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A simplified version of the n -d cluster formalism developed by Neudatchin, Smirnov, and
their collaborators gives good agreement with the most recent elastic and inelastic (2.189-
MeV) electron scattering data of Li et al. for momentum transfer q26 6.5 fm 2. Inclusion of
lowest-order effects of dynamical volume deformations of the intercluster density extends
the agreement to q S 10.5 fm . The contribution of the latter to the elastic form factor may
be interpreted as due to an effective spherically symmetric "modulating charge" distribution
superimposed upon the smoothly varying distribution responsible for the scattering at lower
momentum transfer. This modulating charge is calculated explicitly and exhibits an oscilla-
tory behavior. A similar analysis is carried out in the inelastic channel.

I. INTRODUCTION

In the past several years, electron scattering
data at very high values of momentum transfer
have been obtained from a number of nuclei by the
Stanford group. ' These data are of special theo-
retical interest, because one is generally unable
to explain them using the phenomenological charge
distributions giving an adequate fit at lower ener-
gies. Typically, it is necessary to modify the
latter, such that the goodness of fit at smaller
angles remains unchanged, but in such a way as
to produce a good fit at the larger angles. This
type of modification corresponds to introducing a
phenomenological modification in the Fermi dis-
tributions with which the data at lower q are usu-
ally fitted, which has an oscillatory character.

In the case of the Ca isotopes, a number of
widely differing theoretical approaches have been
used to explain this effect, including short-range
correlations, ' and the use of configuration mixing
generated in a nonlocal potential. ' It appears to
be very difficult to distinguish between these ap-
proaches experimentally; indeed, Negele' has
carried out a Brueckner-Hartree-Fock calculation
in the local density approximation in which these
effects, taken together, appear to largely cancel
one another. In yet a third approach, which de-
parts from spherical symmetry, Raphael and
Rosen' have developed a theory of electron scat-
tering incorporating the effects of generalized
dynamical deformations. This theory, applied to
the Ca isotopes, ' not only produces the oscillatory
modification of the charge distribution required
to reproduce the high momentum transfer data,
but also explains the anomalous behavior of the
rms charge radii of the Ca isotopes.

It is interesting to observe that the effect being
discussed also occurs in one of the simplest nu-
clei to exhibit shell structure, namely 'Li. While

Li et a/. ' found that a three-parameter Gaussian
distribution gave a very good fit to their data be-
low q'=6 fm ', it did not reproduce the diffrac-
tion feature at q'- V. 'l fm ', or the higher q' be-
havior up to 13 fm '. However, this entire range
of data could be reproduced by introducing an
oscillatory modification in the charge distribution,
in much the same way as for the Ca isotopes.
Several authors' "have pointed out that the shell
model with short-range correlations is capable of
reproducing the diffraction feature. However this
can also be done with an o.-d cluster model, with-
out correlations. " None of the theoretical ex-
planations thus far proposed fit the data beyond
the diffraction minimum. " One approach might
be to incorporate short-range correlations in the
framework of the n-d cluster description. A sec-
ond, which we choose to pursue here, is to ex-
amine the effects of generalized volume deforma-
tions on the intercluster density distribution,
along the lines which proved successful in the
case of the Ca isotopes. One might hope that 'Li,
because of its simplicity and well-established
cluster structure, may afford a means of distin-
guishing between these widely differing theories,
which is obscured in the heavier nuclei.

In what follows, we shall first develop a sim-
plified version of the o.-d cluster formalism cap-
able of giving a good account of the elastic and
inelastic (2.189-Mev level) Coulomb electron
scattering form factors for q' s 6.5 fm ' (Sec. II).
In a manner similar to our earlier formalism, we
shall then introduce in Sec. III the deformation as
an operator in the Hilbert space of the intercluster
density, the internal densities of each cluster
being assumed c numbers. While the transforma-
tion properties of these operators under rotations
are prescribed, their dynamical character, e.g. ,
commutation relations, is left unspecified. The
result is to modify the undeformed form factor by
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a series of additional terms which influence the
cross section at progressively higher values of
momentum transfer, and which converge rapidly
for not-too-large deformations. Each term is
multiplied by the reduced matrix element of tensor
products of the deformation operator, which is
regarded as a free parameter in fitting the data.
It will be shown that a single such term, suffices to
enlarge the region of fit to q' s 10.5 fm ' in both
the elastic and inelastic channels. An inversion
procedure is then used to find an equivalent spher-
ically symmetric intercluster density capable of
giving rise to the deformation contribution to the
form factor. This modulating density exhibits an
oscillatory behavior in both channels.

While the proposed deformation mechanism
thus appears capable of yielding the correct high
momentum transfer behavior of the form factors,
it would be premature to draw any but the most
tentative conclusions from this fact. Our calcu-
lation neglects effects of nucleon exchange be-
tween clusters, While this is justified at small
(q

' & 4 fm ') momentum transfer due to the small
degree of cluster overlap, there are indications"
that exchange effects may play an increasingly
important role at higher momentum transfer.
Furthermore, other effects begin to appear at
high q' which serve to further complicate the pic-
ture, such as scattering from the neutron charge
distribution and magnetic moment. " We never-
theless feel it worthwhile to call attention to the
potentialities of this very general model for the
interpretation of high momentum transfer effects,
which seem to be insufficiently appreciated. For
so light a nucleus, it suffices to work within the
context of the Born approximation.

