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High-precision electron scattering measurements from the 15.109-MeU 1+ state in "C are made at
8 = 75 and 110' with 35 ( E & 55 MeU. From the measurements B(M1) is extrapolated to the
photon point and the radiative width is determined, I ~

= 37.0+ 1.1 eU. The corresponding weak

magnetism results for p decay and J(f. capture are given.

I. INTRODUCTION

Transitions from the T = 1 isobaric state multi-
plet in the A=12 system which corresponds to the
ground states of "Band "N and the 15.109-MeV
state of "C play an important ro1.e in physics en-
compassing aspects both of nuclear and particle
physics.

Perhaps the most famous of these is the weak-
magnetism test, which starting from the con-
served-vector-current (CVC) theory, predicts
that the electromagnetic matrix element for the
15.109-MeV decay in "C determines the strength
pf the weak matrix element jn a2B8 C and
"N —"C for the V-A interference. ' The ex-
perimental observation of this effect in the P
spectra pf bpth B and ' N js confirmation pf the
CVC theory 'Moreo. ver, the nonequality of ft
values for this T=1 system poses a further in-
teresting question —namely, is this nonequality
due to currents omitted from the P-decay theory
or due to nuclear dynamical effects' The high ac-
curacy of the ft values and ratio ft'/ft = 1.103
+ 0.009 in the A = 12 system has led to an interest
in second-class currents. ' The resolution of this
question should help to elucidate questions of great
interest in nuclear physics, namely, charge inde-
pendence violations and meson exchange currents
in light nuclei. ~ Calculations of these phenomena
have and will become more meaningful with im-
provement in the accuracy of the weak and electro-
magnetic transition matrix elements. The physi-
cal unity of weak and electromagnetic processes
in this A= 12 system has been stressed recently
and enlarged to include neutrino-induced reac-
tions. '

The p capture in "C leading to the ground state

of "B, p. +"C-v + "B, since it proceeds via
the analog of the T =1, 15.109-MeV level provides
independent testing of p. —e universality, weak
magnetism, ' or nuclear dynamics; probably nu-
clear dynamics, since at the present time the for-
mer are believed to be better understood.

The purpose of the experiment described in this
paper is to make an accurate determination of Fz
and B(M1, q') for low q' for the 15.109-MeV level
in "C in order to increase the exactness of the
weak magnetism tests primarily in P decay but
also for p. capture. '

Table I displays the problem which we set out to
resolve with the experiment reported here. Ear-
lier measurements of the radiative width F& for
the 15.109-.MeV transition in "C have given an in-
compatible result, namely, 1„=45.8+ 2.6 eV is
the weighted average of six measurements using
the technique of nuclear resonance fluorescence
by several groups over a ten year period, while
1' = 32.6+ 3.5 eV ' is the result of combining three
measurements from inelastic electron scattering.
Consequently, a compilation value of F& =39.4'
which is a weighted average of (y, y)+ (e, e') data
is suspect, as is its standard deviation of +1.5 eV,
and the fit has a normalized X' = 2.2. A recent re-
evaluation of the six resonance fluorescence
measurements with currently accepted branching
ratios yields a weighted average of 1' =40.4+2.0
eV. ' In the compilation value, the (e, e') measure-
ments did not include Coulomb corrections; how-
ever, the value reported above and in Table I, F&
=32.6+3.5 eV, does include these corrections.
Any n-particle breakup of the 15.109-MeV state
at the present level of accuracy' appears to be
too small to be of significance here.

Inelastic electron scattering was used in the ex-
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periment here to measure the transition probabil-
ity B(M1, q') connecting the ground and 15.109-
MeV levels of "C. By measuring B(Ml, q') with
good statistical accuracy for several values of q',
the momentum transfer variable, near q'= k' an
analytic relation between B(M1, q') and q' is es-
tablished, and this is extrapolated to give B(M1)
at the photon point. 'Ve will improve upon the re-
sults by adding electron scattering measurements
of other laboratories which both overlap and ex-
tend our range of q'. In so doing, one set of ear-
lier measurements is not used although it displays
a high degree of internal consistency'; it is about
20% lower in B(M1, q')" than the data from three
other laboratories including the present one.

In Sec. II the experimental technique is de-
scribed; in Sec. III the 11-parameter nonlinear
least-squares fit to the measured electron spec-
trum is treated; in Sec. IV the reduction of the
peak area ratio to the transition probability,
B(M1, q') is presented including a careful treat-
ment, at the 2 to 1$ level, of kinematical and
Coulomb distortion effects; this section concludes
with the fitting of three trial functions to the data.
In Sec. V our results are presented and used as
inputs to determine precise values for the weak
magnetism tests in A = 12 system. Appendix A
gives a detailed treatment of the 11-parameter
nonlinear least-squares fit to the spectra, and
Appendix B summarizes the kinematical relations
leading to the Jacobian of solid angles connecting
the laboratory and c.m. frames.

II. EXPERIMENTAL TECHNIQUE

These measurements were made with the Nation-
al Bureau of Standards (NBS) 150-MeV electron
linac and 76-cm radius of curvature 169.8' double-
focusing magnetic spectrometer. Scattered elec-
trons were measured in a semiconductor detector

TABLE I. Previous measurements I'& (15.109 MeV)
in ~~C (Table 12.8 in Ref. 8).

ladder in the focal plane of the spectrometer and
the beam current was measured with a Faraday
cup. Details of the NBS electron scattering ap-
paratus are described elsewhere. "" The over-
all experimental resolution for this work was 0.1%.
The data were taken at scattering angles of 75.2
and 110.64 with incident beam energies for these
angles of 35.695, 40.638, 45.705, and 55.719 MeV
at 75.2', and 35.538, 40.599, 50.609, and 55.624
MeV at 110.64'. These kinematic conditions span
a range of q' from 0.034 to 0.16 fm '.

