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A quantitative estimate is made of the changes in pion-nucleus scattering caused by incor-
porating the Pauli principle in a realistic optical potential. A modification is hypothesized
in which the theoretical momentum-space potential is simply multiplied by a Pauli suppres-
sion factor. Several forms for this factor are derived, combined with the optical potential,
and the Schrlinger equation including these potentials is solvect in momentum space. It is
found that including the Pauli principle in a realistic optical potential can have significant
albeit not drastic effects on calculated low- and intermediate-energy elastic scattering. The
effects on differential cross sections are not readily noticeable, except at large angles,
whereas the approximately 15% changes in total cross sections can significantly improve the
agreement with data.

I. INTRODUCTION

Experimental data on the scattering of pions
from light nuclei is reproduced well by an opti-
cal potential constructed completely from first
principles Oy means of multiple-scattering theo-
ry. ' ' In fact, the properly constructed potential,
even in lowest order, is so successful at inter-
mediate energies that one hesitates to attempt
significant refinements. Nevertheless, as more
precise data become available, especially at
lower energies, the first-order optical potential
will need modification. ' '

In this paper we estimate quantitatively the
changes in predicted pion-nucleus scattering
brought about by incorporating the Pauli principle
in the optical potential. By no means do we claim
our work represents the last word on this subject;
rather we feel that it indicates the size and nature
of the expected changes and the desirability of
more refined calculations.

Some consequences of the Pauli principle in
pion-nucleus scattering are included in recent
investigations, notably those of Dover and Lemmer, '
Schmit, ',and Bethe. ' These investigations de-
scribe the mN interaction by a Chew-Low theory
modified to include the Pauli principle during the
scattering process within infinite nuclear matter.
In contrast, we neither assume a microscopic
form for the wN interaction in terms of a field
theory nor include restrictions during the nN
scattering process. Instead we take the off-
energy-shell collision matrix (the blob in Fig. 1)
a,s our elementary two-body input and without
further dissection of this amplitude, include the
Pauli principle restriction on the final nucleon
momentum. This effectively modifies the optical
potential (a more complete theory includes re-
strictions on all states). Since the elementary wN

scattering process is ultimately iterated to obtain

pion-nucleus scattering, our restriction on the
final nucleon state is actually a restriction on
intermediate multiple scatterings.

Furthermore, the optical potential and nuclear
model used in our investigation are very different
and possibly more realistic than those used in
Refs. 5-7; we do not always treat the nucleus as
an infinite slab of nuclear matter, nor describe
the wave nature of the propagation by means of a
local index of refraction, nor restrict the 7' col-
lision to either forward scattering or just one
partial wave. Instead, we have solved an actual
relativistic wave equation for pion-nucleus scat-
tering with a modified form of the momentum-
space optical potential derived from multiple-
scattering theory. ' ' In this way we account for
the surface and the nonlocal nature of the inter-
action and obtain a clear estimate of the impor-
tance of the Pauli principle in a model which re-
produces actual pion-nucleus scattering.

In the next section we indicate how the Pauli
principle enters into the theoretical optical poten-
tial and then describe our hypothesized modifica-
tion of the lowest-order potential to include the
Pauli principle, Eq. (4), In Sec. III we derive
several forms for a Pauli suppression factor Q~
to modify the optical potential. By using a Fermi-
gas model to describe the nucleus we obtain sim-
ple analytic forms for Q~ which can be combined
easily with the optical potential; these are given
by Eqs. (10) and (13)-(IV). In Sec. IV we combine
Q~ with the optical potential, solve the Schrodinger
equation in momentum space, and hence estimate
the influence of the Pauli principle on pion-nucleus
scattering.

