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The weak-coupling model is applied to the study of the low-lying states of Pb and 0 Pb. We
first obtain the phonon states of OPb and Pb by shell-model calculations. The states of

Pb ( 4Pb) are then obtained by solving the eigenvalue problem in a truncated Hilbert space
consisting of a small number of basis vectors, each of which is a product of two phonon states
of Pb ( Pb). A canonical transformation is used to orthonormalize these two-phonon basis
vectors The. energies as well as the wave functions of many iow-iyiug states of muPb p Pb)
given by the exact shell-model calculations are reproduced surprisingly well by the weak-
coupling model where only three or four low-lying Pb ( 8Pb) phonons are included.

NUCLEAR STRUCTURE 2~2Pb, 204Pb; energies and wave functions calculated in
terms of the Gpb and 6Pb phonons.

1. INTRODUCTION

The nuclear shell model has proven to be an ex-
tremely useful tool in the study of nuclear struc-
ture from a microscopic point of view. There are
two important difficulties with the conventional
shell model. First, as the number of particles
and/or the number of single-particle orbits in the
active model space increase, the dimensions of
resultant matrices which must be calculated and
diagonalized become prohibitively large. Second,
even when one can handle the relatively large ma-
trices, the eigenvectors which are interpreted as
nuclear wave functions are very complex. Conse-
quently, it is difficult to make a simple interpreta-
tion of the wave functions.

Because the shell model is such a useful tool, it
would be very useful to find simple approximations
to large shell-model calculations. Ideally, one
would find a Hilbeit space of which the dimension
is much smaller than the complete shell-model
space, such that the eigenvalues of the original
Hamiltonian in this smaller space reproduce the
eigenvalues in the large space, and the small-
dimension eigenvectors have large overlaps with
the full shell-model wave functions. This is the
aim of the so-called "weak coupling" schemes and
their generalizations. ' ' An extensive review of
such calculations has been presented by Arima and
Hamamoto. The general idea is to view the com-
plete shell-modeL Hilbert space of n particles as
the product of two spaces of m, and m, particles

(n =m, +m, ), and to look for truncations in the
spaces m, and m, so that the product space gener-
ated from the two truncated subspaces has strong
overlap with the space spanned by the low-lying
eigenstates in the n-particles space. One example
of such a scheme is discussed by Wong and Zuker. '
They considered nuclei in the s-d shell. The con-
ventional shell-model calculation of ' Ne consists
of diagonalizing a one-body and a two-body effec-
tive residual interaction in the space of four par-
ticles distributed over the d„„s„„andd3/Q or-
bits. Wong and Zuker found that the low-lying
eigenstates of "Ne could be wel. l described as the
result of coupling together only few low-lying eigen-
states in "F. An extreme example of a weak-cou-
pling scheme is the so-called pairing-vibrational
scheme, ' where only one basis state of each J is
included in the two-particle Hilbert space, and the
states in the nucleus with 2n active particles are
simply the products of n of these two-particle
states. Obviously as one includes more and more
of the states in the smaller spaces, one approaches
the exact shell-model calculation.

In this paper, we present the results of a study
of a generalized weak-coupling scheme for the
lead j.sotopes Pb and Pb. We consj.der the
states of '"Pb as the products of low-lying eigen-
states in "'Pb, and similarly, ' 'Pb states are
treated as products of ' 'Pb eigenstates. For these
cases, we can handle fairly large exact shell-mod-
el calculations, and thus can compare the weak-
coupling results with the exact results. In our for-
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mulation, we can handle an arbitrary number of
two-particle (hole) "phonons, " so we can study the
calculations as a function of the number of phonons
we include in the weak-coupling space. The calcu-
lation is formulated in a second-quantized repre-
sentation so that the Pauli principle is treated ex-
actly. We shall find that the weak-coupling ap-

proach is extremely useful in these Pb isotopes.
We also show that for a certain set of states, the
pairing-vibration model is a very good one.

In Sec. 2 we discuss the method of calculation in
some detail. The numerical results are presented
and discussed in Sec. 3. A summary of the calcu-
lation is presented in Sec. 4.

