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Exclusion Principle Effects in Pion-Deuteron Scattering near the 3,3 Resonance
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The role of the Pauli exclusion principle in inelastic md scattering in the 3, 3 resonance re-
gion is studied using dispersion relations. Estimates are based on the deuteron S state. The
3, 3 resonance energy is raised by antisymmetrization in one partial wave (J = 1) by 7.5 MeV
but only by 1.3 MeV in the total cross section.

NUCLEAR SCATTERING d(x, 7t), B-150-250 MeV; calculated reaction cross
section. Bole of Pauli principle, dispersion theory.

Recently Bethe' and others' observed that for
pion-nucleus scattering in the neighborhood of a
wE resonance such as the dominant 4»(1236), the
fundamental pion-nucleon scattering event may be
modified by the exclusion principle as a conse-
quence of blocking of intermediate nucleon states.
The Pauli principle can also restrict the states
available for nucleon recoil between successive
pion scattering events in a dispersion theoretical
treatment or in a multiple scattering approach.
Antisymmetrization is ignored in earlier work by
De Alfaro and Stroffolini, ' who estimate higher-
order effects which arise in the Watson multiple
scattering formalism, and by Ioffe, Pomeranchuk,
and Rudik' who use dispersion relations. There
are crude estimates' of the main qualitative ef-
fects of the exclusion principle on the 3, 3 reso-
nance which are based on modifications of Chew-
Low theory in nuclear matter. They are found to
be similar to those involved in the quenching of
magentic moments' in nuclei and consist in nar-
rowing the width of the 3, 3 resonance and shifting
the resonance energy upwards.

We expect these effects, albeit reduced in size,
to occur already in the deuteron. On the other
hand, the relatively simple structure of the deu-
teron allows us to examine (by means of disper-
sion relations) possible modifications of the ele-
mentary pion-nucleon scattering event while avoid-
ing many-body complications which usually neces-
sitate invoking assumptions of dubious validity.

In the following we calculate the inelastic pion-

s = (q+d)' =m, '+2m„&u

for the total c.m. energy, and

s, =(q'+P, )'=m'+2m+, (2)

for the wN, subchannel. Equations (1) and (2) de-
fine the nonrelativistic energies cu and 40y.

In each channel of total angular momentum J
and mN, subchannel of angular momentum j, uni-
tarity restricted to nNN intermediate states yields

(d B

rms„( )=
J

where p(&u„e) -(e —w, -B)'~2p(u&, ) is the wNN

phase space, p(~, ) the wN, phase space, and E»
the (J,j ) partial-wave amplitude for the reaction

d&ip(&, &) I &23(~ ~) I', (3)

deuteron (wd) cross section as from the imaginary
part of the forward md scattering amplitude. Since
the Born diagrams which involve mN scattering are
real, they can be ignored here. For the absorptive
part ImI",„, we use unitarity taking account of
the major inelastic channels only, viz. , inter-
mediate ~NN states. Our emphasis is less on the
construction of a model which can be compared
with experiments than on estimating effects re-
lated to proper antisymmetrization. Thus we
ignore crossing symmetry amongst other possible
refinements, and work in the static limit (using
m„m» p, =pion mass) keeping only the S state
of the deuteron.

We choose the usual kinematic variables (see
Fig. 1),
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~d- mNN. For I',37 we use the s, subchannel dis-
persion relation

E2~((d~~ (d) =B2~(CV~~ (d)

S wave Hulth6n wave function of the deuteron.
Next, we obtain

-2m/[(p, —q)' -m'] =1/(u, (5c)
OO d

+—,' . &..(~,', ~)lo(~l)&(~l),
Qpg

assuming the nucleon N, in Fig. 1(b) of momentum

P, +q' to be on the mass shell, while

-2m/[(p, +q')'-m'] =-1/u), (5d)
where F denotes the ~N Chew-Low amplitude.
The full antisymmetrized Born amplitude B23
consists of the direct graph (a) and two exchange
diagrams (b) and (c) of Fig. 1, which result from
(a) upon interchanging the intermediate nucleon
lines N, and N„and then, in (b), the nucleon
lines N, and N„respectively.

In the nonrelativistic limit, the pole structure
of these amplitudes is readily seen to be given

by the nucleon propagators involved; e.g. ,

-2 m/ [(P, —q)2 —m ~] = 1/qo = 1/&u» (5a)

where q, is the energy of the incoming pion in the
c.m. frame of nucleon N, of momentum P, and the
final pion; g, is evaluated assuming d-P, to be
on the mass shell. Similarly

-2m/[(d —p, )'-m'] =1/(&o —&u, ) (5b}

results in the c.m. frame of q and d taking account
of the binding energy B of the deuteron and the
recoil of nucleon N, . Equation (5b) represents the

and

-2m/[(d —p, )'-m'] =1/u) (5e)

S, =o, go, ~ g'(3+v, g, )/4,

with obvious modifications for diagrams (b) and
(c). This implies the partial-wave projections

S 2Pggg + (2j&3)P W+ p

S, = (4/&3) P,'„W+~~ P,'„-3P'„„' = (4/~3 }Psi2+ ~a Plea +3Pua

where

are needed for Figs. 1(b) and (c).
The isospin matrix elements are obtained from

r, , 7', z(1 —7, T;)/4 for the direct graph and
analogously for the others; thus the relative phase
of the exchange graphs (b) and (c) is negative
compared to (a) for both mN, subchannel isospins
t =-,' and ~. The angular momentum dependence
of (a) is

.q'

Pf =Q 1
(0' l)i, 2; &I}& q, —.