II. MODIFIED OPTICAL POTENTIAL

We begin by describing the present form of the
optical potential. The first-order potential in
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momentum space is' '

where for simplicity we consider only spin-zero
nuclei with equal proton and neutron distributions.
The nuclear overlap p can be expressed in terms
of the momentum-space nuclear ground-state
wave function P(p, p, . . .p„)

&(p -0, p) = jf 4*(p —a, pa " p&)4(p, p. , "R)

p+ p ~ dP2 "'dP~.
i

&k'I &lk& =&(k'lt""lk)p(q), (3)

where p(q) is the average nuclear form factor for
neutrons and protons. The familiar Kisslinger'
and Laplacian' forms of the pion-nucleus optical
potential are obtained from (3) by assuming spe-
cific behavior for t'" off the energy shell and then
Fourier transforming to coordinate space.

The Pauli principle enters the optical potential
in several places. First of all, it influences the
optical potential through the antisymmetric nature

A is the nucleon number, (~t~) is an average wN

collision matrix for the scattering of a pion with
momentum k and a free nucleon with momentum

p into %' and p —q, respectively, (Fig. 1) and

q =k'- k is the three-momentum transfer. Since
energy is not conserved in this collision, the t
matrix is "off the energy shell. "

Most calculations using the optical potential
assume in addition that ()t~) can be taken outside
of the integral in (1) and evaluated at some average
value of p. In this "factored approximation"
the optical potential has the simple form

of the wave functions in (3). Most of this influence,
however, is removed by the integration over the
A- 1 nucleon momenta, especially for large A.
Furthermore, when the factored approximation is
made, any Pauli principle effects contained in the
nuclear wave function g are effectively lost since
they are not explicitly in the nuclear form factor
p(q). Yet, independent of the wave-function sym-
metry, the factored approximation should be valid
if k»P and the nucleus is large since it is based
only on the observation that compared to
(k', p —@~teak, p) the nuclear overlap p(p-q, p) is a
sharply peaked function of the momentum p. (The
rapid fall off of g is a consequence of the nuclear
size being large compared to the range of the mN

interaction. )
Secondly, the Pauli principle should enter the

potential via the collision matrix. In writing (1)
in terms of t'" we have implicitly made the "im-
pulse approximation" by assuming that the ele-
mentary scattering occurs too quickly for the tar-
get nucleons to have dynamical influence on the
mN collision matrix. The scattered nucleon, how-
ever, is both initially and finally bound within the
nucleus and hence must come from and be placed
back into an antisymmetrid state with respect to
all other nucleons. This effect of the Pauli prin-
ciple is not explicitly accounted for when the free
t'~ is used in (1).'

In addition, the second-order potential, the
correction to U second-order in t'", explicitly
involves the two-nucleon correlation function,
which in turn primarily arises from the antisym-
metric nature of the nuclear wave function —the
Pauli principle. There are many calculations of
this term, ~ "primarily for nucleon scattering
and predominately using a Fermi-gas model to
calculate the correlation function within the nu-
cleus. The second-order term in the pion optical
potential should be included when making a de-
tailed comparison of theory and experiment.

We now hypothesize that an estimate of the sig-
nificance of the Pauli principle in pion-nucleus
scattering is obtained by a simple modification of
the factored potential (3), a modification correct-
ing primarily the impulse approximation, although

in some sense also the factored approximation. We

hypothesize the modified factored approximation

&k'I Ulk& = &&k'ltlk)Q~(k' k&p&q). (4)

FIG. 1. The elementary scattering of a pion from a
bound nucleon as described by an off-energy-shell colli-
sion matrix t "+.

Thus the collision matrix determines the extent
to which the mN collision can transfer momentum

q to a nucleon at a particular energv. the "~auli
suppression factor" Q~ measures the average
probability that a nucleon within the nucleus can
absorb a momentum k- k' and recoil into an &+-

occupied state, and the form factor p(q) measures
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III. FORMS FOR THE PAULI SUPPRESSION

FACTOR

To calculate Q~ we describe the neutrons and
protons within the nucleus as two noninteracting
zero-temperature Fermi gases. Although we use
a realistic model' to calculate the form factor,
we use the Fermi-gas model to calculate Q~ since
it yields analytic forms which permit a convenient
estimate of the Pauli principle effect on pion-nu-
cleus scattering. In the numerical estimates
which follow we choose a numerical value for the
Fermi momentum which crudely accounts for the
surface nature of pion-nucleus scattering. " We
now derive three possible forms for the suppres-
sion factor which permit us to determine the mod-
el dependence of our estimate.

