Lifetime Measurements for the First Excited States in ¹⁰⁷Cd and ¹⁰⁵Cd

R. Rougny, M. Meyer-Lévy, and R. Béraud

Institut de Physique Nucleaire, Vniversite Claude Bernard Lyon-I 43, Bd du 11 novembre 2918, 69622 Villeurbanne, France (Institut National de Physique Nucleaire et de Physique des Particules)

and

J. Bivier and B. Moret

Institut des Sciences Nucleaires, Cedex 257, 38 Grenoble, France, (Institut National de Physique Nucleaire et de Physique des Particules) (Received 28 June 1973)

We performed delayed coincidence measurements for the first excited levels of 107 Cd and ¹⁰⁵Cd and obtained the following results: τ (205 keV, ¹⁰⁷Cd) =(1.03 ± 0.05) ns, τ (321 keV, ¹⁰⁷Cd) ≤ 60 ps, $\tau(131 \text{ keV}, \frac{105 \text{Cd}}{2}) = (2.52 \pm 0.15)$ ns. Experimental results are in agreement with the predictions of the intermediate coupling nuclei.

In recent works the decay scheme of 107 In feeding In recent works the decay scheme of 107 In feeding the levels of 107 Cd has been reported.^{1,2} This isotope presents a nearly pure $M1$ transition betwee the first excited state $\frac{7}{2}$ ⁺(205 keV) and the $\frac{5}{2}$ ⁺(g.s.). The same situation seems to occur in the level schemes of 105 Cd fed by the 5-min decay of 105 In³ and of 109 Cd in which Ben-Zvi et al.⁴ measured a and of ¹⁰⁹Cd in which Ben-Zvi *et al*.⁴ measured
hindrance factor of 10 for the $\frac{7}{2}$ ⁺(203.5 keV) + $\frac{5}{2}$ $(g.s.)$ predominantly $M1$ transition.⁵

In order to follow the evolution of the transition probabilities, we started lifetime measurements probabilities, we started lif
in ^{107, 105}Cd and also in ¹⁰⁹Cc

FIG. 1. Partial decay scheme of $107 \text{ In} \rightarrow 107 \text{Cd}$ from Ref. 1.

I. INTRODUCTION **II. EXPERIMENTAL**

A. Source Preparation

The 4.3 -h 109 In, 32.7 -min 107 In, and 5.1 -min 105 In sources were obtained by irradiation of enriched isotopes: 97.2% ¹¹⁰Cd, 82.4% ¹⁰⁸Cd, and 88.4% 106 Cd, respectively, in the Grenoble isochronous cyclotron with 26-MeV protons. The $^{110}Cd(p, 2n)$ -¹⁰⁹In and ¹⁰⁸Cd(p, 2n)¹⁰⁷In reactions give pure sources. This point was checked by reference to isotopically separated sources. In the case of 105 In production, recent studies³ showed that 2min–long irradiations gave 105 In sources in whicl the parasitic activities were without any effect in the energy range of interest (cf. Sec. B3).

B. Measurements

The lifetime measurements were performed by the delayed coincidence method. We used NE111 plastic and NaI(TI) scintillators coupled to XP1021 and 2106 photo multipliers.

1. 205-keV First Level in ¹⁰⁷Cd

Figure 1 shows the partial decay scheme of 107 In $+$ 107 Cd.¹ We selected the positrons of energy E_{β} +>1940 keV with a thin (8-mm) plastic scintillator and the 205-keV γ rays by means of a 2.5 $cm \times 2.5$ -cm plastic scintillator, setting the energy window on the corresponding Compton edge. A 4-mm aluminum absorber was placed in front of the second scintillator to prevent the absorption of positrons in the detector.

In order to avoid the contribution of the positronium lifetime in the plastic, the photomultipliers were placed at 90° and a lead screen was interposed between the two scintillators. '

Figure 2 shows the measured delayed curve.

2332

 $\overline{8}$

The prompt curve was obtained in the same conditions using a ⁷⁶As source: the β^- decay (E_{max}) =2460 keV) of 76 As fed a 559-keV level in 76 Se, the lifetime of which is 12 ps.^7 A least-squares fit treatment of the slope results in $\tau(205 \text{ keV})$, 107Cd) = 1.03 ± 0.05 ns.

2. 321 -keV Second Level in $107Cd$

We selected positrons of energy in the range $1750 \le E_{\beta^+} \le 1930$ keV and the Compton edge of 321keV γ radiations (Fig. 1). The measurement was performed by comparing the centroid of the time correlation curve with that of an 76 As source. The two sources of same intensity were interchanged every twenty min. We deduced the following upper limit: $\tau(321 \text{ keV}, \frac{107}{\text{Cd}}) \leq 60 \text{ ps}.$

3. 131-keV First Level in ¹⁰⁵Cd

Figure 3 shows a partial level scheme of $^{105}\mathrm{Cc}$ fed by 5.1-min¹⁰⁵In.³ The 131-keV γ rays were selected with a Nal(T1) crystal and the Compton edge of $(639+668+700 \text{ keV}) \gamma$ radiations with a plastic scintillator. Because of the shortness of the source lifetime, the measurements started 1 min after the end of 2-min-long irradiations and lasted 10 min. A contribution of prompt events due to the Compton of higher energy is present on the experimental result (Fig. 4). The slope of this experimental result was fitted with a least-squares treatment and- led to the lifetime

 $\tau(131 \text{ keV}, \frac{105 \text{Cd}}{1}) = (2.52 \pm 0.15) \text{ ns}.$

FIG. 2. Time correlation curve between β^+ and the 205keV γ ray in ¹⁰⁷Cd. The ⁷⁶As prompt curve was obtained with the same energy settings.