Counts from the detector hodoscope were cor-
rected for dead-time losses and accidental coin-
cidences. Since in our detector system me make
use of detectors which can move along the spec-
trometer focal plane we must properly include
detector acceptance variation with position in the
focal plane. This was done by normalizing the
counts in a given detector to the counts which
would have been received by that detector at a
reference position in the focal plane. Relative de-
tector efficiency corrections mere then made to
the counts from the various channels. The rno-
mentum interval subtended by each detector was
computed based on spectrometer field setting, as
well as detector position in the focal plane. Cor-
rected counts from a given detector were then
sorted into uniform momentum bins according to
the detector overlap with the bin array. Bin
widths chosen mere 10 or 20 keV. The product of
accumulated charge and detector momentum ac-
ceptance at the focal-plane reference position
(mentioned above), corresponding to the counts in
a given momentum bin, was stored in a separate
array. Normalization to counts/(unit charge
MeV/c) was then done by corresponding bin divi-
sion. The spectra of counts/(unit charge MeV/c)
were then fitted by analytic expressions and inte-
grated in order to extract counts/unit charge cor-
responding to either elastic scattering or inelas-
tic scattering to the 15.109-MeV state. This fit-
ting procedure will be described in Sec. III.

Uncertainties in the experimental cross-section
Method: (y, y)

{eV)
Method: (e, e)

(eV)
TABLE II. Peak area ratios.

54.5+ 9.3
59.2 ~ 9.7
40.2+ 5.2
54 +6
50.5+ 7.1
37 +5

Weighted 45.8 + 2.6
average

40'ss

39+4
34 4+3
36,0 +3 ~

Qrsay '

32.6+3.5 b

Data used for least-squares fit in Ref. 7.
Least-squares fit correcting each point for Coulomb

ef'fects (Ref. 7) (other entries in this column are not so
corrected).

35.695
40.638
45.705
55.719
35.538
40.599
50.609
55.624

75.2
75.2
75.2
75.2

110.64
110.64
110.64
110.64

E] 8
(Me V) {deg)

2

{fm )

0.0338
0.0454
0.0591
0.0920
0.0560
0.0773
0.1298
0.1613

10 A$/A

0.850
1.288
1.632
2.560
3.516
5.314
8.151

10.463

0{A)/A )

{%)

6.54
5.20
4.42
3,65
4.73
3.23
2.72
2.90



LOW-q E LECTRON SCATTERING. . .

ratios given in Table II reflect uncertainties only
due to counting statistics. To this uncertainty
must be added 1/0 which we estimate is the pos-
sible systematic uncertainty due to beam mis-
alignment on target, scattering-angle uncertainty,
beam-energy uncertainty, target-thickness non-
uniformity, current monitoring, and our ability to
make the various counting-rate corrections. Since
these are systematic effects we make a linear
combination of this 1% with the statistical uncer-
tainty.

The primary experimental objective of this re-
search was to make accurate measurements of the
ratio of two cross sections, der/dA(15. 109) and
do/dQ (elastic}, as a function of momentum trans-
fer. We employed a 22.1-mg/cm' graphite target
which was oscillated in the electron beam so as
to average over possible target nonuniformities.
The area ratios were corrected for the small iso-
topic presence of "C. The 20-channel detector
hodoscope located in the spectrometer focal plane
was operated such that each detector made an
independent cross-section measurement for the
elastic and inelastic electron scattering. The rel-
ative detector efficiency therefore cancelled com-
pletely in analysis of cross-section ratios, with
possible exceptions of multiple scattering effects
which vary inversely with the final electron ener-
gy. We require that real electron scattering events
have a signature made up of a triple coincidence
between a single semiconductor detector and two
large plastic scintillators which form a common
backup function to all the semiconductor detectors.
There is a finite probability that electrons which
first pass through a semiconductor detector wi'kl

be multiple scattered through sufficient angle such
as not to pass through the scintillators, and there-
fore not be counted. For our lowest-energy elec-
tron scattering run, calculations indicate that the
loss of efficiency due to this effect is less than
0.1% and therefore it was not considered in the
data analysis.

Since the electron beam current is about a 100
times larger when measuring the inelastic —com-
pared to elastic-peak regions, incident electron-
beam charge-normalization effects also enter di-
rectly into the ratio measurement. In order to re-
move possible electrostatic charging effects in
the Faraday-cup cooling system, the cooling water
was drained from the cup. Later investigations
have shown this to be essential for low current
(several nanoamps average current} monitoring on
the sub-one-percent level. Insofar as the separate
charge measurements for each cross section were
made over a broad range of incident beam currents,
the Faraday-cup integrator calibration was essen-
tial. '4 A calibration of the integrator on different

ranges was made with a precision current source
and corrections were applied to the cross-section
ratios; the corrections are accurate to 0.1%.
Failure to capture the entire incident beam in the
Faraday cup due to multiple scattering in the tar-
get is another effect which cancels in the ratio
analysis.

III. DATA-ANALYSIS TECHNIQUES
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FIG. 1. The counts, associated standard deviations,
and least-squares fit (dashed line) are displayed as a
function of scattered electron energy for the inelastic
peak region for the run at 75.2' and 45.705 MeV. The
units of the ordinate are counts per MeV per nano-
coulomb.

The basic data consist of the total counts C,
falling within an energy range (E, -6E, E, +DE},
where Eg+y E, = 26,E. At each incident energy
and each scattering angle we have one sequence
of counts spanning the elastic scattering peak and
another sequence spanning the 15.109-MeV inelas-
tic scattering peak. With 4E = 5 keV, there are
approximately 100 discrete energy intervals
(E, w hE) and associated counts C, to represent
each peak. Since the standard deviation on each
count is proportional to the square root of C, , and
since elastic scattering dominates strongly for the
energies and angles used in this experiment, the
statistical uncertainties reside mainly in the in-
elastic peak counts, to the point where the statisti-
cal uncertainty of the elastic peak counts has a
negligible effect on the final results. The quantity
used in calculating the B(M1) transition probabil-
ity for each incident energy and scattering angle
is the ratio of the inelastic and elastic scattering
peak areas, and the uncertainty in this ratio de-
rives almost wholly from the statistical uncertain-
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ty of the inelastic peak area. Figure 1 shows the
counts and associated standard deviation bands
for the inelastic peak for the run of V5.2' and
45.705-MeV incident electron energy.

