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The second- and third-order rearrangement contributions to the single-particle energies in
80 are calculated microscopically using the Sprung-de Tourreil force. The s-state second-
order rearrangement has been evaluated by an energy-averaging procedure proposed by
Engelbrecht and Weidenmiiller. The second order is as big as the third for p states and much
bigger for the s state. Thus it should be included before comparison to experiment. The
average rearrangement energy per particle is 10.5 MeV and the s-state spreading width 13

MeV.

In the present work we compute the rearrange-
ment energy in '°O entirely microscopically,
starting from a two-body interaction and calcu-
lating explicitly the second- and third-order con-
tributions to the single-particle energies [Figs.
1(a) and 1(b)].

The first calculations of rearrangement cor-
rections in nuclear matter by Brueckner ef al.%?
and by Kéhler** indicated the importance of these
corrections to the single-particle energies.
Brueckner, Gammel, and Kubis? obtained for the
contribution of diagram 1(a) 26.8 MeV at the bot-
tom and 4.4 MeV at the top of the Fermi sea.
Calculations using nonlocal density-dependent
single-particle potentials in nuclear matter by
Brueckner, Meldner, and Perez® ¢ and in finite
nuclei by Meldner and Shakin” again indicated
large rearrangement contributions to the separa-
tion energies. A similar conclusion may be drawn
from the recent density-dependent Hartree-Fock
calculations of various authors.®>'! We note here
that in °O all separation energies are known ex-
perimentally®?; they lead to an experimental esti-
mate of the average rearrangement energy of
approximately 8 MeV per particle.®

Regarding evaluations of rearrangement ener-
gies in finite nuclei by explicit computation of
diagrams with finite-nucleus wave functions (with-
out making use of nuclear-matter results), we
note that while the third-order rearrangement
contribution [Fig. 1(b)] has been treated in the
framework of renormalized Brueckner-Hartree-
Fock theory by various authors, '* ° there is for
the second-order term apparently only one micro-
scopic result calculated with a G matrix, that of
Becker and Patterson.!® Bassichis and Strayer'?
have also considered a second-order rearrange-
ment, calculated with the bare Tabakin inter-

joo

action.

We first compute the single-particle energies
taking into account the third-order rearrangement
diagram 1(b). Thus

€ =€ +A}, (1)
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is the third-order correction. Here

Pllek = "% Z
j oce

m ,n unocc

[GeslGImn? @

(i+€—em—€)f

represents the occupation-probability correction.!®
The total energy is computed according to Bran-

(a) (b)
FIG. 1. Second-order (a) and third-order (b) re-

arrangement contributions to the single-particle ener-
gles of occupied states.
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dow’s prescription, ** which we express as'®

E=E0+Econ’ (5)
with
1 R .
AW ST o
{ occ i,k occ
and
corr 1 ., i
E*r=2 D Pkl Glik)pyy - M
i,k occ

E°" is the four-body-cluster energy correspond-
ing to the diagram of Fig. 2(a).

In the next step the single-particle energies (1)
and the occupation-probability corrections (4) are
used to compute the diagonal part of the second-
order diagram 1(a). This diagram represents the
lowest-order off-shell contribution to the self-
energy operator M and is energy dependent:
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where 6 is a positive infinitesimal. The matrix
elements appearing in all these equations are anti-
symmetrized. The G matrix is to be evaluated on
shell as shown in Ref. 6.

The single-particle energies corrected for the

of (M°%(w)) are:
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FIG. 2. Two four-body cluster contributions to the
ground-state energy, corresponding to third-order (a)
and second-order (b) rearrangement contributions.

second-order process 1(a) appear as the solutions
of the self-consistency equation

w=¢,+Mj; (w). (9)

In our calculation, My, () for the p states is a
smooth function of w in the relevant energy inter-
val and was computed without energy averaging.
In contrast, the s-state self-energy operator
Ms‘ff(w) has poles on the real axis corresponding
to the 2h-1p excitations and is a strongly varying
function of w. Following the suggestion of Engel-
brecht and Weidenmiiller?® we have performed an
averaging of M°® (w) over an energy interval 7>d,
where d is the average spacing between the ener-
gies of 2h-1p configurations:

MM (W), =M (w +i7) . (10)

The expressions for the real and imaginary parts
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The s-state quasiparticle pole w, is again given by
the solution of the self-consistency equation

w= €, +Re(M(w)) . (13)

The spreading width of the s-state quasiparticle
and the residue of the quasiparticle pole are given
by

o = 2Im(M 2 (w,)) (14)

>-1
W =W,

s

and

Res(M M (w,)) = ( Re(Ms,(w»

(15)

The present calculation has been performed with
a recent realistic soft-core two-body force of de

(12)

Tourreil and Sprung?®! (their potential C) which fits
the two-body data very well. The tensor compo-
nent is fairly strong, giving a deuteron d-state
probability of 5.5%. Nuclear-matter calculations
with this potential, performed in second-order
perturbation theory and in Brueckner theory,
agree closely with each other, saturation occur-
ring at k, =1.6-1.7 fm~! with E/A ~~17 MeV. The
wound integral is K =0.075 at saturation.

These results seem to justify the use of this
force in second-order perturbation in nuclei. Thus
for our effective G matrix we have renormalized
the bare interaction up to second-order ladder
diagrams. Furthermore, we have followed the
prescription of Kerman and Pal,?? which uses
plane waves for the intermediate states. For the
parameters appearing in the renormalization we
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TABLE I. Effective G-matrix single-particle energies
e, occupation-probability corrections pl, third- and
second-order rearrangement corrections (A% and Re
(M°Ty, respectively), and final theoretical (e,) and ex-
perimental (e§*) proton single-particle energies. ACoul
and A*™ are Coulomb and center-of-mass corrections.