A. Goldberger-Clementel-Villi Form

We first derive a Pauli suppression factor for
pion-nucleus scattering analogous to the one de-
rived by Goldberger" and by Clementel and Villi"
for nucleon-nucleus scattering. We consider the
scattering process shown in Fig. 1 as occurring
within a Fermi gas of nucleons. The effective
cross section for this process in the lab system
is 13-15

I, I f „~Ã—.P I
-~bi

I I„u, uI~~
c.m.

(5)
where der/dO~. mis the di, fferential cross section in
the center-of-mass system. The first factor,
d'PN(p), is the probability of finding a, nucleon with
momentum p within the nucleus, where

N(p) = (4vk~'/3) 'e(k~- p) . (6)

(8 is the unit step function. ) The next (flux) factor
is the relative nN velocity for a moving nucleon,
divided by that for a stationary nucleon. 7c and 7c'

are the initial and final wN center-of-mass mo-
menta, e.g. ,

7& = (mk —p. p)/(m + p. ),
where m and p, are the nucleon and pion masses,

the ability of the nucleus to absorb momentum j
and remain in the ground state. We note that since
the dependence on nucleon momenta is integrated
out of the optical potential (4), Q„represents some
average over all nucleons within the nucleus.

As is well known, " an expression of the form (4)
using a particular form of Q~ has been rather
successful when used in the nucleon-nucleus optic-
al potential. In the next section we derive several
forms for this Pauli suppression factor which are
applicable to pion-nucleus scattering.

respectively.
There are basically three restrictions on the

integration region in (5). First, the initial nucleon
momentum must lie within the Fermi sphere, ;.e.,
p ~ k&,

. second, the final nucleon momentum must
lie outside the Fermi sphere, i.e., ~p- j~ ~ k~;
finally, energy and momentum must be conserved:

k+p= k'+p', (8)

(9)k'/2 p +p'/2m = 0 "/2y, +p "/2m .
Note that for nucleon-nucleon scattering both k
and k' must also lie outside the Fermi sphere.

The evaluation of this integral subject to these
three restrictions is particularly tedious for the
unequal mass case (p, em); we give details in an
Appendix. For k&k& the final result is very sim-
ple:

Q.(k) =-.-i.
=1 —(1+2) /m)k, '/5k'

= 1 —0.26k' /k,
where o is the average value of do/dA, and Q~
is our notation for this form of the Pauli factor,
For k& kz, the result is more complicated; we
show this "historical" Pauli factor over the com-
plete range of k in Fig. 2. We notice first, that
as the pion momentum is lowered this factor
monotonically suppresses a greater fraction of the
pion-nucleon scatterings, and second, that as a
consequence of averaging, the factor is indepen-
dent of the angle between k and k'.

If we compare the suppression factor (10) for
pion-nucleus scattering with the suppression fac-
tor for nucleon-nucleus scattering, " "

Q~(k) = 1 —7k''/5k' (k' & 2k'')

= 1 —1.4k~ /k,

B. q-Dependent Form

The Pauli factor of the last section was derived
with the restriction that the collisions conserve
energy. Since the off-diagonal (k'ck) part of the
optical potential (4) explicitly describes a collision
in which energy is not conserved we wish now to
find a Pauli factor applicable to the off-diagonal
part of the optical potential. Again we consider
the nN collision pictured in Fig. 1. We now take
Qp as the fraction, for fixed momentum transfer

we see that there is considerably more suppression
for nucleons than for pions. This is caused by the
smaller mass of the pion (p. /m =+) and by the
Pauli principle restricting only one particle (the
nucleon) in pion-nucleon scattering but both in
nucleon-nucleon scattering.
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-q, of all initial states for which the final state
is outside the Fermi sea:

ts

Qr(q)=
~

~PN(p)6[(p-i) -k& J (12)

where N(p) is given by (6).
Note, this Pauli factor sets no requirement that

energy be conserved and includes no average over
scattering angle. The integration region dictated
by the 6I function can be found geometrically by
using the familiar construction of two intersecting
spheres, ' "or the integral can be done using the
Legendre series expansion of the 8 function. " The
result is

serving and -nonconserving T matrices in the op-
tical potential (4), since this factor greatly sup-
presses small-angle mN scattering and thus causes
a forward-angle dip in pion-nucleus scattering.
This unrealistic behavior is caused by the unphy-
sical infinite-nuclear-matter model used to calcu-
late Q„(q).