Both the inelastic and elastic peaks have a sub-
stantial radiative tail, and the whole inelastic
peak is superimposed on the tail of the elastic
peak and must therefore somehow be separated
from it before peak areas can be estimated. Such
a separation can be performed, at least in part,
by calculating a Schwinger correction to determine
the fraction of electrons scattered from the peak
to each part of the radiative tail. In practice, a
better method is to give the tail a suitable para-
metric form, and determine the best values of the
parameters via an over-all statistical fitting pro-
cedure, whereby the parameters of the inelastic
peak are also determined. This was the method
used here and described below.

The fitting of an 11-parameter model to the in-
elastic peak and radiative tail and the same model
with two parameters constrained to zero for the
elastic peak is described in detail in Appendix A.
Figure 2 summarizes the fitting regions. 14 pa-
rameters are defined in Eqs. (A1), (A2), and (AS)
and 11 free parameters a, b, c, a, E~„E„,d,
Ny N2 Sg and S2 remain after imposition of con-
straints. The method of least squares is used to
determine the 11 parameters by first linearizing
the highly nonlinear functional form for C(E, ) and

then iterating on the linearized least-squares fit.
Let C; ' be the observed count in the interval

(E, —A E, E, + AE) and C, be the computed value
for the set of ll parameters p =p& (j = 1 to 11).
Then C, depends on both E, and p, C, = C(E, , p)
and if 8', is the statistical weight associated with
an observed value C

&
', we wish to determine p

so as to minimize the residual sum of squares L,
I

L = Z ~~i Ci" -C(Ei, p)l',

Ap = (XrWX)-'srWZ C,

where

sc(E&, p)
ap P=I

«, = [C;"—C(E„p"')1,

(2)

where I is the total number of observed energy
ranges (bins).

Since we iterate on p, the minimization of L is
with respect to ap~ = pz —p~~'~, where P&'~ is any
initial assumed set of parameters and it is as-
sumed that C(E„p) can be Taylor series expanded
around p+Ol and linearized, see Eqs. (A5), (A6),
and (A7). The solution to the linearized least-
squares fit in matrix form is

Regi

elastic tai
d. f {N(, s

elastic tail

a+ &

~Ei Einei) ~

d.f (NI

Einel E,

FIG. 2. The curves portray an idealized elastic peak, inelastic peak, and radiative tails as observed in electron
scattering. The resulting spectrum is divided into three regions and is described by a 14-parameter model [see
Eqs. (A1), (A2), and (A3)].
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If the weights W, are the reciprocal of the vari-
ances of C;b', the matrix (ArWA) ' is the vari-
ance-covariance matrix for the parameter set 4p.

Thus a set of corrections 4p to p(') are deter-
mined to minimize L,. If the neglected powers of
hp are not negligible, one iterates on p '), setting
as a new initial vector

p(1) p(0) + gp (3)

I
A =g C(E„p'), (4)

until the new set 4p converges. In practice, three
to six iterations sufficed to converge from an ini-
tial "eyeball" set p to a final set in which I.
changed by less than 10 ' on the last iteration.
In Figure 1 the curve through the raw data is the
final least-squares fit which required three itera-
tions.

The physical quantity of interest is the area
under the peak

where do/d&u are the cross sections in the labora-
tory coordinates (E, , E&, 8,) which are first com-
puted in the center-of-mass system with Ej, Ez, e
and then transformed by the Jacobian of the solid
angles J [Eq. (B6)], i.e.,

do' do'

dial ~b dA cm.

da'inei do'igei

dQ dQ (8)

and the elastic scattering cross section without'
this approximation. The result for the M1 tran-
sition probability is

The relevant expressions are given in Appendix B.
The quantities do~/dA and d'o, /dA are calculated
using partial-wave analysis, the former in the
distorted-wave Born approximation (DWBA) with

where p' is the final vector of parameters but with
the radiative tail removed, i.e., a = b = c = 0. The
variance on A is given by

4Fg Jf} A inel 9J

(9)
p(A) = [o(A)] = Q Q (A'B'A'r)(~

j=x a=a
(5)

with B= (ArWA) '. A' and B' are the matrices
with rows and columns corresponding to the pa-
rameters a, 5, and c deleted.

IV. CALCULATION OF B(hf1,q )

A. Area Ratio and Jacobians

A ~g| Ckl g/d(d

A, do, /dm ' (6)

A functional fit of the type described in the pre-
ceding section was performed for both the elastic
and inelastic peaks, for each incident energy and
angle. From this analysis, peak areas and vari-
ances on peak areas were obtained. Since the
graphite target contains "C with an isotopic abun-
dance of 1.1% and "C is electroexcited by a M1
transition to a state at 15.1 Mev, the measured
area ratios were increased by about 0.5$ to yield
the '2C area ratios. " As mentioned earlier, the
variance on the elastic peak area (A, ) is small
compared with the variance on the inelastic peak
area (A,l), and the variance on the peak area
ratios A „/A, is thus essentially just the inelas-
tic peak area variance. The "C peak area ratios,
together with their corresponding standard devia-
tions, a,re shown for each incident energy and
scattering angle in Table II.

The transition probability B(Ml, q') is calcu-
lated using the ratio method,

where kj', q', and V~ are computed in the c.m.
system. These quantities are the incident elec-
tron momentum, three-vector momentum trans-
fer, and kinematic parameter of transverse elec-
troexcitation, respectively. The quantity fc is the
Coulomb-distortion correction to be discussed in
the next section and n in Eq. (9), is the fine-
structure constant. For the inelastic cross sec-
tion, the results of Eq. (7) have been compared to
an earlier calculation where kj, q, and V~ are
laboratory-system variables and a multiplicative
factor R '=[1+(2E,/M)sin'-, ' 8] is used to correct
for recoil effects." With a constant value for
B(M1}these cross sections differ by 0.34$ at E,
= 35.695 MeV and 8 = 'I5.2' and by 0.79@ at E,
=55.624 MeV and 8=110.64, where (do/d&u), from
Eq. (7}is larger than (do/dv), computed directly
in the laboratory system with recoil. At the pres-
ent stage of inelastic electron scattering research
at low q', these differences are submerged in
larger statistical, instrumental, and unknown er-
rors. However, measurements at the 1% level
are becoming possible where the calculation em-
bodied in Eq. (9) rather than one with recoil should
be used. Appendix B contains a summary of the
pertinent transformed variables.