II. ELECTRON SCA ITERING IN THE

CLUSTER FORMALISM

Nucleon clustering in P -shell nuclei became of
interest more than 30 years ago, when the extra-
ordinary stability of o.-particle nuclei was first
recognized. This stability is attributable to the
predominance of Majorana forces in the effective
interaction, which leads to an L8 coupling situa-
tion in which the orbital Young partition (X, p, ), the
orbital angular momentum I and spin 8, as well
as J and T are good quantum numbers. Under
these circumstances, the nucleus may be divided
into clusters, each of which corresponds to a rom
in a Young tableau, and the wave function con-
structed by clusters. In the case of 'Li, this takes
the familiar resonating group form"

= e [ y„(1,2, 3, 4)q e(5, 6)

x y„~(r~- re)t' «(1, 2, 3, 4; 5, 6)]

g~ e(r}=Nr'e ~' 'l" F (Ir"}, (2)

with N a normalization factor and r in units of b.
One then assumes this form remains valid as the
cluster sizes are allowed to become different from
the nuclear size. The justification for maintaining
this connection with the shell model is that the
latter describes rather well certain properties,
such as level structure and magnetic moments. "
While more elaborate assumptions can be made
within the context of a variational approach, "their
utility is rendered dubious by the uncertainties in
the residual interaction, as Neudatchin and Smir-
nov" have pointed out.

A considerable number of form factors using
Eq. (2}both with and without antisymmetrization
between cluster nucleons were calculated in Refs.
11 and 15. It was found that for most of the form
factors, antisymmetrization effects at least for
q' &4 fm, were not significant, " due to the fact
that the cluster centers, using this form of y
are well separated. The fits could all be charac-
terized by two ratios" of the three lengths 5„, be,

in which y, y» are the internal u- and d-cluster
functions, g ~ is relative function depending on
the separation r =r —r» of the cluster centers,
and $, is an appropriate spin-charge function.
Throughout the ensuing discussion as a matter of
convenience we use the term "d cluster" or "deu-
teron cluster" for the S =1 two-nucleon association
represented by pe in Eq. (1). It must not bethought,
however, that we attribute to this association any
of the detailed properties of the free deuteron,
unless explicitly stated. A similar remark holds
for the "e cluster. " Galilean invariance of g, .
can be preserved by using Gaussian forms for the
internal cluster wave functions. It has been shown
that the 'Li form factors, in particular those for
electron scattering, show little sensitivity" to the
asymptotic form of y».

A more interesting question relates to the choice
of the intercluster wave function, and the influence
of antisymmetrization on the various form factors.
In order to choose an appropriate function, physi-
cal nucleon-clustering effects can be regarded as
a kind of perturbation of the independent-particle
harmonic-oscillator shell model, in the following
sense. If the size parameters b, b» characteriz-
ing the clusters were the same as that (=b) for the
nucleus as a whole, i.e., complete overlap, then
the two models would simply be related by a uni-
tary transformation, with no new physical content.
In that case, one can easily show' that the inter-
cluster wave function is
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and b:

X=- f.'/5'=0. 4,
Y = 5„'/b~'=0. 4

(3a)

(3b)

Fourier transform of the intercluster densityp, =
( }I„~('for 1.=0 is

E(o~)(x) ~o (4x4 —20x'+ 15)e ', (8)

+3 JI P z(or&)P&(r rz)dr& (4)

in an obvious notation; and its Fourier transform,
whose reduced matrix element gives the required
form factor, is then given by

+.Jq) =
o F ~(ql3)+ (q)+ o F.~(2q/3)+, (q) .

(5)

Internal cluster excitations are here ignored.
When appropriate account is taken of the center-
of-mass constraint and the finite proton size, the
internal form factors E„(q),E~(q) are given by

with sensitivity principally to X. The authors
thereby obtain good simultaneous fits to the el.as-
tic and inelastic (3' level) scattering data for
q &4 fm

We may make use of these results to recast the
cluster claculation of the electron scattering Cou-
lomb form factors into a particularly simple form.
From the viewpoint of physical input, the chief
difference between our calculation and that of Refs.
11 and 15 consists in the use of the experimental
'Li rms radius as a given parameter, which will.
enable us to express both the elastic and inelastic
form factors in terms of the single parameter X.
From the viewpoint of methodology, we will ne-
glect antisymmetrization from the beginning, and
assume (as they do} Gaussian forms for the inter-
nal cluster wave functions. We will further con-
sider that the T =0 levels of 'Li, which include
the ground state, correspond to rotational excita-
tions of the intercluster wave function Eq. (2)
(though for the higher levels this excitation is
probably not pure). Accordingly, the 'Li charge
density operator may be written as a sum of con-
volutions:

p,„,(r)
=- p„z(3r )p (r —r„)dr

b = (8/SX)[ ( r') „-( r') ] (10)

in terms of the basic parameter X of Eq. (3a).
From Eq. (7), one finds &r'&~=0. 'f26 fm'. One
may then solve for the rms d-cluster radius:

&r')„=3&r'), -[2+ (~4X)](r') +(P X)&r'&~.