Since we aim only to estimate the Pauli principle
suppression of a realistic optical potential, we will
be somewhat phenomenological in removing the
strong, unphysical forward suppression in Q~(q).
Accordingly, we obtain another form for the Pauli
factor to be used both when k' equals and does not
equal k by taking the angle average of Q~(q}:

where

~(q/k~ —q'/12k~') 0& q ~2kI
f

(13)

q =(k'+k" —2kk'cos8», )'i'. (14)

We note that small momentum-transfer collisions
are strongly suppressed; finite momentum must
be transferred to the average nucleon to remove
it from the Fermi sphere.

We thus hypothesize a second ("mixed" ) form
for the Pauli factor; use the Goldberger-Clemen-
tel Villi form Qp [(10)J for the diagonal terms in
the optical potential (4) and the q-dependent form
Q~(q) [(13)J for the off-diagonal terms:

k '- fk-k I'
20k''

where k, is the lesser of 4+k' or 2k~. We call
(16) the "angle-averaged" Pauli factor.

The Goldberger-Clementel-Villi form (10) can
be related to the other forms we have discussed
by simply evaluating the angle-averaged Pauli
factor (Q~& when energy is conserved. Setting
k'=k in (16) we obtain

Q (h' 2)= Q~( }
Q~(q) k'ek. (15)

(Q~& I
= (1 —ky'/5k'),

C. Angle-Averaged Form

We note here that it is unacceptable. to use the q-
dependent factor Qr(q) for both the energy-con-

when k is greater than k~. Aside from the
relatively small 2p, /m, arising from the velocity
ratios in (5), this is the historical Pauli factor
(10}.

I,O
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IV. MODIFIED POTENTIAL AND RESULTS

We have solved the Lippman-Schwinger equation

(1 'fZ fk, )=&i'ffJ fk, &

d'k
&

k'I U Ik& (kl &I&a)(& —1)/&
Z, —(p.'+ k')'~' —(A'm'+k')'~'+ i e

0 0.5 I.O l.5 2.0 (ls)
k/k

FIG. 2. The Goldberger-Clementel-Villi (G.C.V.) form
for the Pauli suppression factor Q~(k) as a function of
the pion laboratory momentum (k& is the Fermi momen-
tum). In the simplest case the Pauli principle is included
in pion-nucleus scattering by multiplying the optical po-
tential vrith this factor.

for the pion-nucleus collision matrix T with poten-
tials of the general form (4). Details of our tech-
nique are described elsewhere. "By working in
momentum space we are able to examine various
possible behaviors for Q~ without performing
difficult and laborious Fourier transformations of
the optical potential to coordinate space. In order
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to include the 3-3 resonance directly into our po-
tential and to generate a reasonable off-energy-
shell behavior of the mN transition matrix, a
separable model is used to construct the wN tran-
sition matrix. " The optical potentials we use
have no adjustable parameters (the inputs are the
measured vN phase shifts and nuclear densities)
and in all cases we include a proper transforma-
tion of the mN transition matrix from the pion-nu-
cleon to pion-nucleus c.m. frames.

The only new technical detail needed to solve (18)
with a partial expansion of T is the Legendre
series expansion of Qz(q) which must be com-
bined with those of (~ t~) and p(q) to obtain the
partial wave decomposition of the potential. We
do this by rewriting (13) as

Q~(q) = [4(q/&~ —q'/1&&~')-1]e(4&, ' —q')+1 (19)

and then combining the Legendre expansion of the
I9 function" with those of q and q'. 10 to 20 terms

IO

in the expansion usually represent Q~ accurately
except at a discontinuity; the calculated pion-nu-
cleus cross sections are stable if 10 or more
terms are included.