We have computed the variation of B(MI) over
the +1' angular spectrometer acceptance and found
that the value of B(M1) suitably averaged over the
acceptance differs from the values at 75.2 and
110.84 by a negligible 0.04.
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B. Coulomb Corrections

TABLE III. Input data for fitting.

2

(fm )

0.0338
0.0454
0.0591
0.0920
0.0560
0.0773
0.1298
0.1613
0.1295
0.2730
0.1185
0,1519
0.1880
0.1894
0.2310
0.2768

0.9076
0.9737
0,9024
0.8290
0.8191
0.8449
0.6777
0.6505
0.6854
0.4571
0.728
0.667
0.519
0.593
0.527
0.452

213
275
419
674
454
785

1570
1558
213
479
385
459
758

1138
1441
3058

1% has been added linearly to the 0 in Table II and to
the data of Ref. 15.

0.1295+0.2730 are from Ref. 20.
0.1185 to 0.2768 inclusive are from Ref. 15.

Both the elastic and inelastic electron scattering
cross sections are involved in the determination
of B(M 1, q'), since the area-ratio method is used.
In Eq. (9), (der/d~), and fc are computed from par-
tial-wave-analysis (PWA) programs. In earlier
work (do/d&u), =o„,«E'(q') and fc= 1.0, which cor-
responded to treating P, gz as plane waves. As
has been pointed out, "the error in neglecting
these Coulomb effects is magnified when B(M1, q')
is extrapolated to the photon point.

For (do/dQ), we have used the PWA computer
calculation of Rawitscher and Fischer which in-
cludes double-precision arithmetic and c.m. cor-
rections due to Bergstrom and Ziegler. " Both
harmonic-oscillator and Fermi charge distribu-
tions from a recent high-accuracy elastic electron
scattering measurement" of "C were used to com-
pute the cross section where

R„o =2.453+0.008 fm, a=1.687, n =1.067

and

R„=2.445+0.015 fm, c=2.56 fm, t=1.69 fm.

For our eight data points plus the eight points from
Yale" and Orsay, "the maximum difference in the
computed (do/dQ), using p„o and p„ is less than
0.2$. Thus the elastic cross section is sensitive
only to R„, the rms charge radius of "C in the
present range of q'. The harmonic-oscillator
values have been used, since higher q' measure-
ments select pHo over other ground-state charge

distributions.
In the case of Coulomb corrections for the in-

elastic cross section, it has been pointed out that
a consistent determination of fc requires know-
ledge of a nuclear model through exact determina-
tion of B(Ml) vs q2; the Coulomb-distortion pa-
rameter fc = do(DWBA)/do(PWBA) is fully de-
scribed elsewhere 'Si.nce both fc and B(MI) are
linearly proportional to the measured (do/d 9) „,
an iteration is required. Furthermore, it has been
pointed out by Drechsel" that the expansion coef-
ficients for transverse electroexcitation, e.g. in
B(M1, q2) =a+bq +cq~ have interpretations
which are also model-dependent. Thus if b is in-
terpreted as the square of a transition radius,
0 fx R„, then R„ is not invariant but a strong func-
tion of the model.

This problem is avoided here by checking the
sensitivity of lc within one model to rather large
variations in the parameters. Specifically an in-
compressible irrotational liquid-drop model is
used for the transition current distribution J~
=p(M1)Yf ~, , where

p(MI} = d
(10)

and p, is the Fermi distribution. As noted earlier
(i.e., Fig. 1 of Ref. 7) for the kinematic variables
used here, fc is insensitive to large variations in
p(MI). The quantity fc has been computed with the
quoted ground-state Fermi parameters, c =2.56,
t=1.69. The average deviation of fc with respect
to c, t for fixed ground-state radius over the set of
16 data points (8 NBS, 2 Orsay, and 6 Yale) is

s 0.1%,

where p(c=2.66, t =1.69) is compared with
p(c =1.79, t=2.40). The largest individual devia-
tion is 0.4%. The average deviation over the same
data set for a 12%%up increase in radius, i.e., for
R =2.45 and R =2.74 fm, is

=0.8%.

The largest individual deviation is 2.1%0 for the
point at q'=0. 273 fm '. Thus we are satisfied
with the insensitivitv of fc to the model and param-
eters (same as the -'. ~ state of "C) that have
been used in the calculation. " It is to be stressed
that confidence in the accuracy of fc is based here
on: (1) the data set being restricted to low q' and
relatively small angles and (2) on a low-Z nucleus
such as eC; i.e., compare Figs. 1 and 2 of Ref. 7.

Finally then these variables are combined in Eq.
(9} to compute B(M1, q', 0} where 4 stands for the
downward 1 -0' transition. The results are
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given in Table III. In this table the results of
the present reanalysis of the Orsay data" (2
points) and Yale data" (6 points) are included,
i.e., both sets of measurements were re-
ported before reliable partial-wave analyses of
elastic and inelastic electron cross sections were
available. The former were analyzed from the
referenced area ratios by Eq. (9}. For the latter
data set, the B(M1)'s were scaled with Coulomb
corrections for both elastic and inelastic scatter
ing and to the new ground-state radius of 2.453 fm.
This resulted in a B(M1) reduction of each of the
Yale points uniformly by about 10$. The weights
in Table III are computed by first adding 1% lin
early to the standard deviations of the area ratios
in Table III, i.e., a=a(A. „/A, )+I%%d. Asdescribe d
in Sec. II this represents an estimate of the lack of
understanding of experimental effects which con-
tribute to the area ratios which have been deduced
from the measurements. The same 1$ estimated
error has been added linearly to the uncertainties
reported on the set of Yale points to reflect an
estimate of the true uncertainty after our reanal-
ysis of that data. That this analysis of the total
standard deviation on B(M1) is conservative, is
observed in the next section where the fitted func-
tion of the set of B(M1) vs q' has a }I'=0."l4 per
degree of freedom.

C. Fitting of 8(Nl, q )

To describe B(M1, q') as a function of q' for
extrapolation to the photon point, three functional
forms (models) were used and fitted for a„a„
a„or B(M1, 0) and k using least squares:

is the oscillator parameter, and p = 0.23 g ].Q%%uo.
"

The least-squares fit is clearly linear for (a) and
(b} and nonlinear for (c),' ' the latter function
being fitted in this work by an iteration procedure
known as parabolic extrapolation of X'."