(11)

Now the free o. particle is a tightly bound struc-
ture, and we therefore represent the rms e-clus-
ter radius by that of the free a particle. The free
deuteron on the other hand is loosely bound and
compressible, and therefore we use Eq. (11}to
fix the rms d-cluster radius in terms of the known
rms radius" of 'Li, (r'), ' '=2.54+0.05 fm. Thus
the parameter X is the single free parameter to be
used in fitting the data at higher q. It has been
pointed out" that & r'),„. is sensitive to exchange
effects in the cluster model. The use of the ex-
perimental value of & r'), largely incorporates
these effects.

The squared elastic form factor, calculated with
the aid of the foregoing expressions is shown by
the dashed curve in Fig. 1, together with the most
recent data of Li et al.' There is very good agree-
ment out to the diffraction minimum, q'-7. 7 fm ',
which is of course a zero in the Born approxima-
tion. The fit is roughly comparable to that shown
by Kudeyarov et al. ,

"using the more elaborate
form of the cluster model. It corresponds to a
somewhat smaller value of X,

X =0.31+0.02. (12a)

with s = gg b

A low-q expansion of Eq. (5) takes the form

I'=~[&r'& --'&r'& --'&r'& ] (9)

while the assumed form Eq. (6a) for the n-cluster
amplitude gives

S.(q) =exp(- ~o q'5. ')F,(q),

E (q) = exp(- —', q '5 ')F~(q) .

(6a)

(6b) Y =0.33+0.02 . (12b)

The value of Y, which in our case is fixedby X
and the experimental rms 'Li radius, is

Here the proton form factor is taken from Jans-
sens et al.":

1.249 0.7982
1+q'/15. 6 fm ' 1+q'/26. 6 fm '

0.5819
+

1 o/8 19 f o
—0.0326,

The relation between the rms radii of 'Li and its
component clusters corresponding to the values
of Eqs. (12a) and (12b) is shown in Fig. 2, together
with the average separation of cluster centers,

7=[4w f dr r'p ~(r)]'I'
40

and is a slowly varying function of q. Finally, the =3.752 fm. (13}
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In terms of this parameter, the mean square ra-
dius of Li is

(15)

Now with the n cluster in its ground state, the
L= 2 contribution can arise only from the second

Io"'- ELASTIC ELECTRON SCATTERING
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FIG. 1. Monopole elastic electron scattering from 6Li

as a function of squared momentum transfer. The data
are from Li etal. (Ref. 7). The dashed curve shows the
fit obtained with the cluster model in the absence of de-
formations. The inclusion of deformation effects to the
first nonvanishing order leads to the dot-dashed curve
when the renormalization procedure is carried out on

the intercluster form factor only; and to the solid curve,
when carried out for the complete form factor.

(r') =-'(r') +-'(r') +& r' (14)

Observe that there is on the average no cluster
overlap, so that cluster exchange effects in the
elastic channel, consistent with our initial as-
sumptions, play at most a small role. The rms
deuteron cluster radius as determined from Eqs.
(11)and (12a) comes out 2.09+ 0.15 fm, which is
within the fitting error, the same as the free deu-
teron value'4 of 2.17+0.05 fm.

Quadrupole elastic scattering from the 'Li nu-
cleus is of course possible, but is rendered un-
observable in view of the small value of the 'Li
quadrupole moment (Qe =-0.08 fm2. This may be

eLi
made plausible by the following argument. The
complete Coulomb elastic squared form factor,
including the quadrupole contribution, is

4q 2

[&.„,(e)l' = [F,„,(e)]a=.'+ '~ [&.~(e)]~=,'
162

term of Eq. (5),

[F. .(e)]g '=~[+. .(3e)]'[F,(~)]~=.'.
If we assume (only for the purposes of this argu-
ment) that the d cluster is in fact identical to the
free deuteron, we may make the identification

(16)

[G,(e)]'= 18 [+,(4)4=.',

where G~' is the charge quadrupole part of the
squared elastic electron-deuteron form factor.
Hence Eq. (15) becomes

2

9'.~(e)]'=I+.„(s)l ="8, ( q"'
a

(18)

The quantity G~2 has been calculated by McIntyre
and Dhar" and tabulated in Ref. 24 for a number of
potentials. At 500 MeV it is a slowly varying func-
tion of q', having a value typically of the order of
0.004, and not deviating from this value by more
than a, factor of 2 over the range 0&@ &16 fm
The most favorable place to observe quadrupole
effects is near the diffraction minimum (q' = 'I.5
fm '). Using the ratio (Q, ./Q~)'=0. 08 and Eq. (8),
the second term of Eq. (18)is roughly 10 ', while
at q'=13 fm ', it is roughly 10 ". This is sev-
eral orders of magnitude below the experimental
squared 'Li form factor, and hence may be safely
neglected even if the d-cluster quadrupole moment
were in fact considerably different from that of
the free deuteron. As to the magnetic elastic con-
tribution, it was pointed out in Ref. 7 that this
contribution, as obtained exPe~imenfally by mea-
suring the form factors at different angles and
constant momentum transfer, was found to be
completely negligible except in the vicinity of the
diff raction minimum.