2. METHOD OF CALCULATION

In the weak coupling-model used here, the states in the nucleus '"Pb ("4Pb) are considered as products
of two-particle (two-hole) eigenstates in '"Pb ('"Pb) nuclei, in the sense that the four valence particles
(holes) outside (inside) the Pb core are considered linear combinations of products of two two-particle
(two-hole) systems, where each two-particle (two-hole) system is taken as the phonon states (eigenstates)
of "OPb ('"Pb). Let us denote the normalized two-particle (two-hole) phonon states by I c/& Then. the basis
states for the four valence particles (holes) of "'Pb ("'Pb) are constructed from coupling two phonon
states. Since the two-phonon states are usually not orthonormal to each other, we have used the canonical
transformation' to construct a set of orthonormal states Im& out of the two-phonon states

I n, n, &) Th. is
involves the diagonalization of the overlap matrix of the two-phonon states. If we write

I c/& in terms of the
normalized antisymmetric two-particle (hole) states as

g(ab)
I && = g (1+5" )rgb I (ab)J~& ~

(a~)

then the overlap matrix can be expressed as

~(.~) ~(.d) ~(ey) ~(zh)
(((o'ao'2)JI(o'. ~.)J&& = g g g g (1+5 )I/2 (] +5 )&/2 (1+5 )&/2 (1+5 )I/2

(ab) (cd) (ef) (th)

x((ab) &(cd) &Jl(ef) '(gh) ~J&,

where the four-particle overlap matrix element is given by

((ab)"(cd)"J I (ef)"(g'h)" J)
= 5z,z 5z z ((ab)J, I (ef)J, ) ((cd)J2 I (gh) J4) + 5&,z 5z,z,(( b)Ja, I (gh) J4) ((cd)J2 I (ef )J~)(-I) "

a~ cu t/ r s J,)—(J~J2JsJ~)' ' g g u v J2 IF(rs)Ii(uv)((ru)J, I (ef)J, )((sv)J4I (gh)J4),
r~s u~v J3 J~ J

(2)

where the sum over xW 8 means r can be either a
or 5, as can s, but under the constraint r 4 s. For
example if (ab) =(12), then (rs) is (12) and (21);
similarly for the sum over uWv. In the above, we
have used the following abbreviated notations:

& 2a =2&

antisymmetrized. The state
I

o.) of Eq. (1) is nor-
malized, but the states I(o.,n, )J» are not yet nor-
malized. Using Eq. (2) they can be easily normal-
ized. We denote the normalized two-phonon states
by I(/r, n, )J&, namely

J=2J+ j-,

E(rs) = 1 if r = a, s = b

.=(- )"I" /~'/~ if r=b, s=a,

((ab)J, I (cd)J,, ) =-5,.5„—(-I)"~-"5„5„.
Note that the state l(ab)J) is antisymmetrized, but
is normalized only when j,W j,. The above expres-
sions have been derived in a second-quantized for-
malism, and hence the states

I (o.,n, )J )) are fully

Let the eigenvalues and eigenvectors of the over-
lap matrix of the normalized two-phonon states
l(o.,o.,)J) be X and

A. = g II.""2 I(~.~.)J&
(a~ a2)

respectively. Then the set of orthonormalized
states lm) is given by

Im&= g c'."'""I(~,&,)J&,
(aj Of~)
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where

~(cfj n2)
C(cf~e2) ~m

Obviously ~m) is not defined when A. „=O. This
problem arises because our two-phonon basis is
overcomplete. It can be shown that the eigenvec-
tors of the overlap matrix which have zero eigen-
values are linearly dependent on the eigenvectors
with nonzero eigenvalues. One obtains a, complete
orthonormal basis for the space of two-phonon

I

(m ~H ~m') is equal to

states by neglecting those p 's which correspond
to zero eigenvalues.

Once we have obtained a set of orthonormalized
basis states, the eigenvalue problem for '"Pb
("'Pb) can be written as

g &m ~H (m'&b". , =E„b".,
m'

where E„ is the energy of '"Pb ("4Pb) relative to
the ground-state energy of "'Pb. The matrix ele-
ment

+ &(~,a2)J IH31(~3~4)J)c+&(~,~2)JIH, I (~3a4)J}ck (10)

where the Z's are the phonon energies of '"Pb ('"Pb). The matrix element &(n, n2}J~H,
~ (nsn4)J)c can be

expressed in terms of part of the four-particle overlap matrix element, i.e.,
A A A Acf2 (x3 cf4

&(~la2&JIH. I(~sa4)J&C-(H»d&34d& z z z z (1+b &1/2(]+b )l/2(1+b )1/2(]+b )I/2
(aS) (cd) (ef) (r a)

x(e, +es+e, +ed) &(ab)dl(cd)d2J~ (ef)d3(gh)d4 J)c, (11)

where ( ~ ~ )c is the third term in the overlap matrix element given by Eq. (3), and the e's are the single-
particle (hole) energies. The matrix element &(/2, /22}J~H, ~(asn4)J)c can be written as

g(ab) ~(cd) g(ef) g( gib
cf2 ct3 cf4

&(+1+2)JIH. I (~3+4)J)C (H»dH34d& ~ ~ Z. Z (1-+b )1/2 (] + b )1/2 (] + b )1/2 (1 + b )1/2
(aS) (cd) (cd) (ra)

x &(ab) llc4f} 'J
~ H, ~ (ef )d '(gh)~ 4 J)c,

with

&(ab)dl(cd)d2 J~H, ~(ef)ds(gh)d4J)c

43 cd
t r S Jl)

