corrections to be <0.15 MeV. The cor-
rections are quite sensitive to the deformation

parameter . If the restriction to a single major

shell is removed, D will generally double.? A
simple extrapolation of our calculations indicates
that the center-of-mass correction could become
as large as 0.5 MeV. It is thus clear that center-
of-mass corrections should be included before a

quantitative comparison with experiment can be

made.

The center-of-mass corrections made here
should not only be applied to the calculation of
the energy but to the calculation of any matrix
element. We may use Eq. (30) to calculate cor-
rections to the mean value of any intrinsic opera-
tor, not justH (i) The extension to off diagonal
matrix elements is straightforward.
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