It should be noted that for L=2 elastic scatter-
ing, the low-q limit of Eq. (5) provides a relation-
ship between the 'Li and d-cluster quadrupole mo-
ments: Q8&= —,

'
Q~. If the d cluster has the same

D-state admixture as the free deuteron, then

Q~ = 0.27 fm' and the relation gives the correct
order of magnitude for Q,„., but the wrong sign.
However, it is by no means clear that this as-
sumption is correct. It is also probable that, as
in the case of the 'Li rms radius, exchange ef-
fects may play a significant role in determining
the quadrupole moment. Elsewhere" the author
has pointed out that high-energy proton-'Li scat-
tering experiments, which will soon be possible
at the Los Alamos Meson Physics Facility
(LAMPF), should be sensitive to the D-state ad-
mixture in the deuteron cluster via the real part
of the p-d cluster amplitude.
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cm

FIG. 2. A schematic representation to scale of the
cluster structure of the Li nucleus, in which (r )8&,. is
given its experimental value, (r )~ 2 is assumed to be
that of the free n particle, =1.63 fm, and (~ )z =2.16
fm and F =3.75 fm are fixed from the constraint Eq. {11)
and the value of x =0.31 Eq. {12a) required to fit the elas-
tic scattering data below the diffraction minimum {dashed
curve of Fig. 1).

Exactly analogous calculations may be carried
out for the inelastic scattering of electrons from
the T =0, Z' =8' (2.189-MeV) excited state of 'Li,
which is here regarded as an L, =2 excitation of
the intercluster wave function Eq. (2). While a
more complicated polynomial could be used for
the radial dependence, the simple assumption of
a purely rotational excitation enabled a good fit to
the inelastic data for q' & 4 fm ' to be obtained in
Refs. 11 and 14, and is for that reason retained
here. That this assumption is not entirely ade-
quate is reflected in the necessity of using a some-
what different size parameter for 'Li in the inel-
astic channel, as will appear immediately below.
The intercluster form factor in this case is found
to be

,~'i(x, ) = ~~s, '(1 —&x, ')e

by using the same normalization as for the ground
state. The size 5, characterizing the intercluster

= 0.25+ 0.01, (20)

a value somewhat smaller than that from elastic
scattering. The inelastic size parameter 5, = 2.62
fm, compared to the elastic value b =2.35 fm. This
difference may reflect the presence of centrifugal
"stretching" effects in the irjItercluster wave func-
tion for the excited state.

The simplified version of the n-d cluster model
developed in this section is already able to give a
good account of electron scattering data in both the
elastic and inelastic channels for q (6.5 fm . It
is remarkable that only one adjustable parameter,
X, is required in each channel. Moreover, the
model parameters have values reasonably close to
those found ia Refs. 11 and 15 to fit a number of
additional form factors. We again point out that
these fits, as well as those obtained in Refs.
11 and 15 are much superior to those obtained
with the shell model. ' ' In the following section
it will be shown that the range of agreement can
be greatly extended by including the effects of
dynamical volume deforrnations into the inter-
cluster density. In carrying out this development,
it will be assumed that exchange effects continue
to be insignificant over the augmented range of
momentum transfer to be considered.

transition density need not be the same as 5, and
therefore Eq. (19) is expressed in units of x,
= „q'b, '. In the limit of small q, one then finds
a B(E2) value for 'Li of 26.5x10 "e cm~, in
satisfactory agreement with the experimental
value" of 30+3 x10 ~ e'cm'. The other ingredients
entering into the form-factor calculation at higher
momentum transfer are unchanged from the elas-
tic case. The result is shown by the dashed curve
in Fig. 3 together with the data of Li et al.' The
range of quantitative agreement is approximately
the same as in the elastic case, and comparable
with the fit obtained in Refs. 11 and 15 to older
data' over the more limited range q ' & 4 fm '.
The fit limits the value of the parameter X in the
inelastic channel to

X h „,=b„ /bq~

III. EFFECT OF GENERALIZED VOLUME DEFORMATIONS

The intercluster density operator for a given rotational state A, is a scalar, and can be written in general

pi(r S 4)=(4&)"'Zp~, (r)y f (e 4) (21}

in which r is measured in units of 5, and the angles 8, Q refer to a spherical coordinate system with the
nuclear center of mass as origin. The coulomb multipole operator for this state is then

bf& ~'(q)= 'd" r~~( rd. qUc(qr)&r~(e 4')

(22)
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and the L-pole Coulomb form factor for transitions between initial and final rotational states (L, , Lz) is,
in general

F" "(q)=- (4s)"'&L, II up (q)ll L&)

«r'& ~g II p~(r}ll 4&ji(qr)6(L &).
w P

(23)

p. ,(r) =& L, II p, (r)ll L&& ~(L,~L, )