FIG. 3. Partial decay scheme of $105 \text{In} \div 105 \text{Cd}$.

FIG. 4. Time correlation curve between the 600- and 131-keV γ rays in ¹⁰⁵Cd. The theoretical delayed curve fitted on the slope of the experimental one and the contribution of prompt events are shown as continuous curves.

TABLE I. Comparison between calculated and experimental electromagnetic properties in 105,107,109Cd. Th. 1: $g_{s \text{ eff}}$ is chosen in order to reproduce the $\mu_{5/2}$ experimental value. Th. 2:
the tensor term $\langle g'_s \rangle = 0.75$ is taken into account in the effective M1 operator. For ¹⁰⁵Cd we used the same wave functions as for 107Cd . Experimental data are taken from Refs. 1, 4, 5, 17, and 18 as indicated.

		Th.1	Th. 2	Exp	Ref.
$\mu_{2_1}^5$ (μ_N)	$^{105}\mathrm{Cd}$	-0.74	-0.74	-0.7385 ± 0.0002	18
	$^{107}\mathrm{Cd}$	-0.62	-0.62	-0.616 ± 0.015	17
	$^{109}\mathrm{Cd}$	-0.83	-0.83	-0.839 ± 0.015	17
$B(M1\frac{7}{2_1} \rightarrow \frac{5}{2_1})$ (μ_N^2)	$^{105}\mathrm{Cd}$ 107 _{Cd} $^{109}\mathrm{Cd}$	1.4×10^{-3} 1×10^{-3} 0.85×10^{-3}	8×10^{-3} 6×10^{-3} 0.8×10^{-2}	$(7.9 \pm 0.5) \times 10^{-3}$ $(6.0 \pm 0.3) \times 10^{-3}$ 0.13 ± 0.02	$\overline{4}$
$\delta^2(\frac{7}{2} + \frac{5}{2})$	107 _{Cd}	2.4×10^{-2}	5×10^{-3}	predominantly $M1$	1
	$^{109}\mathrm{Cd}$	3×10^{-2}	2.6×10^{-3}	predominantly $M1$	5
(e _b)	107 _{Cd}	0.84	\cdots	0.8 ± 0.1	17
$Q_{\frac{5}{2}1}^{\frac{5}{2}}$	109 _{Cd}	0.73	\cdots	0.78 ± 0.1	17

4 205-keV Second Excited Level in 109Cd

Using the same apparatus, we studied the $\frac{7}{2}$ ⁺ (203.5 keV) excited state in ¹⁰⁹Cd. By comparison with a prompt curve given by the $76As$ source, we deduced the limit $\tau(203.5 \text{ keV}, \frac{109}{\text{Cd}}) \leq 60 \text{ ps in}$ agreement with the value of Ben-Zvi et al.⁴: τ $=52^{+9}_{-6}$ ps obtained by the microwave method.

5. Transition Probabilities

In ¹⁰⁷Cd and ¹⁰⁹Cd the values of K/L ratios^{1, 5} imply predominantly M1 transitions for $\frac{7}{2} \div \frac{5}{2}$. But no definitive values of $\delta^2(E2/M1)$ are available up to now and weak $E2$ admixtures are not completely excluded. Nevertheless in ¹⁰⁷Cd we can derive the maximum reduced transition probability $B(M1) = [(0.60 \pm 0.03) \times 10^{-2}] \mu_N^2$ and the hindrance factor $B_{\text{Weisskopf}}(M1)/B_{\text{exp}}(M1) = 207$. The hindrance factor determined by Ben-Zvi et al.⁴ for the ana- $\log(\frac{7}{2} + \frac{5}{2}^{*})$ *M* 1 transition in ¹⁰⁹Cd is only 10.

The spin and parity of the first excited state of ¹⁰⁵Cd is assumed to be $\frac{7}{2}^+$.³ In this case the 131keV transition may have a predominantly M1 character. The reduced transition probability becomes $B(M1) = [(0.79 \pm 0.05) \times 10^{-2}] \mu_N^2$ and the hindrance factor $B_{w}(M1)/B_{exp}(M1) = 156$.

