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The spin and parity of the 4.82-MeV level of ¥ Mg are assigned to be 1/2* by the
%Mg(d, p)*' Mg reaction, in contrast with the assignments by Cujec and Hinds et al. The re-
action protons were analyzed with a broad-range magnetic spectrograph and the energy reso-
lution of the whole system was less than 7 keV. This level is a very strong single-particle
state and the isobaric-analog state of the 11.758-MeV level of 27Al.

NUCLEAR REACTION *Mg(d,d), (d,p), E =3.1 MeV; measured ¢(E;0); deduced
optical-model parameters. *'Mg levels deduced J, m, S, IAS. Enriched target,
DWBA analysis, resolution 7 keV; © =15-120°. .

The levels of 2"Mg have been studied by many
authors.'™® Spins and parities of the low-lying
levels have been obtained by means of various
reactions like(d,p), (¢,p), etc. In particular,
here we would like to take notice of the 4.82-
MeV level of 2*Mg. The spin and parity of this
level was assigned (37, 37) with 7,=(1) in the 2Mg-
(d,p"Mg reaction by Cujec* and by Hinds, Middle-
ton, and Parry.5

If this note we have examined the spin and pari-
ty of the 4.82-MeV level with the 2Mg(d,p)*"Mg
reaction at 3.1-MeV bombarding energy using a
broad-range spectrograph. We report the spin
and parity as well as spectroscopic factor, of the
level mentioned above. Our result is very differ-
ent from theirs. We would like to show that this
level has a special theoretical significance from
the viewpoint of nuclear structure, namely from
the viewpoint of the isobaric-analog state and a
recent shell-model calculation performed by
Wildenthal et al.®

The experimental procedure and results are as
follows. The target was self-supporting and iso-
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FIG. 1. Proton spectrum from the 26Mg(d, p)*"Mg re-
action, measured at © =15° in the spectrograph.
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topically enriched of 20 ug/cm?. The incident

deuterons were accelerated to 3.1 MeV with the
Van de Graaff accelerator at the Tokyo Institute
of Technology. The reaction protons were ana-
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FIG. 2. Measured angular distribution for the proton
groups corresponding to the 4.82-MeV level of 2"Mg is
fitted by the DWBA calculation with [, =0. For the 4.82-
MeV level, the angular distribution calculated with
1,=1 is also shown. The ones for the ground state and
3.47-MeV level of 2"Mg are also shown for comparison.
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lyzed with a broad-range magnetic spectrograph
and detected on 100-um SAKURA nuclear emul-
sion plates. The total exposure was measured by
a Faraday cup to be 1000 .C. The energy reso-
lution of the whole system in this experiment was
about 7 keV. It is the main reason why we could
have such a high resolution that the beam from
the accelerator was able to be defined to an area
of 0.1 mmXx2.0 mm,

A typical proton spectrum in this experiment is
shown in Fig. 1. The angular distribution of the
reaction proton groups corresponding to the 4.82-
MeV level is shown in Fig. 2, in which those for
the ground state and the 3.47-MeV level of 2"Mg
are also shown for comparison.

The angular distributions were analyzed in
terms of the zero-range distorted-wave Born ap-
proximation (DWBA) using the programY3/TC/AA03
developed by Kawai, Kubo, and Yamaura.’

The optical potential used here for the deuteron
is as follows

Ur)=—V(l+e*) 1+ 4iW(£— >(1 +& ) L0,

where Vand W are real constants, x and x’ are

defined by x=(r — 7., A"*)/a; and x'=(r — ro; A)/ay,

respectively. The Coulomb potential V,(r) is ob-
tained by assuming that charges are uniformly
distributed inside the sphere of radius R, =7,4"2,
A spin-orbit term of the form

7 Nay 7. -1( d ) x)=1
( ) Vi Li» G7 p (1+€)

M, C

must be added to the above potential for the reac-
tion proton. The values of the parameters that
we take are listed in Table I. The values of the
parameters for the optical potential are taken
from a study by Perey.® These potentials were
extracted from 9-MeV proton elastic scattering
data on 27Al. By fitting at 6 =15°, the measured
and calculated angular distribution for the 4.82-
MeV level is in good agreement with [, =0 as is
seen in Fig. 2, where [, is the orbital angular
momentum of the captured neutron. Since Hinds,
Middleton, and Parry,® have suggested 7, =(1) for
the 4.82-MeV level, we have also shown the angu-

TABLE I, Optical-model parameters in the DWBA
calculation, The deuteron parameters are obtained from
the analysis of elastic scattering. The proton parame-
ters are the ones obtained by Perey (Ref. 8).

\4 w
(MeV) (MeV)

Yos ag 7y a 7e Vso
Particle (fm) (fm) (fm) (fm) (fm) (MeV)

Deuteron 75.0 15.0 1.15 0.81 1.34 0.68 1.15
Proton 51.0 6.2 1.27 0.66 1.25 0.65 1.27 7.5
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TABLE II. Spectroscopic factors and strength func-
tions, The S, factor and strength function are calculat-
ed not only for the 4.82-MeV level but also for the ground
state and the 3.47-MeV level. The ones for the ground
state, 3.47-, and 4.82-MeV levels are more or less of

the same order.