= /pe. g {+' &" (24)

in accordance with Eq. (2). Here n expresses the triangle relationship satisfied by the vectors L~, X, L, .
The operator p„(r, 8, P) is now deformed by the prescription

p&(r, 8, Q)-pz[r(1+D), 8, P], (25}

where the deformation operator D is given by

The distinction between L and X, while superfluous here, becomes meaningful in what follows. The analy-
sis of the last section suggests that the radial dependence of pz be taken as state independent, and equal top, (r):

D = (4r)"'Q ag I',* (8, P) . (26)

The a, a,re irreducible tensor operators in the nuclear Hilbert space transforming as Y,„(8,P). For con-
venience, we treat the I =0 term in Eq. (26) in a special way. We may write

u.o=(o~-& Lgl e I L)&)+& L)l s~l L~&

The second term on the right can be absorbed into the size parameter b, and the remaining operators
similarly redefined. In this way the ground-state expectation value of the leading term of Eq. (26}can
be taken to vanish. In what follows, it will not be necessary to impose dynamical restrictions on the 8&,

INELASTIC (2.189 MeV LEVEL)

ELECTRON SCATTERING FROM LI

ELqB= I GeV

IO&-

CV
CF

lO
U

lg6
I.O 2,0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 I 0.0 I I.O I2.0 I 3.0 I4.0

q2{fPI 2)

FIG. 3. Inelastic Coulomb scattering from the J"=3+ g, =2 excitation of the intercluster wave function) level of Li as
a function of squared momentum transfer. The data are from Li et a/. The dashed curve shows the fit obtained by the
cluster model in the absence of deformations, corresponding to X,~„., =0.25. The solid curve includes the effects of
deformation, with renormalization of the complete ~Li form factor,
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although this can of course be done via suitable commutation relations in the investigation of specific
models.

It will be noted that we do not allow the internal cluster densities to become deformed, consistently with
our original assumption that the clusters themselves remain in their ground states, and also with require-
ments of simplicity of description. '9 Nevertheless, it will be seen that deformation of the intercluster
density requires a renormalization of the individual cluster sizes.

A Taylor expansion of the deformed density yields

&n
pz[ r(1+ D}, 8, P] =pz(r, 8, P)+g — P&~" ~(r, 8, P) g aI" & 1'( (8, Q),

ff l wa

(27)

(28a)

in which p~z (r, 8, Q) = (d"
~
dr")p~(r, 8, P), the braces indicate appropriate symmetrization of the operator

products, and the 8, " are n-fold tensor products of the operator a J

~(y)
a& =a,

I'I jaQ'= Q t t o'o 'o)[a, .sa, .]", ,
gtga

(26b}

(26c)

Here and in what follows, we malse use of the standard abbreviation I. = (2L+1)'I', and define 3j and 6j
symbols according to Edmonds. ~ Equation (27) thus provides explicit expressions for the deformed p~„(r),
using Eq. (21). After a straightforward calculation, we find for the Coulomb form factor

E ~&~ ~&(q) =4v drr'p ~(r)jI(qr)6(L, A)
~ p

(29)

in which

«yll I'V'll Lg& =« ll(P('&s'"') ~II L~&

=(-)"'""&Q
L L, « IIIPg'll L'&«'ll 'si"'IILc&.

gt g f
(30)

Now by assumption

&LgllP~g"'(~)ll L'& =p'"' (~)&(Lg&L'), (31)

so that finally we obtain

~ eo
~ 1 ()P~ ~"& (q) =4v dr r'p ~(r)j I(qr}6(L,X}+4m g —

}
A~z ~~ dr r""p~„~&(r)jI (qr),

eo
(32)

where the parameters

xV' =(-)'Ri'(4~)-'"p( ' )«ll&"'ilo) (33}

emerge as the natural ones for the problem, and we have specialized to the case at hand, I,, =0. Contri-
butions to the scattering in a given multipole order I can now in general arise from any rotational state
A. , in view of the coupling of the latter to the multipole deformation l, ; however, in view of the assumption
Eq. (31), such effects are all contained in the parameters A~z~z, which are to be fixed from the data. Hence
it makes no difference to the ensuing argument whether or not the sum over A. is carried out. For not-too-
large deformations, the sum in Eq. (32) may be presumed to converge rapidly, so that, depending on the
range of q for which the scattering is measured, only the first few terms need be retained. Progressively
higher terms in the sum have an appreciable effect on the scattering only at progressively higher values
of momentum transfer. We now evaluate Eq. (32) separately in the cases of elastic and inelastic scattering.
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A. Elastic Scattering

(34)

correct to third order. The monopole intercluster form factor is then

In the case L=O, 1=0, Eq. (32} may be evaluated straightforwardly. In view of the argument following
Eq. (26), and Eq. (28a), the 33=1 term does not contribute. In the limit q=0, we find the normalization

f)t2 —293- /25-lx-3/2(I 6A(2)+ IOA(3))

in which the leading term is given by Eq. (8}, and

F ' 2(x) = ~g»'(8»' —108»'+378x'- 315}e*,
F~~3),(x) = +' x'(16x' —320x + 1992M' —4368x'+ 2625)e *',

(36a)

(36b)

The factor x' in front of the correction terms already shows that the deformation effects set in at high mo-
mentum transfer. However, as we have pointed out in our earlier papers dealing with this general subject, "
these modifications are in part unobservable. This is because the analysis of elastic scattering is usually
done in terms of a spherical charge distribution with parameters chosen to reproduce the data. Hence, as
much as possible, deformation effects are already incorporated into these parameters. For this reason,
it is necessary to renormalize the size parameters of the problem by demanding that the first few terms
of a power series expansion of the form factor with deformation effects included be identical to those of
the form factor in the ab'sence of deformations. This will be done first for the intercluster form factor.