Of the three fitting functions used only Eq. (Ilc}
is explicitly based on a nuclear model. Kurath"
has shown that for 1P shell nuclei, magnetic di-
pole transitions can be described by

B(M1, q) =B(M1, 0)[(j ) +p(j )] (12)

where B(M1, 0) and p are functions of the spin-
orbit coupling and (j~) is the radial integral

kP
R»'(r)j 1,(qr)r' dr . (13)

It is now known that p is near the LS limit in ' C
with a value p = 0.23 s 10%. The reduced nuclear
transition probability in Eq. (11c)results from
evaluating (13) with a harmonic-oscillator radial
wave function, 8» =N»re '"""

The variance-covariance matrix for these fits
was computed, also a normalized X' defined by

(14)

where N represents number of. data points; v

represents degrees of freedom and is equal to
N minus the number of parameters in fitting func-
tion; Bs(i ) is the experimental value of B(M1, q')
at ith data point; B,(f } is the computed value of

TABLE IV. Fits to B(M1) versus q2.

Data Fit s
I"& e~

(ev) te8}

(a) B(M1, q ) =a, +a,(q' —k'),

(b) B(M1, q ) =a, +a, (q —k2)+a~(q —k4), (11)

(c) B(M1, q ) =B(M 1, 0}(1—
6 rP + g~ pq ) e

where k is the photon wave number, g = qb and b

I.O

hl

O
0)

~ 0.8

bl
O'

u 0.6

I p- shell oscillator

~ NBS
& YALE
0 ORSAY

NBS
NBS
NBS
ALL
ALL
ALL

N=2
N=3
1P oscillator
N=2¹3
1p oscillator

36.18~ 1.24
37.43 + 3.06
37.33 + 1.65
34.35+ 0.76
37.48 ~ 1.53
36.95+ 1.08

6
5
6

14
13
14

0.88
1,00
1,00
1.02
0.70
0.74

0.4 &

k O. I

q~ (ffn ~)
0.3

Equations (11a), (b), and (c) for N =2, N =3, and 1P
oscillator, respectively.

" v is degrees of freedom.
c b osc = 1 905 + 0.121 fm.

1 881+ 0 053 fm.

FIG. 3. Fits using Eq. (11) are presented to the experi-
mental reduced nuclear transition probability versus mo-
mentum transfer squared. The data from Yale {Ref. 15)
and Orsay (Ref. 20) as reanalyzed here are included with
our measurements.
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B(M1, q') using a„s2, a„or B(M1, 0) and 5 from
least-squares fit.

The results of fits to the data set are given in
Table IV where the fit IV = 2 uses Eq. (11a), IV = 3
uses Eg. (lib), and the 1P oscillator uses Eq.
(llc}. The data points and two of the fits are dis-
played in Fig. 3. For the National Bureau of
Standards measurements alone (8 data points),
the X' as reported in Table IV indicates a good
fit to the three models. When the Orsay and Yale
data are added, thereby increasing the data set
from 8 to 16 points (ALL) they provide a higher
q' anchor for the various fits. One observes that
the photon points (and value of 5) have not changed
for ¹3and 1P oscillator models in enlarging the
data set but that the corresponding X' have de-
creased from 1.0 to 0.7, indicating an underesti-
mate of the weights I/oP for the data set. To
verify this point the results in Table IV were gen-
erated for the input data with 1/0 added in quad-
rature rather than linearly as in Table III. With
these weights the X' for the six rows in Table IV
are 1.31, 1.46, 1.48, 1.44, 0.98, and 1.03, re-
spectively, which is indicative of substantially
better fit to the set of 16 rather than 8 data points
and then preferentially for only the N = 3 or 1P-
shell oscillator models. By substantially better
one means the probability P(X', v) of exceeding
X' is much larger, i.e., P(1.0, 14) = 0.42 versus
P(1.5, 14) =0.10. The photon point values are un-

changed and their uncertainties only altered mod-
erately with the larger weights. However, we
prefer the smaller weights from o =a,„~+1%as
a better measure of uncertainties both in the ex-
periment and reanalysis of Yale and Orsay data.

The 1P-shell harmonic-oscillator fit is select-
ed for two reasons:
(1) The linear fit in q' (M=2) for ALL is an im-
probable fit to the subset of the 8 NBS points at
low q' giving a X' = 1.42 with 4 of 8 data points
falling aa outside this fit (see Fig. 3), whereas
the 1p oscillator model has a X' for this same
subset of 1.02 missing 2 of 8 data points at the
one o level.
(2) More importantly analysis of experimental
data for the electroexcitation of the 15.109-MeV
state up to much larger q' = 2 fm ' indicates that
the lp-shell oscillator model [Eq. (llc) of this
section] which results from a straightforward
calculation of the spin-isospin flip 1P3/2 '1P„,
component in "C gives a reasonable fit to the
data subject only to a normalization factor of 4
in the B(M1, q').
The normalization problem appears to be under-
stood. ' It is estimated that the N=2 fit would
fall below the experimental data at q = 0.4 fm 2

by factors of 3-5.''"

V. RESULTS

The radiative width is determined by extrapola-
tion of a fitting function to the photon point (q'
=0.00586 fm '}. The fit to the combined NBS,
Yale, and Orsay data using a 1P-shell oscillator
model is believed to be the best over-all fit with

B(M1, 0, t) =0.01040 +0.00029 fm~ and 5 = 1.881
+0.053 fm.