III. DISCUSSION

The calculations of Kisslinger-Sorensen $(P + QQ)$ model³ and Bes-Dussel (anharmonic approach)⁹ reproduce fairly well most of the properties of the heaviest Cd isotopes. Unfortunately, no prediction concerning $M1$ transition probabilities is available up to now in the light Cd isotopes. There-

fore, we attempt to describe in the framework of the intermediate coupling model the ¹⁰⁷Cd and ¹⁰⁹Cd nuclei as a quasiparticle of a neutron coupled to the ¹⁰⁶Cd and ¹⁰⁸Cd core, respectively. The quasiparticle orbits chosen are $2d^{5/2}$, $1g^{7/2}$, $2d^{3/2}$, $3s^{1/2}$, and their corresponding nonoccupation amplitudes U_j are taken from (d, p) reaction data.¹⁰ We deduced the core matrix elements from the observed transition rates and quadrupole moments of the cores 106 Cd and 108 Cd.^{11, 12} Our approach is similar to calculations carried out for the odd cobalt isotopes by Stewart, Castel, and Singh.¹³

For the best fit obtained in ¹⁰⁷⁻¹⁰⁹Cd between experimental and theoretical spectra, it is worth noting that, for the ground state $\frac{5}{2}^+$ and first excited state $\frac{7}{2}^+$, the most important components in their wave functions are of pure quasiparticle nature; for ¹⁰⁷Cd, we obtained the following wave functions (neglecting small components $\langle 4\% \rangle$:

$$
\left|\frac{5}{2_1}^{+}\right\rangle = 0.80 \left|\frac{5}{2}, 0.0; \frac{5}{2}\right\rangle + 0.53 \left|\frac{5}{2}, 1.2; \frac{5}{2}\right\rangle + \cdots
$$

$$
\left|\frac{7}{2_1}^{+}\right\rangle = -0.84 \left|\frac{7}{2}, 0.0; \frac{7}{2}\right\rangle + 0.47 \left|\frac{7}{2}, 1.2; \frac{7}{2}\right\rangle
$$

$$
-0.25 \left|\frac{3}{2}, 1.2; \frac{7}{2}\right\rangle + \cdots
$$

We calculated the electromagnetic properties and compared them to experimental results in Table I. It can be seen that the $B(M1)$ calculated values are in good agreement (except for ¹⁰⁹Cd) with the experimental ones, especially when we include in the effective magnetic operator the tensor term $g'_s(r)|Y_2 \times s|_1^{\mu}$.¹⁴ It has been shown^{15, 16} that its effect is generally important in $\Delta l = 2$ forbidden M1 transitions.

More experiments on these magnetic properties are needed in similar nuclei (Pd, Ru) to follow the M1 neutron hindrance factor.

- $1J.$ Rivier and R. Moret, Nucl. Phys. A177, 379 (1971). ${}^{2}G.$ D. Dracoulis, W. Gelletly, R. Chapman, J. N. Mo,
- and A. J. Hartley, Particles and Nuclei, 4, ⁴³ (1972). $3J.$ Rivier and R. Moret, Radiochim. Acta (to be published) .
- 4I. Ben-Zvi, A. E. Blaugrund, Y. Dar, G. Goldring, and Y. Wolfson, Nucl. Phys. A135, 153 (1969).
- ⁵M. Nozawa, Nucl. Phys. 37, 411 (1962).
- ⁶R. Béraud, I. Berkes, M. Lévy, G. Marest, and R. Rougny, Nucl. Phys. A99, 577 (1967).
- ⁷ Nuclear Data Sheets 1959-1965, compiled by the Nuclear Data Group (Academic, New York, 1966).
- ⁸L. S. Kisslinger and R. A. Sorensen, Rev. Mod. Phys. 35, 853 (1963).
- $\overline{{}^9R}$. D. Bès and G. G. Dussel, Nucl. Phys. A135, 1 (1969).
- $10V$. D. Mistry, C. L. Hollas, H. R. Hiddleston, and
- P. J. Riley, Phys. Rev. ^C 1, 1595 (1970). ¹¹G. Schilling, R. P. Scharenberg, and J. W. Tippie,
- Phys. Rev. C 1, 1400 (1970).
- ¹²W. T. Milner, F. K. McGowan, P. H. Stelson,
- R. L. Robinson and R. O. Sayer, Nucl. Phys. A129, 687 (1970).
- 13 K. W. C. Stewart, B. Castel, and B. P. Singh, Phys. Rev. C 4, 2131 (1971).
- 14 A. Bohr and B.R. Mottelson, Nuclear Structure (Benjamin, New York, 1969), Vol. 1, pp. 336-344.
- $15K$. H. Maier, K. Nakai, J. R. Leigh, R. M. Diamond, and F. S. Stephens, Annual Report of Berkeley Laboratory, 1972 (unpublished), p. 10.
- $¹⁶A.$ Arima, in Proceedings of the International Confer-</sup> ence on Nuclear Moments and Nuclear Structure, 1972, Osaka, edited by H. Horie and K. Sugimoto (Physical Society of Japan, 1973), p. 205.
- 17 M. N. McDermott and R. Novick, Phys. Rev. 131 , 707 (1963).
- 18 N. S. Laulainen and M. N. McDermott, Phys. Rev. 177, 1615 (1969).