'
—.')1;z~~ (8}

Np

(o)

is the channel projection operator. A common
and constant normalization factor is ignored
throughout. Upon including the energy and iso-
spin dependence, the partial amplitude for J =1
and j = & becomes

q
N)

1+4 '
co (9)

(b)

-q'
N~~

q P2

ql

(c)
FIG. 1. The direct Born graph (a) and two exchange

diagrams (b) and (c) for the process xd xNX.

while the second term in Eq. (9) from the ex-
change graphs vanishes for J=2, with the direct
contribution being W3/(&u —co, )e,. As a result,
the exchange contributions yield an enhancement
in the Born amplitude in the physical region where
p, & v, & (d -B in the J=1,j = 2 channel, while for
j= —, there is sometimes suppression. The relative
magnitude of the Born amplitudes in the J= 1 and
J=2 states of 1:~3 in conjunction with the statis-
tical weight factor 2J+1 will reduce the Pauli
effects for inelastic ~d scattering to ~of the size
in the J=1 channel.

Next we solve the dispersion relation (4) using
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a ~N Chew-Low amplitude of the form

F(~,) = X(~,)/D(~, ),
N(&u, ) = A./a, ,

X(gg tfAI p((U~)

m
P I 1 1

&mF(~, ) =p(~, ) IF(~,) I'

p(~, )/p(~, )
(~(~, —~, )/1")'+(p(~, )/p(~, ))' '

(10)

ha

2

O

l5-

F„((u„&u)= P„((u„(u)/D((u, ),
with the Chew-Low denominator D of Eq. (10), and
requiring no unitarity cut in N», one gets for the
simple solution' of the once-subtracted dispersion
relation for N»

1 1
+22(+11 ~) +23(+OP ~) 6~23 +23(~lt +) i

(dg COp

(13)

the subtraction being made at co, = ~„and X» being
the foregoing over-all normalization constant. It
is important that the subtraction constant disap-
pears from the final solution.

The solution of Eq. (11) implies the inelastic 2d
cross section

(
2 2)1/2 (~ —~, —&)"' o22(~i)

(&u —&O,) (&2 —
V )

x (1+4 ')
for J=1, j = —,', where 033 is the total pion-nucleon
scattering cross section. Upon omitting the ex-
change diagrams, Eq. (14) reduces to the impulse
approximation. In this context, we note that the
S-state deuteron wave function is

y(P2) -1/(g +&2n) -1/(~ —4,)

where p(w, ) =(e', —p2)2'2, the resonance energy
is taken to be co„=2.4p, and its width I"=0.8p. .

Since. the singularity (~, —~) ' of 8» lies in the
domain of integration in Eq. (4), we factor out
this pole. Then

F22( d~~ (d) = ((d~ —hl)F22(A~P t'd)
~

along with the corresponding 8», satisfies a once-
subtracted form of the dispersion relation (6).
By writing

2.0 2.5
Cu/p

3.0 3.5

FIG. 2. Inelastic pion-deuteron scattering cross
sections versus total pion energy in units of the pion
mass. Curve (a) represents the total cross section
(Tg 0J f + (TJ g as well as 6az

&
and

&
oz ~ when the6

exclusion principle is ignored. Curves (b) and (c)
denote, respectively, 60J -& and az when all three dia-
grams of Fig. 1 are included, while the J = 2 partial
cross section is unchanged by the exclusion principle.
The peak energies are shown on the energy scale.

and P, = [m((u —(o, —a) ]"'.
The results of Fig. 2 show a slight upward shift

of -7.5 MeV for the maximum in the J=1, j = —',
channel and ™1.3 MeV for the total inelastic pion-
deuteron cross section. This upward energy shift
is indirect inasmuch as it arises from the &, inte-
gration in Eq. (14), while the elementary wN reso-
nance position, i.e. , the zero of ReD in Eq. (10),
remains unchanged.

Thus we conclude that exchange effects in pd

inelastic scattering yield corrections simila, r to
those expected from the quenching of magnetic
moments. While these results can be qualitative-
ly reproduced in pion-nucleus scattering by Pauli
blocking through a weight factor in the driving
Born diagram and the dispersion term of Chew-
Low theory adapted to the case of nuclear matter, '
our detailed partial wave decomposition for gd

scattering shows that actually suppression and
enhancement of the Born amplitudes occur in dif-
ferent partial waves.
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