The radiative width of the 15.109-MeV state of
"C as determined by inelastic electron scattering
is

I'z =37.0+1.1 eV,

where the quoted uncertainty is the standard de-
viation. This result is in excellent agreement
with the most recent (y, y) measurement of 37

5 eV~7

From the best fit of the combined data, the
ratio of the B(M1)'s for the

recapture

to P-decay
reactions at q' =0.216 and 0 fm ', respectively,
is determined. This result is

B(M1, q =0.216) 0 555*0.019
B(M1, 0}

with the oscillator parameter

b =1.88+0.05 fm,

which compares very well with 1.92 ~0.03 fm
from Eq. (25) of Ref. 6. Thus the shape of the
earlier B(M1) versus q' from electron scattering
data as analyzed in Ref. 6 from the data of Ref. 11
is in agreement with ours even though the magni-
tude was about 11% lower. The disagreement in
magnitude is enlarged to about 20% when Coulomb
distortion corrections are included which accounts
for the value I'z =32.6+ 3.5 eV reported earlier. '
The discrepancy is not due to any Coulomb dis-
tortion corrections which we estimated to have an
uncertainty of about 1%. Hence as mentioned in
the Introduction, that data set consisting of 14
points is excluded here. The earlier value of the
B(M1) ratio is 0.53 +0.02; the identical uncer-
tainties are accidental, resulting from compen-
sating errors in b and p for the 1P oscillator fit.
For completeness the variance-covariance matrix
for the two-parameter fit to Eq. (11c) is given:

8.663 x10-8 1 572 x10-5
~

~

~-1.572x10 ' 2.852 x10 '

The parameter vector is

B M1, 0

It is to be noted that the value of the oscillator
parameter b =1.77 fm which has been used in
recent work' "gives a comparatively unacceptable
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fit to the present low-4' data in yielding a normal-
ized X' =1.46. The effect on their results of using
5 =1.88 fm appears to be small.

The new values of Fz and the B(M 1) ratio with

a substantially reduced uncertainty for the radi-
ative width can be applied to the weak magnetism
tests. For the comparison of P-decay matrix
elements from»B (T, =+1), "C (T, =O}, and "N
(T, =-1), the shape correction factors S'(E) =1
+a'E can be: (1) measured in P decay as devia-
tions from allowed shapes in the Kurie plots'
or (2) predicted from the conserved-vector-cur-
rent theory. ' The prediction is

8 3 Fuff' " 24
u =T s + ZQR, (15)

where

since a ca' and this difference as evidenced by
the current discussion of second-class currents,
meson exchange, and nuclear dynamics is of sig-
nificant interest. Instead, the individual V -A
interference terms a and a' are reported here
with S =1+aE and then compared with experiment.
a and a' are defined in Eq. (15) to include sepa-
rate Coulomb corrections for P and P+ which
were formerly included in 5A above 2' The ft
values for the universal vector transition and

TABLE V. P, y weak-magnetism test in A = 12.

a+
(MeV-')

a
(Mev ~)

where a' refers to "N (P') and a to the»B (P )
P decay. The second term in Eq. (15) is a Cou-
lomb correction in P decay" which is included in
the experimental values of a' and a . The uncer-
tainty in this correction term which is dominated

by the nuclear model dependency is taken into ac-
count and is conservatively 20%." R is the equiv-
alent uniform charge distribution radius which is
($)"' larger than the rms radius determined by
elastic electron scattering. At the present level
of accuracy of the ft and F& values, it is meaning-
ful to distinguish between a' and a slopes. That
is, we dispense with the older use of

=1+(A+5A)E,3(& )

P and P' legs of the A=12 nuclei are undergoing
continuous refinements. Nevertheless, a set ft~,
ft, and ft ' are determined from the current
literature as given below.

For the calculation, we use

ftF =ft,~ =3094+12 sec,"
ft =ft»8=11962+48 sec,
ft' =ft»„=13194+ 92sec,

4pp = 15 109+ 0 004 MeV

I'„=37.0 +1.1 eV.

The values of ft' are computed using literature
values of end-point energies, "half-lives, ' branch-
ing ratios, ' radiative corrections, "and f values. "
The errors are propagated independently. Since
the reported end-point energy of "N has decreased
to S'p =16.831 + 0.005 MeV' from the value used
earlier, 16.838 +0.005 MeV, "and thereby affects
f, we have computed the ft '

by normalizing to
Wilkinson's value for the A=12 ratio ft '/ft
= 1.103 + 0.009.

The values of a' for experiment' and theory
are presented in Table V. The agreement as in
the past is clearly good. " The error in the Cou-
lomb correction dominates the total error in a,
which is now +5%; the error in Fz is almost a
factor of 5 smaller than the previous best mea-
surement, "which in our judgment, was I'„=37
+ 5 eV and results in a +1.5% uncertainty in the
first term in Eq. (15). With the tightened con-
straints further more precise measurements of
either a' or a from P spectra would appear to
be quite meaningful.

For the second test of weak magnetism in the
A=12 system proposed by Foldy and Walecka the
dominant matrix element in the p. -capture reac-
tion

+ C~v+

is related in an essentially model-independent way
to experimental ft value for

and to the ratio B(M1, q')„p,„„/B(M1,0)q ««„
determined by inelastic electron scattering from
the 15.109-MeV state of "C. This dominant part
(about 68%) of the p-capture rate is

Experiment:
wide slits (-0.50 + 0.09)x 10 2

narrow slits (-0.52 + 0.06) x 10
(+0.52 + 0.09)x 10 2

(+0.55+ 0.10)x 10 2

Theory:
Eq. (15) (-0.466+ p.p24) x 10-2 (+0.438+ 0.024) x10

Ny

B(M1, q2 =0.216)
B(M1, 0)

(16}
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where C, a correction to the axial-vector transi-
tion for second-forbidden transitions, is

(17)

the relevant dynamics in the A=12 system.
(1) 16 data points span q' from 0.034 to 0.277

fm ' and are fitted well with a normalized X,
' =0.74

by the IP-shell oscillator fit [see Eq. (12)],

A=I/, gT=I, gJ= I+

l2B
5

f92 sec

100a-=0.4

v2 ~3
2 7r

l

=8.0

0.466+ 0.024

C6

FIG. 4. The electromagnetic and weak transitions of
the A =12, T = 1 system are displayed on this energy lev-
el diagram and include the weak magnetism results of
the present experiment and analysis.

where p =0.23+ 10%,"q =bq, and bis the oscillator
parameter. The energy transfer is v=91.67 MeV.
The symbols appearing in Eq. (16) are as defined
in Ref. 6.

Using the values of the B(M1, q') ratio and b

determined in the present work together with

ft», =11962+48 sec, we calculate

pn 3 2

1
GE~~1' Q j o =8.07+0.31X10~ sec ',

where the errors in Eq. (16) are taken to be cor-
related for the product [B(M1, q')/B(MI, 0)]C.
This compares with the published value, Eq. (32)
of Ref. 6 of 8.08 x 10' sec ' + 5%.