=(J,J2J3J4) / —g p u v J2 F(rs)F(uv)&(ru) '(sv) J~H4, ~(ef) 3(gh) 4J)
r&s u&o J3 J4 J

ef 23 fr S J3 }u' v' J, F(r's')F(u'v')((ab) '(cd) 2J~ H~(r' u) d(ls'v') d2
J)

r'us' u'uv' J J J)j. 2

es cd sf 23 ('r S J, } (r' S' J3)
+2 p g g g g O',J,' u v J,

~

~

u' v' J, ~F(rs)F(uv)F(r's')F(u'v')
rue vru' uuu'suv' d'J' ~ J' J' J l J' J'

2 / 1 2

&&(ru) 1(sv) 2J~H,
~

(r'u')dl(s'v')d2J)

((ru) 1(sv) 2J~H,
~

(r'u') 1(s'v') 2J) =((ru) J', ~H, ~

(r'u'}J', ) ((sv)J,'((s'v') J,')

+&(sv)J2 IH1I (s' v')J,') &(ru)Jl I
(r'u') J,') .

In the above, the meanings of various notations
are the same as in Eq. (4) except that the
&(rs)J' ~H, ~

(r's')J')'s are the effective interac-
tion matrix elements. The subscript C empha-

sizes that only the matrix elements which corre-
spond to the contractions between the two phonons
are included. For instance, the matrix elements
of the type & n, (H, [ /23) and & n2 ~H, ) /24) are excluded
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in Eqs. (12) and (13) because they are contained in

E„,and E, of Eq. (10) already.
In this discussion we have ignored the isospin

quantum numbers since "'Pb (304pb) has only neu-
tron valence particles (holes) and therefore the
total valence isospin is always 2. Note that the
above formulas apply to both '"Pb and 2'4Pb.

0+, -8.546

2+( -8.175

0.2932

0.0222

0.0251

0.0

-0.0316

-0.0175

0.9560

0.9993

0.9995

TABLE I. Phonon states of 2~0Pb (mode1 spare I).

J'~ Energy (Oi)gg2)2 (Oi)lpga) (1ge]2) (1gsg2}2

3. RESULTS OF CALCULATIONS

In all these calculations, we use the two-body
particle-particle and hole-hole matrix elements
developed for this mass region by Herling and
Kuo.s' The matrix elements are derived by reac-
tion matrix techniques from the Hamada- Johnston
potential. %'8 include the contributions from the
bare interaction and from the core-polarization
diagram. The structure of "2Pb has been studied
in terms of two model spaces. Model space I in-
cludes only taro single-particle orbits, the 1g„,
and the Oi»». In model space G, we include the
five lowest neutron olbits outside Pby i.e.y 1g9gmy

Og»gay Opsis/gy 2dsymp and 38ygg with respective single-
particle energies -3.94, -3.15, -2.53, -2.36, and
-1.91 MeV which are the observed energies in' 'Pb, the same as those used by Herling and Kuo. '

'212
A. Pb in Model Space I

In the two-shell model space I, we first obtain
the phonon states of "~Pb from the conventional
shell-model calculation with the above-mentioned
effective interaction. The excitation energy spec-
tra of the two-sheD phonon states is shown in col-
umn one of Fig. 1. We would not expect very pre-
cise agreement vrith the observed spectrum of
"oPb because the Herling and Kuo matrix elements
are designed for a model space of seven orbits.
Since we are interested in the low-lying states of
"Pb, we first consider a weak-coupling model

based on the lowest 0» 2, , and 4i phonons of ' Pb.
The wave functions of these two-particle phonons
are shown in Table I. The Hilbert spaces associat-

p+
- IO)+

I+
-i5.00-

04

-l 5.50

-e, l75 ~+
I

-8.546 +
I

0+

+
22

P2
-|6.491 y+

I

-)6.690
I

22
y+

2
—te.4ee y+

I

g+
0+
y+
2 +

Q+ (-(6.463}
2+

0+
2+

"l 7.00 )? 0?0 + -1?.059 0+ - l?.052 0+0
'

0l pl

2- SHELL 5- SHELL EXPT

Shell Model 3-PhoAoll

N. C.M.

d=l

FIG. l. Energy levels of 2~0Pb. FIG. 2. Energy leveIs of 2~2Pb (modeI space I).



TABLE II. 0+ states of 2~2Pb {model space I}. TABLE 1V. 4+ states of ~~2Pb (model space I).

