Can We Trust ²⁶Al^m? A Search for Competitive Decay Branches

S. Van der Linden,^{*} J. P. Deutsch, J. Lehmann, and L. Palffy Institut de Physique Corpusculaire-Université de Louvain, 1348 Louvain-la-Neuve, Belgium (Received 1 May 1973)

An upper limit of 2×10^{-4} per disintegration was found for any possible β - or γ -decay branch of ²⁶Al competing with its superallowed β decay.

RADIOACTIVITY ²⁶Al^m [from ²³Na(α , n)]; measured I_{γ} , I_{CE} upper limit.

There has been much hard work in precision measurements of β transition strengths in pure "Fermi" superallowed transitions. After corrections of electromagnetic origin, negligible or known with sufficient accuracy (e.g., Ref. 1; cfr., however, the unexpected results of Ref. 2), the "vector" coupling constant extracted from these measurements provides the most precise test of the universality hypothesis "à la Cabibbo."^{2, 3}

Without attempting to discuss the many ups and downs of this work in recent years, ¹⁻³ let us stress only, that among the numerous candidates, the decay of ²⁶Al^m was selected not only as being one of the most accurately measured, but also as having the fastest transition rate.¹⁻³ The fastest transition is believed to be the most reliable because it is least hampered by slowing down from isospin impurities in the nuclear states.¹ Unfortunately, the transition appears to be *too fast* for the requirement of universality if the conventional K_{I3} form factors are used for the $\Delta S = 1$ part of the weak hadronic current.³

At this point one should note, however, that the transition will effectively appear too fast if a competitive decay channel of the 223-keV ²⁶Al^m state escapes observation. In spite of this fact, to our knowledge, no methodic search for such decay channels has been undertaken, as yet, at the required 10^{-4} accuracy. (In 1955 an upper limit of 10^{-4} for an eventual second-forbidden β branch to the 1809-keV 2⁺ level of ²⁶Mg was reported⁴; on the basis of systematics, however, this branch is expected to be entirely negligible for our purpose.)

The reason for this is the absence of any known state which could drain a competitive decay branch of sufficient intensity. We would need either a low-spin state (0⁺ or 1⁺) at rather low excitation energy in ²⁶Mg (typically under 2000 keV), or a high-spin state (3⁻ or 4⁺) near the 5⁺ ground state of ²⁶Al (Fig. 1).

We may dismiss the possibility of a low-lying

1⁺ state in the even-even ²⁶Mg and that of a 3⁻ level in the midst of the positive-parity $(d_{5/2})^{-1}{}_{\nu}(d_{5/2})^{-1}{}_{\pi}$ states of ²⁶Al, but let us discuss briefly the two other possibilities.

There is a 0^+ level in ²⁶Mg at 3589 keV,⁵ much too high for our purposes; one cannot exclude, however, the possibility that the two-phonon 0^+ state lies, in reality, somewhere between the twophonon and one-phonon 2^+ levels (2938 and 1809 keV) and has escaped observation either because it is very weakly fed in nuclear reactions or because it is situated too near the first 2^+ level. The

FIG. 1. Decay scheme of ${}^{26}Al^m$ indicating eventual competitive decay branches.

2499

8

FIG. 2. Upper limit (number per disintegration) for γ rays and conversion electrons as a function of their energy. The arrows indicate the position where events due to competitive decay branches may have been expected.

- *In partial fulfillment of the requirements of the Licence en Sc. Physiques.
- ¹R. J. Blin-Stoyle and J. M. Freeman, Nucl. Phys. <u>A150</u>, 369 (1970).
- ²J. C. Hardy, H. Schmeing, J. S. Geiger, R. L. Graham, and I. S. Towner, Phys. Rev. Lett. <u>29</u>, 1027 (1972).
- ³E. Fischbach, M. M. Nieto, H. Primakoff, C. K. Scott, and J. Smith, Phys. Rev. Lett. <u>27</u>, 1403 (1971). See, however, B. Nagel and H. Snellman, Phys. Rev. D 6,
- ⁴D. Maeder and P. Staehelin, Helv. Phys. Acta <u>28</u>, 193
- ⁴D. Maeder and P. Staehelin, Helv. Phys. Acta <u>28</u>, 193 (1955).

second alternative, that of a 4⁺ level, is also tentative only: The 4⁺ member of the $(d_{5/2})^{-2}$ multiplet should lie much higher in ²⁶Al⁶ and some indications from (τ, α) reactions seem to indicate that it is at 4.7-MeV excitation energy.⁷ It may lie, however, too near the 5⁺ ground state, to be resolved and if so, an exceptionally strong E4 decay to this state (\approx 30 W.u.) might provide a dangerous drain for the 0^{+ 26}Al^m mother state.

The possibilities we invoke are rather artificial and the eventuality of competitive decay branches, even at the 10^{-4} level, seems rather remote. Considering the importance of the issue, we felt nevertheless, that an experimental search for such a decay channel would be of interest.

²⁶Al^{*m*} was produced by 12-MeV α particles incident on sodium fluoride. The energy spectrum and time dependence of the γ emission was observed using a 4-cm³ or a 35-cm³ Ge(Li) detector; that of possible conversion-electron emission by the use of a 1-cm-thick Si(Li) one. No electrons or γ rays (other than the annihilation radiation) were observed with the ²⁶Al^{*m*} or comparable lifetime.⁸

We summarize in Fig. 2 the upper limits of intensity (90% confidence level), compatible with our results, both for conversion electrons and γ rays. As shown, the upper limits, in the energy region of interest, are $2-3 \times 10^{-4}$ per disintegration. Consequently any competitive decay branch would be too weak to influence the ${}^{26}\text{Al}^m$ ft value within its measured accuracy ($\approx 1.5 \times 10^{-3}$).

In conclusion, our result allows one to confidently rely on the measured rate of this superallowed "Fermi" transition.

- ⁵J. L. Durell et al., J. Phys. (Lond.) <u>5A</u>, 302 (1972).
- ⁶E.g. M. C. Bouten, J. P. Eliot, and J. A. Pollen, Nucl. Phys. A97, 113 (1967).
- ⁷K. P. Artemov, V. A. Gol'berg, B. I. Islamov, and V. P. Rudakov, Yad. Fiz. <u>12</u>, 239 (1970) [transl.: Sov. J. Nucl. Phys. <u>12</u>, 130 (1971)]; J. Ronsin *et al.*, Compt. Rend. <u>B273</u>, 682 (1971).
- ⁸S. Van der Linden, Mémoire de Licence, Louvain University, 1970 (unpublished).