We therefore set b'- b*'= b'( I+ ))(, with )(. =X2A'992)+)(.3A~3), and adjust the )(., such that the first two terms
of a low-q expansion of Eq. (35) agree with those of a similar expansion of Eq. (8). We find X2= -9, )(3 = 25.
We thus obtain the renormalized intercluster form factor, expressed however in terms of b:

and

F~2~(x}=~~» (8» —72»'+126)e *

F '~ (x) =~x'(16»' —320x'+1692»' —2268)e *'.

where F ', (x} again is given by Eq. (8}, but now

(37)

(38a)

(38b)

Observe that the deformation effects are now operative at yet higher values of momentum transfer.
The lowest-order deformation contribution to the complete Li form factor can now be evaluated by in-

serting the first two terms of Eq. (32) into Eq. (5). The parameter A~i2) is adjusted to obtain agreement
with the data at the lowest value of q2 (= 6.5 fm ') for which the unmodified form factor lies outside the ex-
perimental error. The result, obtained for A00' =0.01, is given by the dot-dashed curve in Fig. 1, and al-
ready shows a marked improvement in the fit to the data beyond the diffraction minimum. The deformation
also fills in the minimum to a considerable extent.

Before carrying out the renormalization for the complete 'Li form factor, it is of interest to find the
equivalent spherically symmetric density which gives rise to the form factor F ',*(x), i.e. , the density
p~ ~)(y} in the expression

(39)(44(" f41 /. ")((y'b(;(*y(=&.";(Ã)
0

in which y=(4/v S)2'. This density must clea, rly oscillate, since F '),*(x) vanishes in the limit x=O. Also,
its second moment vanishes. To find this "modulating density" explicitly, we make the ansatz

yp, (y) =e "' ' P a,„„H,„„(y /)2
n=0

a series in odd Hermitian polynomials. The integration in Eq. (39) may then be done exactly, and both
sides expanded in a power series in x to determine the coefficients a,„„.We find

(40)

p+, (r) = (8/12153/)r'(64r' —43222+ 567)e ~"/3 . (41)

This result, together with the unmodified intercluster density Eq. (24), is plotted in Pig. 4. The modulat-
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ing density has two zeros, of which only the first is less than the average intercluster separation F.
It is, of course, more meaningful to carry out the renormalization procedure for the complete 'Li form

factor. There are now two additional size parameters available, namely (r'}, (r')„subject to the con-
straint Eq. (9). The renormalization can then be carried out to one higher term in the power series ex-
pansion of the modified and unmodified Li form factors. Excluding the proton form factor, which is un-
affected by these manipulations, the expression to be renormalized is

(~2)z »a-~+ 'F -(4~z) z »u -~' (42)

in which x„=(r') /b', x, =(r'), /b', &u'=x'/9, and F, is given by Eq. (35). We now set b b*-, as before,
and in addition

(r ) - (r )*=(r ) (I+a),
with o=a, AIIO +o, Aoi,'~. The constraint Eq. (9) then implies for xf:

xf =(I+X) '{x~—[ 74(X, +9)+2a~ /xz]A~,'~ —[-'(X, —25)+2o,x /x~]A~3~) (44)

Inserting Eq. (43) and Eq. (44) into Eq. (42) and proceeding as before, we again find X,=-9, X, =25, so
that the expression Eq. (37) for the renormalized intercluster form factor remains unchanged. In addition,
however,

a, = -(189/20)x„'[8(x —x~) —7]

o, = -6', .
(45a.)

(45b)

Reexpressing Eq. (42) in terms of renormalized quantities, we obtain the complete renormalized 8Li form
factor:

F* ((a) =[Fi"*((u) A+'"*Fi"*(u))+Ai,"*((u)]e»~~F (ur)

with x~ = (r )&2/ 'b, and Fe~oI*(w) is given by

Fei'„*(v)=,([8&@'—40ru'+30] exp[-(I+SxgaP]+[64&v' —80&v'+15]exp[-4(1+2x )ur']}.