In Figs. 3-5 we show the calculated differential
and total cross sections for the pure nuclear scat-
tering of pions from carbon. The solid curves are
calculated with an optical potential having no Pauli
suppression built in, the dashed curves are calcula-
ted with the energy-conserving angle-independent
Goldberger-Clementel-Villi form (10), and the dot-
dashed curves are calculated with the off-shell @-

dependent Pauli factor (15).
The predicted differen&ial cross sections are not

changed grossly by these Pauli factors particu-
larly at smaller angles where the simple model,
(3), is most valid. In contrast, the calculated
peaks in the total cross sections, Figs. 4 and 5,
are generally decreased in magnitude and shifted
slightly upwards in energy; they now agree better
with the data than those calculated without a Pauli
factor. "

The angle-averaged off-energy-shell Pauli factor

IO

7r —CARBON

T~ l20 MeV m —CARBON

I & i
I

J I I

IO
I

E

No Pauli Suppression

A: G, C.V. Pauli Factor
—B' Angle - Dependent

(Mfxed) Factor
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800 —. ( Mixed) Factor

E
O

I

b

IO-I

10 2 I

30
I

60
I

90

I

I

1

l
I I I

I20 I50 I 80

600—

E

+ ~00—0
b

200—

FIG. 3. The calculated pion-carbon differential cross
section for pure nuclear scattering based on a separable
potential model for the xN interaction. The solid curve
has no Pauli suppression included, the dashed curve has
Pauli suppression included via the energy-conserving
angle-independent G.C.V. form, and the dot-dashed
curve has been calculated with an off-shell q-dependent
Pauli factor. The pion kinetic energy is 120 MeV and
the data are from F. Binon et al. Nucl. Phys. B17, 168
(1970).

0 0
I I & ) I

IOO 200 300

Tlab ( IVIeV)

FIG. 4. Calculated pion-carbon total cross sections
with the separable xN-based optical potential. The la-
beling of the different curves are the same as in Fig. 3.
The A's are the charge-averaged data from A. S. Clough
et al. [Phys. Lett. 43B, 476 (1973)], ~ 's are from F. Bi-
non et al. [Nucl. Phys. B17, 168 (1970)j, and the Li's
are from M. Crozon et al. [Nucl. Phys. 64, 567 (1965)j.
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FIG. 5. Calculated pion-carbon total cross sections
with the separable xN-based optical potential. In this
higher-energy region the Pauli suppression has an in-
significant effect on the calculated cross sections. The
labeling is the same as Figs. 3 and 4.

(16) affects the cross sections in a manner essen-
tially identical to the on-energy-shell Goldberger-
Clementel-Villi form. This indicates that pion-
nucleus scattering is most sensitive to the diagonal
(k = 0') terms of the potential and not particularly
sensitive to the precise value of the Pauli factor.
Actually, it may seem somewhat surprising that
the calculated pion-nucleus scattering is not affec-
ted more by these Pauli factors since at 120 MeV

the Pauli factor reduces the potential by 2()% (Fig.
2) but reduces the total cross section by only 7%%up

(Figs. 4 and 5). This indeed is a reflection of the

relative insensitivity of elastic pion-nucleus scat-
tering to the precise depth of the potential —an

observation made possible only by using a realistic
model for the nuclear scattering.

The total cross sections calculated with the
mixed q-dependent Pauli factor (15) have their
peak shifted (back) up in energy by too great an

amount and their shapes considerably modified.
The origin of this shift is simply a suppression of
multiple scattering Lthe integral in Epi; (18)j. The
multiple-scattering, contribution to the total cross
section usually changes from constructive to de-
structive interference as the energy passes up-
wards through resonance. ' Suppressing multiple
scattering thereby shifts the peaks upwards. We
feel the two curves A. and B indicate the model
dependence of our estimate.