Level E,
No. (MeV) 1,  (J;+DS, JT S,
0 0 0 0.9 £ 045
6 3.47 0 0.44 1 0.2
16 4.82 0 0.72 i 0.36

lar distribution calculated with /, =1 in Fig. 2,
however, we would never be able to fit the calcu-
lated angular distribution with /, =1 to the mea-
sured one. Therefore, we recognize that the
conclusion of /, =0 for the 4.82-MeV level is
definite. Since the spin of the ground state of
%Mg is zero, the spin and parity of the 4.82-
MeV level of 2'Mg is now assigned to be 3 *, in
this note.

The spectroscopic factor for the present reac-
tion on a zero-spin target is defined by

_ (do/dﬂ)cxp
T 1.53(2J; +1)(do/dQ) pypa ’

where J, is the spin of a final nuclear state and
(do/AR)cx,/(d0/dR) pyps 1S the radio of the experi-
mentally measured angular distribution to the
theoretically calculated one. The spectroscopic
factor S, and the strength function (27, +1)S, for
the 4.82-MeV level of Mg are calculated at
©=15° and tabulated in Table II, in which the
ones for the other 3 * states (ground state and
the 3.47-MeV level of 2"Mg) are also shown for
comparison. As is seen in Table II, both S, fac-
tors for the ground state and the 3.47-MeV level
are of the same order with the values obtained by
Silverstein et al.® Furthermore, the S, factor
for the 4.82-MeV level is of the same order with

S

TABLE III, Percentage in intensity of wave functions
for the 0* states of 2Mg. The wave functions are con-
structed by placing 10 nucleons in the orbitals 1ds,
and 2sy/,, and inert core of 80 being assumed. The
wave functions having zero, one, two, three, and four
particles in the 2sy,, orbit are denoted by, respectively,
av, a%!t, ab?, d's®, and d®s’.

E

x
Jm Mev) dt? 4%t 48?2  a%s®  dfst
ot 0 43 8 37 6 6
o* 3.58 10 6 58 18 8
o* 4.97 28 1 43 13 15
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FIG. 3. Level schemes of 2®Mg, 2"Mg, and 2'Al. The
0* states of 26Mg correspond to the 3+ states of 'Mg.
The 1* states of 2'Mg have the isobaric-analog states
of 27A1.

the ones of the ground state and the 3.47-MeV level.
In order to see the theoretical significance of

the 4.82-MeV level of 2"Mg, first of all we have

to discuss the features of 2Mg that is the target

in the 2Mg(d,p)*"Mg reaction. It is well known

that the features of ?*Mg cannot be explained by

a simple shell model. Let us discuss the features

of 2®Mg on the basis of the calculation performed

by Wildenthal et al.® According to Wildenthal

et al., the T=1 state in mass~26 nuclei were de-

scribed by wave functions constructed by placing

10 nucleons in the orbitals 1d,,, and 2s,,,, an

inert core of %0 being assumed. As an example,

let us tabulate in Table III the percentage in inten-

sity of each wave function, for the 0* state of 2*Mg,

which comes from having zero particles in the
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2s,/, orbit (denoted by d'°), one particle in the
2s,/, orbit (d°s') etc. Now let us discuss the 4.82-
MeV level of 2"Mg. This level might be understood
on the basis of the calculation of Wildenthal ef al.
In order to see it, let us show in Fig. 3 that the
0* states of 2°Mg correspond to the 1* states of
*"Mg; namely the ground state, the 3.58-, and
4.97-MeV levels of 2Mg correspond to the ground
state, the 3.47-, and 4.82-MeV levels of *"Mg, re-
spectively. The 3* states of 2"Mg are assigned by
the 2Mg(d,p)*"Mg reaction which corresponds to a
single-nucleon transfer that couples directly a
neutron in the 2s,,, orbit to the ground state of
26Mg. Comparing the wave functions for the 0*
states of *®Mg, which are obtained by Wildenthal
et al.® and shown in Table III, the correspondence
in energies between the 0* states of 2Mg and the
3" states of 2"Mg must be consistently understood
as well as the spins and parities of the ground
state, the 3.47-, and 4.82-MeV levels of 2"Mg.

In this connection, it would be expected that the
spin and parity of the 4.82-MeV level of 2"Mg
might be 3 *. .

Finally, let us see the isobaric-analog states of
the 3 * states of 2"Mg. It had been recognized that
the ground state and the 3.47-MeV level of 2"Mg
are, respectively, isobaric-analog states of the
6.815- and the 10.240-MeV levels of ?’Al, by other
authors.? 1® We would like to point out that the
4.82-MeV level of 2'Mg is an isobaric-analog state
of the 11.758-MeV level of 27Al. The spin and
parity of the 11.758-MeV level of 2’Al are now as-
signed 3 * with the 2*Mg(p, y)?"Al and 2Mg(p,p)?*Mg
reactions by our group.'! These isobaric-analog
states are shown in Fig. 3. Moreover, the fact
that the S, factor for the 4.82-MeV level of >"Mg
is very large is again consistent with the fact the
total width of the 11.758-MeV level of 2"Al is very
large.
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