0+

Energy

-17.059

-16,117

(0) 0) )

-0.8666

0.0017

(2+ 2+
~

0.1254

0.5131

(4+ 4+ )

0.0796

-0.8445

J" Energy (0+(4+() (2+)2(+)

4+( -16.486 0.6917 -0.5398 0.3938 -0.2470

42+ -16.438 -0.0552 -0.2470 -0.6635 0.4939

43+ -16,128 -0.0367 0.5258 0.1959 1.0788

ed with the 0', 2', and, 4' states of '"Pb have basis
states (I0,"0;&. I2l2l» l4l4x&)' (l0l2l&, I2l2l&
I2;4;&, 14;4;&); and (I0;4;&, I2;2;&, I2;4;),
I 4;4f &), respectively. Using the expressions dis-
cussed before, we obtain the weak-coupling states
of '"Pb in this truncated basis. The results are
shown in I'ig. 2 labeled W.C.M. (weak-coupling
model). The complete two-orbit shell-model re-
sult is shown in column 1. We also show in Fig. 2

the results of the simplest weak-coupling model
labeled d =1, in which we ignore mixing between
basis states. By this we mean that we have calcu-
lated the energy of each weak-coupling state
l(g,g,)Z& as the sum of the J', and J, phonon ener-
gies plus the energy of interaction between the two
phonons. This result is analogous to the simplest
pairing-vibration-model result. For the lowest
0', 2', and 4' states in '"Pb, this model gives ex-
cellent agreement with the exact calculation. Much
of the rest of the d =1 spectrum looks too com-
pressed. Part of this compression comes from
the fact that we have ignored the nonorthogonality
of the two-phonon states in calculating the d =1
spectrum. This problem is treated correctly in
the three-phonon weak-coupling model, and we see
that in this case there is excellent agreement with
the exact sheO-model result for the lowest seven

good agreement is not only true for the energies
of these states. It is also true for the wave func-
tions, which are shown in Tables II-IV. [Note that
in these tables, the wave functions are expressed
in terms of the overcomplete set of the normalized
two-phonon states I

(O',J',)Z&. This accounts for the
apparent l.ack of normalization and orthogonaliza-
tion in the tables. j

The overlap of the wave function from the weak-
coupling model and the corresponding shell-model
wave function is better than 0.99 for all these
states. Although the evaluation of the overlap is
straightforward, it usually requires a large amount

-!4.00

-)+.50 - -l4.548

- I4.586

-)QQQ - -l5.042
-IS,I61

- I4.920
"I5.06l

-I5.020
-IS.I68

- l550-

C
Lal

I 600 I6 I20

-15,800

- l5.5I5

- }6.ll7

- I5.747 -l5.805

"I6.I I 8

-l6.50-

of computation. This is beca,use the shell-model
wave function generally has a large number of com-
ponents and employs an angular momentum cou-
pling scheme which is different from that of the
weak-coupling model. We outline in the Appendix
the procedure for evaluating these wave-function
overlaps. We point out above that the 0y 2y Rnd

4, states are reasonably described by the simple
coupling scheme, which implies that these states
are associated with very simple structures. Actu-
ally, for the wave functions of these states in the
weak-coupling model, the overlaps of 0, , 2, , and
4f state.s of '~Pb with (0;0;), (0;2;), and (0;4;)
are 0.999, 0.992, and 0.991, respectively. In pass-
ing we remark tl1Rt the dimensions RssoclRted with
the shell-model Hamiltonian matrices are 12, 31,
and 45, respectively, for the 0', 2', and 4' states,

l7 00 I7 07Q - l7.059 - l7.069 - I 7.070

TABLE III. 2+ states of 2~2Pb (model space I).

J Energy (0+g 2+() (2+(2+)) (2+)4+)) (4(+4+()

2g -16.686 0.6745 0.2347 -0.2742 0.0483

2g+ -16.332 0.0000' -0.5442 -0.1571 0.4420

Shell Model

FIG. 3. J= 0' energy levels of 2~2Pb (model space I).
The dimensionality for the shell model and the weak-
coupling model is denoted by D and d, respectively.
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TABLE V. Phonon states of Pb (model space II).