From the correction C in Eq. (17), the second-
forbidden contribution to the axial-vector matrix
element is determined from I -WC to be 3.3 +0.4%%d.

We do not proceed to a direct comparison of this
new result with CVC, since the analysis is rather
involved and beyond the scope of the present
work. ' ' Suffice it to comment that the dominant
part for the p-capture reaction, Eq. (14) has been
determined to +3.81." Increased accuracy in
measurements of the p, -capture rate on "C to-
gether with a reduction in the uncertainty on the
oscillator parameter 5 would considerably tighten
this test.

We summarize the results of this experiment
and analysis of electron scattering from the
15.109-MeV level of "C. Figure 4 summarizes

B(M1, q') =B(M1, 0) 1 — 'q' e " "
6

with B(M1, 0, t}=0.01040+0.00029 fm~, b =1.881
+ 0.053 fm (q = b q), and p = 0.23 s I(@ which yield
at q' =k' a radiative width

I'& =37.0+1.1 eV.

(2) The radiative width and B(M1, q') ratio are
applied to the CVC weak magnetism predictions
in the A=12 system and yield tests of the P-decay
effect at the 5% one o level (where over three
quarters of this uncertainty comes from the Cou-
lomb corrections to P decay) and give the domi-
nant part of the p-capture rate in "C to 3.8%.
This results, respectively, in a fourfold and 30%
reduction compared to previous work' '7 in the
uncertainties of the basic electromagnetic param-
eters used in the weak magnetism tests.

(3) An 11-parameter model is described and
used in an iterated least-squares fit to extract
areas ratios and variances from electron scat-
tering spectra which obviates the determination
and removal of radiative effects from the inelastic
and elastic peak areas.

(4}Coulomb distortion corrections and kine-
matical effects are treated carefully in the low-q'
region to reduce uncertainties from these sources
to &1% in the determination of the reduced nu-
clear transition probabilities.

(5) Finally a comparison of our low-q' electron
scattering results with photon absorption from
the 15.109-MeV state indicates agreement in
radiative widths at the 10% level, 37.0+1.1 eV
and 40.4 + 2.0 eV, ' respectively. After the present
publication was in preparation, we learned that
an Amsterdam-Darmstadt collaboration has mea-
sured the 15.109-MeV "C form factor in the range
0.04 & q' & 0.44 fm ' and they report I'„=35.74
+0.86 eV and b =1.882 +0.021 fm." One can con-
clude that there is agreement at the 3% level of
accuracy on the 15.109-MeV level "C electron
scattering cross section at low momentum transfer
among all recent experiments (the present work,
the Amsterdam-Darmstadt collaboration men-
tioned above, and the Yale results of Ref. 15}. It
is our belief that the measurements reported in
Ref. 11 are in error by about 20%%uo and should not
be used. It is perhaps worth reiterating that ac-
curate extrapolation to the photon point requires
that the electron scattering data span a broad
range of momentum transfer, that Coulomb dis-
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tortion corrections be carefully applied even for
low-Z nuclei, and that an appropriate (nonlinear)
extrapolating function be used. In conclusion,
we believe that the 15.109-MeV "C level form
factor can be used as a bench mark for low-q'
measurements of nuclear excited-state cross
sections.

APPENDIX A

An 11-parameter model was used as a functional
form for the inelastic peak and radiative tail, and
the same model with two parameters constrained
to zero was used on the elastic peak. For the in-
elastic peak, as displayed in Fig. 2, the model
has the form:

Region I: Energy =—E,& E„=-matching energy.

Count in energy range (E, —hE, E, + hE)

C(E, ) = s-+ a(E, -E.)-'+ c(E, -E.)-'
+o+ P (E, —E~s)-'+r(Eg —E~„)-',

(A1)

where E, is the energy of the elastic peak maxi-
mum and E,&

is the energy of the inelastic peak
maximum.

Region II: E„&E,&E. „.
C(E, ) =a+b(E, -E,) '+c(E, -E,) '

(A2)

C(E, ) = a+ b(E, -E,)-'+ c(E, E,)-
+ df (N~, S2, Eq —E „). (A3)

The main points about the above functional forms
are:
(a} In each region there is a radiative tail from
the elastic peak. (See Fig. 2.)
(b) In Region I there is also a radiative tail from
the inelastic peak.
(c}In Regions II and III forms similar to Gauss-
ians are superimposed on the elastic radiative
tail. The parameters S, and S, are analogous to

+df(Nx~ Si~ Es -Euei)~

where f(N, S, E) =[1+4E'(2' "-I)/8'] ".
The function f (N, S, E) tends to a Gaussian distri-

bution as N -~, and for small values of N it has
a tail that decreases less rapidly than a Gaussian
as E increases.

Region III: E~„~E&.

Linearized Least-Squares Fitting Procedure

Let C,' ' be the observed count in the energy
range (E, -AE, E, +AE}, and let C, =C(E, ) be the
computed value in the same energy range for any
set of values of the 11 parameters. Let the pa-
rameters be denoted by p = P~ (j = 1 to 11), and let
p(') by any initial assumed set of values of p&.
Then C, depends on both E, and p, C, = C(E„p),
and if W, is the statistical weight associated with
an observed value C; ', we wish to determine a
set p that minimizes the weighted sum of squares
of residuals L:

I
I = Q W) (C )

' —C (E), p)) (A4)

where I is the total number of observed energy

the width o of a Gaussian distribution, thus differ-
ent peak half-widths are permitted above and
below the energy of the inelastic peak maximum.