A method of improving the behavior of the Fermi-
gas-modified mN collision matrix is to impose the
requirement of unitarity on it. Bethe, ' in fact,
emphasizes that this should be an important part
of a pion-nucleus optical model. The unmodified
optical potential we use without the Pauli factor
is based on a potential model for the nN interaction
and so naturally has unitary nN collision matrices.
For the angle-independent Pauli factors the off-

shell unitarity conditions of Watson and Nuttall'
can be employed to make our modified amplitudes
unitaiy. The effect is slight. If the Pauli principle
were included consistently throughout the entire
theory, these unitarization procedures would
probably be unnecessary.

V. CONCLUSIONS

We have found that including the Pauli principle
in a realistic pion-nucleus optical potential can
have significant albeit not drastic effects on cal-
culated low- and intermediate-energy elastic scat-
tering. Specifically, the effects on differential
cross section are not readily noticeable although
the -15/p changes in total cross sections can sig-
nificantly improve the agreement with data. Even
though the Pauli principle strongly suppresses the
elementary nN amplitude within nuclear matter,
its effect on the pion-nucleus amplitude is much
less because of the insensitivity of elastic scat-
tering to the precise depth of the optical potential.

In order to reach these conclusions it is neces-
sary to use a realistic model for nuclear scatter-
ing, such as the optical potential in momentum
space. Similar results can also be obtained in
coordinate space with the Pauli factor given by

Eq. (1V). The use of an unmodified Fermi-gas
model to include the effects of the Pauli principle
in the elementary mN collision matrix is not very
acceptable and for this reason we have removed
some of the unphysical properties arising from the
Fermi-gas model when performing our calculations.

Our calculation is not meant to be final, but
rather just an estimate of the size and nature of
the expected changes and an indication of the de-
sirability of more complete calculations. In this
regard we feel there are several corrections to
the lowest-order optical potential, probably of
similar magnitude to the one we have calculated,
which should be examined if detailed predictions
of the theory at lower energies are required.
Specifically, the validity of the impulse and fac-
tored approximations and the modifications intro-
duced by the second-order potential might mell be
examined, in addition to the contribution to pion-
nucleus scattering arising from true pion absorp-
tion.
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APPENDIX

We wish to evaluate the integral in Eq. (5) sub-
ject to the constraints P & k&, P '& k&, and energy-
momentum conservation, (8) and (9). To insure
energy conservation and simplify the geometrical
considerations, we replace the differential ele-
ment of solid angle dQ, . by a three-dimensional
volume element in momentum space

5(»- »')
fmc.m. Z

K

We now follow Refs. 13 and 14 and neglect the
energy and angular dependence of the cross sec-
tion, i.e., remove do/dQ from under the integral
in (5), and replace it by an angle-independent o/4v:

Qr = o/o

P = (m/m+ p)((k+p(+ ~k —pp/r, n)). (A4)

For P & kz, ~ is always greater than k~ so p ',„=P.
We obtained (A4) by first noting that for fixed en-
ergy, (P'/2m+k /2p, ), P ' will be a maximum when
k'' is minimum. For k' to be a minimum, momen-
tum conservation requires p' to be parallel to
p+k. In this case

P'/2m+k'/2 p, =P ~/2m + (p+ k)'/2 p.

+P~/2p, —2P'ip+ki/2p, . (A5)

p', „and P'. are the maximum and minimum values
of P ', for a given p and 2, consistent with the con-
straints. P ';„=kz and P '„is the greater of kz and
P, where

(A4) is a solution of (A5).
With these values for P ';„and P' we obtain

(A2)

After a convenient change of variables, the inner
integral takes the form

q~ = [3(p. +I)'/16vk~'I']

3
P''x dp» gk PkJk+pJ (A6)

", , &(»' —»), 2w(p. +m)'J»' ~ 2m'(%- pp/mj $+%(

"pm x'
x

', d(P )g(P' k&)
+pi Q

min

(A3)

Qr = 1 —(1+2'./m)k~'/5k (A7)

For k& k& the result is more complicated and we
show it graphically in Fig. 2.

If k&k& this integral gives the very simple result
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