J» Energy Wave function

0i -8.855 -0.4211(0ii)/g) -0.8474(1g9/2) -0.1105(2d5/2)
-0.0501(3s i/2) +0.2998(0g ig/2)

2g -8.241 -0.0433(0iff/2) +0.0504(0i&&/21g9/2) -0.9812(1g9/2)
-0.1261(1gs/22d5/2) -0.0448(2d5/~) -0.0307(2d5/23s~/2)
+ 0.1179(0)f 5/2)'

4I -7.999 -0.0321(0i~~/2) +0.0258(0z~~/21gs/2) +0.0140(Oiled/22d5/2)
-0.9931(lg9/2) -0.0762(1gs/22 d 5/2) -0.0477(l g9/23s f/2)
-0.0193(2dg/2) + 0.0581(0jfs/2)

& -l6-
IO

c
LLj

- I6.I68

-I6.314

-15 - -I5,039
- l5.23I

-15.466

-I5.827

- l6.137

-I4.844

- I 5.20I

-16.075

-I6.I57

- l4. 70I

—IS.I66

—
I S.427

-I6.I56

- I6.268

-1550-

-16.00-

-16.50-

X

C
UJ

-1700-

2,46

24

4g
23

p+34+3p+

- l6.763
I

"I7.0I5
I

24'
43
p+

3

02

22
4+

2

—l6.709 4+
I

-I 6.98I 2+
I

- 16.680 +

- l6.929

p+

0+
2+

-17.50-
- l7, 643 +

pl

- I7.601 p +
I

-I7.594 p+

Shell Model 5-Phonon
L

W.C.M.

d=l

FIG. 4. Energy levels of Pb (model space II).

compared with the dimensions 3, 4, and 4, respec-
tively, in the weak-coupling model.

lt is often stated that the weak-coupling model
should be a good approximation to the shell model
when the degeneracy of each single-particle orbit
is large compared with the number of particles.
This is the case for model space I; the shell-mod-
el results are very well reproduced by the weak-
coupling model where only the lowest Oy 2y and 4,
phonons of ' Pb are included. Because there are
only two single-particle orbits, it is convenient to
study how the weak-coupling model approaches the
shell model in model space I. We have gradually
included more '"Pb phonons in the weak-coupling

-l7-

-I7.643
- I7.6OI —I7.620 —I7, 6 I9

-ls-
D=72

Shell Model

d=3 d=6

W. C. M.

d =12

FIG. 5. J=P+ states of Pb (model space Io.

model. The results for the 0' states with dimen-
sions 3, 5, and 9 are shown in Fig. 3, as is the
exact shell-model 0' spectrum. We see that there
is essentially no change with increasing dimension
for the first two states, and the first five 0' states
are reasonably well accounted for in the d =5 case.

The overcompleteness of the two-phonon states
~ (Z,J,)J) should be emphasized for the calculations
shown in Fig. 3. In the d =3 case, we have included
the lowest three two-phonon states. In the d =5
case, we have included the lowest six two-phonon
states but only five of them are linearly-indepen-
dent. The overcompleteness becomes more pro-
nounced for the d =9 case where out of the 12 low-
est two-phonon states which are included only 9
of them are linearly-independent. In fact there
are only 12 linearly-independent J=0' four-parti-
cle states but there are more than 100 J=O'two-
phonon states. Thus it is very important to ortho-
normalize the two-phonon states in the weak-cou-
pling model.

2l2
B. Pb in Model Space II

We now discuss the calculated results for '"Pb
in the five-orbit model space II. We first obtain
the phonon energies of" Pb in this model space.
The spectrum of phonon energies is shown in the
second column of Fig. i. By including three low-
est '"Pb phonons, namely the 0, , 2, , and 4, pho-
nons shown in Table V, the energies and wave
functions of '"Pb are calculated in the weak-cou-
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TABLE VI, 0+ states of Pb (model space II). TABLE VIII. 4+ states of Pb (model space II).

0

0+

Energy

-17,601

-16.137

(Q+ P+ )

-0.9443

0.2345

(2+2+ )

0.0661

-0.2426

(4+ 4+ )

0.0540

0.9821

4+

4+
2

Energy

-16.709

-16.510

-15.690

(0+4+ )

-0.863

0.176

-0.836

(2', 2', )

0.251

0.614

-1.190

(2+ 4+ )

-0.150

0.543

1.183

TABLE VII. 2+ states of Pb (model space II).

J" Energy

21 -16,981

(0(2g) (2f2() (2(4() (4g4g)

0,774 0.215 -0.211 0.048

22 -16,431 -0.019 -0.600 -0.274 0.333

23+ -15.640 -1.231 0.962 -1.144 0.182

pling model and compared with the shell-model re-
sults obtained in the five-orbit model space. As
shown in Fig. 4, the shell-model 0, , 2, , 4', , 4, ,
and 2, states of '"Pb are reproduced quite well by
this three-phonon W.C.M. calculation. The W.C.M.
results are obtained with Hamiltonian matrices of
dimensions 3 for 0' states, 4 for 2' states, and 3
for 4' states, but the respective dimensions in the
shell model are 72, 253, and 380. The reduction
in dimension is indeed very impressive.