From the above functional forms, we see that
there are 14 parameters to be determined, viz. ,
a, 5, c, 0., P, y, E„EI,» E„, d, N„N» S»
and S,. However, the elastic peak energy is well
known, and the results are in any case very in-
sensitive to its value. Thus, E, is not used as a
parameter. In addition, we wish the over-all peak
to be a continuous function of E and to have a con-
tinuous first derivative at E=E„. Applying these
constraints to determine P and y in terms of the
other parameters leaves us with an 11-parameter
model in terms of a, b, c, a, E,&, E„, d, N„

Sj and S,. The general technique we will use
to determine these 11 parameters from the given
counts C& is the well-known method of least
squares. However, because the functional form
for C(E, ) is highly nonlinear in several of the pa-
rameters an iterated linearized least-squares
procedure must be adopted. Before describing
this, let us remark that we also have a model for
the elastic peak if we require that b = c = 0 and re-
place E,& by E, in the above discussion. The
nine parameters for the elastic peak are thus a,
n, E„E„,d, N„N„S» and S,. With this
understanding, all subsequent remarks on fitting
procedures apply equally to the inelastic or the
elastic peak.

ranges. Expanding C(E&, p) about P~& ~,

11

C(E„p)= C(E„p&0&)+g
+ o([p, —p,~'~]'). (A5)

Writing P&
—P&"=6P„C; ' -C(E;,p'") =AC;, and dropping all except the linear terms in 4P& in the expan-
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sion, we have

I 2

P=P'"
(A6)

Minimizing t. with respect to np», we require & L/sap» =0:

(A7)

Now we define matrices W and A, where (W)((
=W(5((, (A}(f ac(E(, p)/sp(~ z z(o) and vectors &C,
hp, where (hC)( =nC(, (4P)( =nP, . The set of Eqs.
(7) can then be written in compact form

tives

ac(E, , p)
gP. (0)P=P

(A WA)hp =A.rWnC

with the immediate solution

np =(ArWA) 'ArW5. C .

(A8)

(A9}

can in principle be developed as explicit functions
of the parameters. In practice, however, these
derivatives are cumbersome algebraic express-
ions and are best calculated using difference
ratios, i.e.,

Thus subject to the validity of dropping higher
powers of b,P, from the expansion (A5), we have
determined a set of corrections 4p to the assumed
set p ' so as to minimize I. However, if the ne-
glected powers of ~p are not negligible, it will be
necessary to form a new initial vector p ' =p"
+4p, to replacep" byp', and to repeat the cal-
culation for a new set 4p. This procedure is re-
peated until further iteration produces no change
in L, at which point a best value of the parame-
ters p consistent with the data and the chosen
model has been found. Several comments are in
order regarding this procedure:
(a) In order that (A WA) be nonsingular, the num-
ber of observations must be at least equal to the
number of parameters.
(b} If the parameters are independent and there
are more observations than parameters, (A WA}

will be algebraically nonsingular. However, if
the chosen parameters are highly correlated with
each other, (A"WA) may be very poorly conditioned
and numerically singular, in the sense that the
computed inverse is highly inaccurate.
(c) If the weights W( are chosen to be the recipro-
cal of the variances on the corresponding C&b',

then the matrix B = (A WA) ' is the variance-co-
variance matrix for the parameter set bp. When
the iteration procedure has converged, it follows
that B for the final iteration is the variance-co-
variance matrix of p.
(d) The variance-covariance matrix B implicitly
assumes that the parametric model adopted can
fit the observed counts. In so far as the observed
counts are inconsistent with the assumed form of
the peak, the calculated variance-covariance ma-
trix will underestimate parameter uncertainties.
(e) Since the functional form C(E„p) is known

explicitly as a function of p, the partial deriva-

BC(E„p) C(E, , p» +b. 5»() —C(E„p» —n5 )
8P) P P

(0) 2b,

(f} If the procedure converges at all, it converges
quadratically. In practice, from three to six it-
erations sufficed to converge from an initial p set
obtained by estimating curve parameters by eye,
to a final set in which L changed by less than 1

part in 10' on the last iteration.
(g) The parametric fit is very insensitive to the
values of N, and N2. After some initial experi-
mentation, these values were fixed at 20 and 40,
respectively, for practical peak fitting. The mod-
el thus became effectively a nine-parameter
model.

The quantity of physical interest is the area
under the peak, rather than the parameter set p
defining its detailed shape. This area is readily
obtained, being simply

I
A = Z C(«~p')~

where p' is the final vector of parameters ob-
tained from the least-squares fit, but with the
elastic radiative tail subtracted out, i.e., with
a=5 =c=0. Thus p'=(0, 0, 0, a, E „,E„,d, N„S.„
S,}.

We also need the variance on A. This is readily
found, being given by

I
p(A) =(a[A] }'= Q Q (A'B'A' r).» .

where A' and B' are the matrices A and B with
the rows and columns corresponding to parame-
ters a, b, and c deleted.

Note that the area under the peak is correctly
obtained by summing the functional form C(E, p')
evaluated at each energy E& in the energy range,
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rather than by integrating it over the energy range.
This is consistent with the fact that the observed
counts C; to which the fit is made already repre-
sent integrals over energy ranges (E, -nE, E,
+BE). The fit is therefore to a histogram rather
than to a continuous energy spectrum.

Ey E3 8 and dO are c.m. or zero-momentum
variables. For the reaction e+"C-e'+~C* let
m, =m, =m„m, ="C, andm4=m, +Q, where Q
=15.109 MeV or 0 for inelastic or elastic scat-
tering, respectively. The c.m. angle of scatter
8 is given by

APPENDIX B

For completeness, the kinematical relations lead-
ing to the Jacobian of solid angles are written
down here. " The two-body final state for the
reaction

with

P, sin8

E, —(M4~ -M~ )/2M~
1 +2E, sin'( —,

' 8)/M,

(B4)

(B5)

m, +m, - m3+m4

is transformed to a rest frame P =(M, 0), i.e.,
Py P Eyl and P, P =ESM or

s+m~ —mq
2vs

S+ms —m4
2WS

where the invariant

s =(p, +p,)' =(p, +p,)',
s =I'= m, '+m, '+2m, E, .

Ey E3 8, and de are laboratory variables, and

and y =(E, + m, )/vs and y} =P,/Ws. Then the Jaco-
bian of solid angles from (B4) is

&0 d(cose) sin'e E~y-q~cos8 .
da& d(cos8) sin'8 P,

These are the results used in Eq. (9) where Z„
J „, k,'(P,'), q", and V'r are used. Accordingly,
the reduced nuclear transition probability
B(M1, q") is obtained in the frame with the c.m.
at rest. Since the three-momentum q' and q"
differ only in the fifth decimal place in the pres-
ent range of q', they are not distinguished in the
analysis subsequent to Eq. (9).
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