(46)

(47}

The second- and third-order deformation corrections are given by

F'I*(6'&)=,u&'([4&v' —4(9+4x o,)&u'+ (63+80x„o,}uP —60x„o,]exp[-(1+8x )sF]

+4[128~'+32(2x a, —9)e'+ 2(63 —40x o,)&u'+5x o,]exp[-4(1+2xz)&u']); (48a)

Fei"*(&u) = 8, &o'{[4ur' —80&v'+3(48x c,+141)u&' —9(SOx cr, +63)sP+540x„a,]exp[-(1+Sx„)&u']

+4[512&v' —2560&v'+ 24(141 —24x o,)~'+ 18(40x„o,+ 63)ur'+135x a, ]exp[-4(1+ 2xz)aF] j.
(48b)

An expansion for small co of these expressions begins with co'. The 'Li elastic form factor, with the low-
est-order deformation Eq. (48a) included, is shown by the solid curve in Fig. 1. The value of A„remains
0.01 as previously, but renormalization of the complete form factor has resulted in a marked improve-
ment, without any change in the number of parameters involved in the fit. We now have excellent agree-
ment with the data for q's 10.5 fm ', and inclusion of the third-order deformation correction would un-
doubtedly push this agreement out to the limit of the experimental range, but at the cost of one additional
parameter. For this reason, and in order to stress the remarkable fit already obtained by the theory to
this order, we have not carried out this further extension,

Again we may calculate the modulating density p, . giving rise to Eq. (48a), which must have vanishing
zeroth, second and fourth moments indicating a more rapid oscillation than p ~ . The procedure is the
same as previously except that the ansatz now takes the form

p, ~ (z) =p, (z)+ p,(z)

with

zp, (z) = exp(-z'/4A') p a,„„,„ff„(z/ }2A,

n=0

(49)

(50a)

zp, (z)=exp(-z'/4D') p d, „„H,„„(z/ 2)D,

n-0
(50b)
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~h~~~ A=(1+8x )' ', D= 2(1+2xB)'~', and z =(4/v 3)r .The unmodified density giving rise to the elastic
form factor in the absence of deformation effects can be calculated in the same way. The results are plot-
ted in Fig. 5. The unmodified density is substantially in agreement with the empirical three-parameter
density used by Li et al. to fit their data below 6 fm, except that the maximum proton density is some-
what larger than theirs. The modulating density Eq. (49) oscillates as rapidly within the well as does the
empirical modification of Li et al (in.volving three additional parameters) which they require to fit the
data beyond the diffraction minimum. However, it has the opposite sign from theirs, and is also numeri-
cally much smaller. (The plotted curve does not include the factor AB[,8].)

B. inelastic Scattering

We now take L = 2, ]), = 2 in Eq. (32), and for the unmodified density use Eq. (19), with the value of Xmeh, (p

given by Eq. (20). To second order, the series in Eq. (32) may now contain both a linear and a quadratic
term; however, it turns out that the complete form factor to this order may be characterized by the sin-
gle parameter B=A»' —(A",, )'. Also, the intercluster form factor can no longer be renormalized sepa-
rately from the complete form factor. We therefore give only the renormalized inelastic 'Li form factor,
correct to second order in the deformation:

P,"(,') =,-', ,
'
({—', —,'+B[-2tr,,''+ (ll+ '-' 4', )4, ' —2e,']]exe[-(1 ~ 82„),']

~ 2[-', -4,*+B,*[-,'rr,'+(118—'—,", rr', &,' —128,']}exef-4(1~ 2 „&,'])exe(p*r, '&P, (

(51)

where the subscript i means all lengths are ex-
pressed in units of b;, &u, '=x, '/9, and

o', = 6534[368 —672(x„, —x,8)] (52) 0.06—

The value of B as determined from the mismatch
between the data and the unmodified transition
form factor at q'=6. 5 fm ' is 0.0025. This result
is shown by the solid curve in Fig. 3. While there
is some improvement over the agreement in the
absence of deformation, the change is not nearly
so marked as in the elastic channel. Beyond q'
= 7 fm, the experimental points exhibit a defi-
nite change of curvature which on a shell-model
picture might perhaps be attributable to L=4
waves. " Our curve is to remarkable accuracy,
a straight line over this region. Reexamining our
assumptions, the two most likely sources of error
are (1) exchange effects which may become signi-
ficant at these very high values of q', and (2) de-
tailed differences between the intercluster wave
function in the elastic and inelastic channels. That
these differences exist is shown by the somewhat
different values of the intercluster separation pa-
rameter X required to fit the data below q'=7 fm '.
At larger values of momentum transfer, these
stretching effects probably cannot be represented
in so simple a manner. In spite of these short-
comings, the over-all goodness of fit in the range
q'&10.5 fm ' is impressive. To the author' s
knowledge, no calculations have been published
at the time of writing which attempt to fit the new-
er data at q2 & 4 fm-2

0.05—
Li INTERCLUSTER

DENSITY

0.04—

0.03

8

0.02

O.OI

-O.OI—

/
/

/
/

/
/

/

-0.02—

I.O
x =r/b

I

2.0

FIG, 4. The solid curve shows the intercluster density
p„~, Eq. (124), normalized to unity, as a function of
x =~/5. The dashed curve shows the modulating density,
Eq. (41}, exclusive of the factor A~00 =0.01, required to
reproduce the lowest-order effect of deformations on the
intercluster form factor.
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It is again of interest to Gnd the modulating den-
sity p, .

'"' responsible for the form factor Eq.
(51), according to

with

(54)

p (z ) g 2z +I /4ll Qg f (5/2)(z 2) (55a)

p (g )=z 2g I( /4D Q d L(5/2)(z 2)
n„-0

(55h)

with A, D, and z& as previously defined. The un-
modified transition density can be found in a simi-
lar manner. The results are displayed in Fig. 6.
The modulation, which is numerically quite small,
acts to shift some of the transition charge density
to larger distances.