There are additional shell-model states which
are not accounted for by the three-phonon W.C.M.
calculation, as seen in Fig. 4. To see whether
these states can be reproduced by including more
' Pb phonons, the spectrum for the 0' states are

calculated in the weak-coupling spaces which in-
clude the lowest 3, 6, and 12 two-phonon states.
The results are shown in Fig. 5 where the W.C.M.
Hamiltonian matrices have dimensions 3, 6, and
12, respectively. We see that the ground-state
energy is little effected as the dimension increas-
es. Clearly more shell-model states are repro-
duced when more two-phonon states are included.
In the d =12 case, the lowest five states are indeed
all in good agreement with the corresponding shell-
model states. Note that the dimension of d =12 is
still a factor of 6 smaller than the corresponding
shell-model dimension. In the last column of Fig.
4, we show the results for the simplest weak-cou-
pling model where only the 0~+, 2, , and 4; ~' Pb
phonons are included and the mixing between the
two-phonon basis states are ignored as discussed
in the preceding section. We see that even in this
case the lowest three states are in good agreement
with the corresponding shell-model states.

To identify which W.C.M. state is associated with
which shell-model state, we must compare both
the energies and the wave functions. To this point
we have compared only energies. We show in Ta-

C. Pb

For "Pb, the model space consists of six hole
orbits. They are Oh5/„ If„„0333/3 p3/3 f5/3,
and 2P», with respective energies 10.85, 9.72,
9.01, 8.27, 7.95, and 7.38 MeV. ' The low-lying
states of '"Pb should be dominated by configura-
tions with p„, and p3/2 holes. These are low-spin
and thus low-degeneracy orbits. One would expect

TABLE IX. Overlaps of the W.C.M. wave functions
with the shell-model wave functions for the 0+ states of

Pb shown in Fig. 4.

Weak-coupling model (W.C.M. )
Shell model 0+~ 02 Q+

0

p+

p+

0.992

0.029

0,012

0.007

0.164

0.975

0.017

0.832

0.143

bles VI-VIII some 0', 2', and 4'W. C.M. wave func-
tions expressed in terms of the two-phonon states
which a,re normalized but not orthogonalized. The
W.C.M. wave functions usually have very simple
structures. For instance the 0,, 2,, and 4, states
shown in these tables have overlaps of 0.998, 0.980,
and 0.983 with the two-phonon states ~0;0;), ~0;2;),
and ~0;4;), respectively. In Table IX we show the
overlaps between the shell-model and the W.C.M.
0» 0, , and 03 states of Fig. 4. It is clearly seen
from these overlaps that the W.C.M. 0, state match-
es much better with the shell-model 0, state than
the shell-model 0, state. This is consistent to
what is shown in Fig. 5, namely the d =3 state at
-16.137 MeV does not change appreciably as d in-
creases from 3 to 12. But the d =3 state at -15.827
MeV gradually moves a,cross the -16.137-MeV
state and approaches the shell-model -16.314-
MeV state.

The overlaps between the 2' and O' W.C.M. and
shell-model states of Fig. 4 are shown in Table X.
Our results indicate strongly that when the W.C.M.
and shell-model energies are in good agreement
the corresponding wave functions are also in good
agreement.
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TABLE X. Overlaps of the W.C.M. wave functions
with the shell-model wave functions for the 2+ and 4+

states of Pb shown in Fig. 4.

TABLE Xl. Phonon states of 2 Pb. The wave functions
are expressed in terms of the two-hole states labeled by
(j,jI)). The numerals I to 6 represent the OA9/2 1f7/2,
1f5/2, 2P3/2 2p f/2 and Oif3/2 orbits, respectively.

Weak-coupling model (W.C.M. )
Shell model 2i 2+ 4 4+

2
0+

1
0+

2 2 2+
2

ergy 13.798 15.071 14.824 15.390
2+

1

4+

4+
2

0.990

0.015

0.011

0.991

0.972 0.123

0.158 0.925

the Pauli effects to be strong and thus that the
W.C.M. would not work as well for "Pb as for
' Pb. Hence it is of even more interest to inves-

tigate the accuracy of the W.C.M. for "4Pb than
for "~Pb.

The two-hole phonon states of ' 'Pb are first ob-
tained by shell-model calculations. The phonon
spectrum is shown in Fig. 6. Since our purpose
here is primarily to study how the lowest shell-
model states can be reproduced in the weak-cou-
pling model, we choose, for the time being, only
the lowest four even angular momentum phonon
states of "'Pb; the Oy 2y 02 and 2, states.
Their wave functions are shown in Table XI. Then