0.0+

4g dz, z, 'p~z . "'(z,)j,(z, a&,) =F8~' {(u,), (52)
0

and compare it with the transition density pe~ . in
the absence of deformations. A power series ex-
pansion of F, {v,) reveals that the second, fourth
and sixth moments of p, ,

'" all vanish. Here it
is convenient to express the ansatz in terms of
associated Laguerre polynomials:

IV. SUMMARY

The e-d cluster model of 'Li, as developed by
Neudatchin, Smirnov, and their collaborators,
has proven remarkably effective in giving a uni-
fied account of a wide variety of form-factor data,
including those for the reactions (p, 2p), (p, pd),
w capture as well as the older Coulomb and mag-
netic electron scattering data. For this reason it
is of interest to apply the cluster theory to the
most recent very-high-momentum-transfer elastic
and inelastic electron scattering data from Stan-
ford. In making this application, we have made
use of two results of the detailed calculations of
Refs. 11 and 15 to simplify the theory: (1) that,
except at very low momentum transfer, exchange
effects between cluster nucleons are not signifi-
cant; and (2) that the 'Li form factors do not de-
pend sensitively on the asymptotic form of the
internal wave functions of the clusters. We have
further taken into account phenomenologically the
known sensitivity of the 'Li rms radius to ex-
change effects by using the experimental rms ra-
dius as a constraint. The resultant form factors,
in both elastic and inelastic channels give excel-
lent agreement with the data for momentum trans-
fers q &6.5 fm ', and in particular give a diffrac-
tion minimum in the elastic channel at V.V fm
as observed. A single free parameter, the inter-
cluster separation parameter, was required in
each channel, whose value as fixed by the data
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FIG. 5. The solid curve shows the complete Li dens-
ity in protons fm 3, as calculated on the cluster model
in the absence of deformations. The dashed curve shows
the modulating density, exclusive of the factor A 00 =0.01,
required to reproduce the lowest-order effect of defor-
mations on the complete 8Li elastic form factor.

FIG. 6. The solid curve shows the transition 6Li density
in protons fm 3 for the 2.189-MeV level, in the absence
of deformation: The dashed curve shows modulating
density, exclusive of the factor B=0.0025, required to
reproduce the lowest-order effect of deformations on the
~Li inelastic form factor.



280 ROBERT B. RAPHAEL

was found to be reasonably close to the values
attained in Refs. 11 and 15. Qur fit in the elastic
channel appears roughly comparable to that re-
ported by Kudeyarov et aL"; in the inelastic chan-
nel, it appears to fit the data over a considerably
larger range of momentum transfer.

With these results established, we examined the
data at very high momentum transfer, which have
not yet been treated theoretically. In common
with a number of other nuclei, the high momen-
tum transfer data requires an oscillatory modifi-
cation of the empirical charge density needed to
fit the data at lower q. In previous papers, we
have shown that this modification may be attribut-
ed to dynamical deformations of the charge density.
Applying this idea to the cluster formalism, we
allowed the intercluster density to undergo dynami-
cal volume deformations. The deformations are
characterized by certain operators in the Hilbert
space of intercluster rotational states whose re-
duced matrix elements enter into the form factor
as parameters to be fitted to the data. The indi-
vidual clusters are assumed to remain in their
ground state. " After carrying through a renor-
malization procedure to incorporate as much as
possible of the deformation into the parameters
of the spherically symmetric base distribution,
we obtained, particularly in the elastic channel,
a striking improvement in the fits, which are now

good over the range 0&q'&10.5 fm '. A single
additional parameter was required to obtain agree-
ment over this range of momentum transfer, mak-
ing two parameters in all, for each channel.

By an inversion procedure, we then found the
equivalent spherically symmetric "modulating den-
sities, " whose Fourier transforms produce the ad-
ditional terms in the form factors due to the defor-

mations. These distributions were found to oscil-
late rapidly in sign, in a manner similar to the
empirical modifications mentioned above. From
this point of view, these oscillations are not real,
but are the consequence of viewing the deforma-
tion within the framework of spherical symmetry.

Qn the whole, we see these results as providing
a strong confirmation of the O.-d cluster model of
'Li, as well as evidence in favor of long-range
correlations as an explanation of the very high
momentum transfer data. However, exchange ef-
fects at the higher values of momentum transfer,
if significant, could alter our estimate of the mag-
nitude of the deformation contribution to the form
factors, and even its sign, so that to this extent
our results remain tentative. Furthermore, as
mentioned in the introduction, there is no dearth
of other explanations available. In particular, the
use of short-range correlations in conjunction with
the cluster model should be studied. It is obvious-
ly essential that the correct theory provide a uni-
fied description of the totality of available data,
including widths and excitation energies. This
more general problem is currently under investi-
gation, in collaboration with M. Rosen. The rela-
tive simplicity of 'Li, the abundance of detailed
measurements of a wide variety of form factors,
and the already very effective cluster treatment
of this nucleus, suggests that 'Li be used as a
test nucleus for the theoretical investigation of
high momentum transfer phenomena.
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