11
22
33
44
55
66
12
13
23
24
34
35
45

-0.1734
-0.2379
-0.4738
-0.3829
-0.6574

0.3319

—0.1229
—0.1829
-0 ~ 6193
-0.0368

0.7030
0.2691

-0.0554 -0.0089
-0.0845 -0.0063
-0.2 779 —0.0708
-0.1438 -0.1755

0.1423
0.0171

-0.1111
-0.0822
-0.1797

0.1639
-0.7455
-0.4871

0.0011
0.0036
0.0037
0.0018
0.0229

-0.0187
0.5777

-0.7934

the two-phonon basis states for 0+ and 2' states of
"4Pb are constructed; they are, respectively,
(lolol& lolo6&, I2l2l&)»d (lo;2;), lo;2;), l2;2;)).
As before, we show in Fig. 7 the levels obtained
from the weak-coupling model d =3, the shell mod-
el, and the simple coupling scheme d=1. We see
that only the 0, and 2, states obtained from the

I6 50
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l 5.00
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C
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l 4.50
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FIG. 6. Energy levels of 8Pb. FIG. 7. Energy levels of Pb.
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TABLE XII. 0+ and 2+ states of Pb. The wave
functions are expressed in terms of the two-phonon
states which are normalized but not orthogonalized.

J Energy (Of Of ) ~Of 08

Of 28.001 -0.9742 -0.0309

(2f 2f) (Of 2f)

0.0235

(Of 22 )

02 29.676 0.3212 -1.0311 -0.1757

21 29.135

22+ 29,779

23 30.198

0.1387 -0.9079 0.2757

0.5468 0.0507 -0.8253

0.9198 0.5800 0.4953

d =1 scheme are reasonable. In the d =3 weak-
coupling model, five of the six low-lying states
have correspondences in the shell model; these
states are 0;, 2, , 0, , 2, , and 2, . The wave func-
tions of these states are shown in Table XII. The
0, and 2; states have 1.000 and 0.954 overlaps with
the two-phonon states ~0;0;) and ~0;2;), respec-
tively. The other 0' state comes a little too high
in energy. There are many low-lying shell-model
states not reproduced in the d =3 model. To re-
produce them, it is necessary to extend the dimen-
sions of the weak-coupling model. We have found
that the 0, and 0, states are reproduced if we in-
clude three more two-phonon basis states

~ 2;2;),
~0;0;), and ~2;2;). But no more 2' states could
be reproduced even if two-phonon basis states
like

~ 2; 2;) and
~ 2;2~) are included in the weak-

coupling space. For these states we probably
need to take into consideration more low-lying
phonon states. However, the good agreement for
the lowest states is indeed encouraging, consider-
ing the small dimension of the space, since the
exact shell-model spaces for the 0' and 2' states
have 113 and 418 basis states, respectively.

The agreement between the W.C.M. wave func-
tions and the corresponding shell-model wave func-

TABLE XIII. Overlaps of the W.G.M. wave functions
with the shell-model wave functions for the 0+ states of

Pb shown in Fig. 7.

Shell model
Weak-coupling model tW. G.M.)

Q+ Q+
2

Q+
1

0+
2

0.990

0.019

0.013

0.896

tions is similar to what we have found for '"Pb.
Namely, if the energies are in good agreement,
so are the wave functions. To illustrate, we give
the wave-function overlaps for the 0, and 0, states
of "~Pb in Table XIII.

D. Results with Experimental Phonon Energies

In Eq. (10) the phonon energies E„,and E„, ap-
pear explicitly in the Hamiltonian matrix elements
in the weak-coupling model. In the foMed diagram
formalism" the nucleus '"Pb ("4Pb) can be decom-
posed into two '"Pb ("'Pb) building blocks or pho-
nons with interactions between them. In fact it can
be shown that the phonon energy is the total energy
of "OPb ("'Pb) measured from the ground-state
energy of '"Pb. These energies can be taken from
experiments. It is then possible for us to study the
spectra of '"Pb and "'Pb using the experimentally

served phonon energies of axoPb and ao6Pb

experimental levels of '"Pb" and ~"Pb" are
shown in Figs. 1 and 6. We have repeated the pre-
vious calculations with 8, and E, in Ecl. (10) re-
placed by these experimental phonon energies,
again using the Herling-Kuo interactions to calcu-

l 50

l.00

L

0.50

I.I 1 7 ~+

0.806 +
I

0,880 ~+
I

0.63l p+
I

I.I95 ~+
I

0.792 ~+
I

1.50

lO

I.OO
Ql
L

C
LLI

0.50

0.899 ~+
I

I.065 ~+
2

I.029 ~+
2

0.00 +

Shell Model

0I

W.C.M.

0.00
E xp.

0+
I

0
Shell Model

OI

W.C.M.

FIG. 8. Excitation spectrum of Pb. The experi-
mental phonon energies are used in the W. C. M.

FIG. 9. Excitation spectrum of Pb. The experi-
mental phonon energies are used in the W. C. M.
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late mixing matrix elements. The results are
shown in Figs. 8 and 9 for '"Pb and "'Pb, respec-
tively. Compared to the experimental levels, "the
2y and 4y shell -model states of "Pb are low in en-
ergy. The use of experimental phonon energies in
the weak-coupling model pushes the 2, state up to
the right energy, but the 4, state is pushed up too
far. For "'Pb, the excitation of the shell-model
2, state relative to the ground state is larger than
the experimental value. " With experimental pho-
non energies the excitation of the 2,' state is small-
er, but not enough so.

4. CONCLUSIONS

We have applied a series of weak-coupling-
approximation schemes to the calculation of wave
functions and energy levels for the nuclei 0 Pb
and '"Pb. These results have been compared with
exact shell-model calculations. We have found that
the properties of many of the low-lying states are
very accurately reproduced with small-dimension
weak-coupling models. The weak-coupling wave
functions are much more amenable to simple phys-
ical interpretations than the rather complicated

large shell-model wave functions. The models are
formulated so that much of the input can be taken
directly from experiment, which makes further
application of similar models in this mass region
particularly interesting.

A major difficulty in the weak-coupling model is
to determine how many states should be included
in the weak-coupling Hilbert space. For simplicity,
the number of such states should be as small as
possible. But then the resulting eigenstate in the
weak-coupling model may be spurious in the sense
that it does not correspond to any exact shell-mod-
el state. As shown in Fig. 3, we have found that
when the eigenvalues of the weak-coupling model
agree well with the exact shell-model eigenvalues,
they are very insensitive to the increase of the di-
mension of the weak-coupling Hilbert space. Thus
as an empirical rule it is necessary to vary the
number of phonon states included in the weak-cou-
pling model and retain only those eigenstates whose
eigenvalues are insensitive to this variation.

We thank Dr. G. E. Brown, Dr. A. Arima, Dr.
G. H. Herling, and Dr. M. Ichimura for many help-
ful discussions.

APPENDIX

In this Appendix, we discuss how we evaluate the overlap of weak-coupling wave functions with exact
shell-model wave functions.

Let the wave functions obtained from the weak-coupling model and the shell model be

l~& = g d..l ~&

(Al)
ls&= Qg~. lc&,

respectively. In the above, I
n)'s are the normalized two-phonon states which have already been discussed

in Sec. 2; I
g)'s are the shell-model basis states and have the following general form:

Ic& =-~~-I(jl'», ~,&,) (j,""»,~,&,)'"'(j:"».og.)" . (j":».~.&.)&), (A3)

where the single-shell state
I (j;"»,n,J,) i) has n, particles in orbit j, and is described by seniority»„

angular momentum J„and an extra quantum number e, which is needed when there is more than one sin-
gle-shell state with the same n„v„and J,. J,' is the subtotal angular momentum, i.e. , the resultant of
J„' and J;.. N& is the normalization factor of the shell-model basis state. For the case of '"Pb or" Pb,
we have n, + ~ ~ ~ +n =4. Then there are five distinct classes of basis states, namely

(I) I j.'».aA)

(2)

(3)

(4)

(A3)

(A4)

To calculate the overlap of shell-model wave functions with weak-coupling wave functions, we found it
convenient to express I g) in terms of the form

I (ab) '(cd)~' J),
lg&

= g h', i'~l(at)'i(cd)'nz).
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The transformation coefficients h~&&a2 can be easily obtained. From Eq. (A3), we have

(l) IPa ' ~a~& = Q Q (2a 'a~a~ailal}Ja "a~a~)
J"J'" o'a'J

x (~:~: ~.-~.";~. I b: c.~.~.)~u'. ~.~~.;~.~.") I (&.~.)'" (&.&.)'"'d&,

I (~:".~.'~'b, ~ &
= g (~:~."~."~.";~. I }~:".~.'~') ~(~."~.~~'; ~'. ~'.")

I (~.~.)'"(~.~.)'"'~&,
Jla Jlta

a a

(4) I(( ~:)'"~1"~ ~& = g ~u;&. ~&.;~.~.) I(&.&')'"(&» )"~&,
Jc

(A5)

(5) I((i.i')"i.1 "ia&& = Q U(&».~ia'~, ~a& I(i.ia)"(i.ia)"&&

Jy

where ( ~ ~ I} ~ ~ ) and U( ~ ~ ~ ) are, respectively, the coefficients of fractional parentage and the Racah coef-
ficients. Then the overlap between Iw& and ls) is given by

1 1

J~J2 (gf) (gag)

(ef) ( gh)

x ' „, ')„,((ab) '(cd) ' JI(ef) '(gh) 'Z&,

where the four-particle overlapping matrix element can be evaluated according to Eq. (3) in Sec. 2.
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