0s1/5 003/ 0p1/
e -54,8 —26.3 -21.4
ol —-0.055 —0.081  —0.100
AP 4.9 3.6 3.2
ACeul 3.9 3.6 3.6
Re(M°T) 17.1 3.0 3.8
0 3 off
e, =€ +A°+Re{M
P ACoul +Ac§m, ) 305 -16.1 -10.8
egxp —-44+5 -=19,0+1 -12,4=x1

have chosen the values k=1 fm~! and A=20 MeV.

The diagrams of Fig. 1 were evaluated in the
oscillator basis with an oscillator parameter
y=f/mw=2.6 fm?. The unoccupied (particle)
states in Fig. 1 run through four major shells,
from the 1s-0d shell up to the 2p-1f-0% shell.

The total binding energy E [Eq. (5)], with Cou-
lomb and center-of-mass corrections included,
is 113.7 MeV, which is quite satisfactory for a
single-oscillator calculation. The four-body-
cluster correction E“" [Eq. (7)] contributes 2.3
MeV to E.

In Table I we first show the single-particle ener-
gies €® and the rearrangement corrections AS.

Our occupation-probability corrections are some-
what smaller than those found by McCarthy and
Davies'* using the Hamada- Johnston potential.
This difference probably reflects the softness of
the de Tourreil-Sprung force. Our rearrangement
corrections A® are also slightly smaller.

Table I also shows the second-order corrections
ReM°" and the final single-particle energies for
protons as well as the experimental values of
Tyrén et al.'*> The second-order correction for
the s state was obtained using the energy aver-
aging explained earlier. In Fig. 3 we show the
curves of Re((w)), for several values of the
parameter 7. The average spacing d between suc-
cessive 2h-1p configurations is in our case of the
order of 3 MeV. For 7=3 MeV we see that there
are slight oscillations in the curve. The values
of 3.5 or 4 MeV for 7 are just large enough to
smooth out the curve M, (w). The results shown
in Table I correspond to 7=4 MeV. The ReM°ff
values again represent a sizable rearrangement,
In fact, for the more deeply bound state this term
is much more important than A3,

The results obtained for Re M °%(w) are in very
good agreement with nuclear-matter calculations

24 [ .
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FIG. 3. The curves < MZ¥ @) >, plotted for, four dif-
ferent values of the parameter 7. The intersection

points with the 45° straight line give the positions of the
quasiparticle pole [Eq. (9)].

of Refs. 2 and 3. Introducing the ratio

off,
R, = ReM{ @)
Usnr
where

Uppr = D _<ik|Glik)

k occ

we find it to be roughly —-0.24 at #,/k,=0.1, —0.22
at k/kp=0.8, and —0.06 at k,; /kr=1.0 in the nu-
clear-matter calculations. Our calculation in %Q
gives: for the deepest bound (s, ,,) state, R = -0.26;
for the states at the top of the Fermi sea (p,,, and
D), R==0.07 and —0.09, respectively. Since

the ratio R essentially depends on finite geometry
only through the energy denominators® in the ex-
pression for ReM°"  and the energy range of
these denominators is roughly the same in nuclear
matter and in finite nuclei, R should be quite in-
sensitive to finite geometry. The above-mentioned
numbers verify this feature of R.

To compare to the proton separation energies
from (p, 2p) experiments, we must also add Cou-
lomb and center-of-mass corrections A% and
AS™2% to the single-particle energies. For the
b states the final energies (Table I) are in good
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agreement with experiment. For the s state our
separation energy is smaller than the Tyrén etal.'?
value.?® We note that a full calculation on a Har-
tree-Brueckner basis would be of benefit here,
since the single-particle energies €} would be
lower (more negative) and therefore the final
s-state separation energy would be in closer
agreement with experiment. Also, if the inter-
action used were artificially modified to give more
binding, the separation energies would be larger.
However, it is also clear that even ina Hartree-
Brueckner calculation the binding energy should
be smaller than the experimental energy, since
various terms (e.g. Bethe-Faddeyev three-body
clusters) are not included.

Our final single-particle energies are in rough
agreement with those of various density-dependent
Hartree-Fock calculations.®!! The calculation of
Ref. 9 is completely phenomenological and it is
difficult to see its diagram content; however,
both diagrams that we have explicitly evaluated
are wholly included in calculations such as those
of Refs. 8, 10, and 11 for states near the Fermi
surface, while for more deeply bound states Refs.
8, 10, and 11 contain only part of the second-
order rearrangement.?®

The average rearrangement energy including
both corrections is 10.5 MeV per particle, which
is somewhat greater than the experimental esti-
mate.

As for the residue of the s-state quasiparticle
[Eq. (15)] it is evaluated as =0.6, which is quite
reasonable. The p-state residues are found to be
very close to 1.

2027

When the parameter T takes the value of 4 MeV,
the calculated s-state spreading width I, [Eq. (14)]
is 13 MeV, in very good agreement with the ex-
perimental value ~14 MeV.?? The calculated width
also agrees closely with a previous theoretical re-
sult, 13.7 MeV, of K6hler, obtained using nuclear-
matter results and an averaging procedure.'® Ac-
tually, we note that the width I'; varies sensitively
with 7. For 7=3.5, I';~11.5 MeV and for 7=4.5,
T ~14.8 MeV, so that the value of 7.chosen is of
some consequence in this respect. We have seen
that 7 cannot be smaller than d if there are to be
no oscillations in (M (w)),, while too large values
of T are unrealistic, due to the considerable sup-
pression of the correlations.

From the curves ReM{™(w) for large off-shell
values of w plotted in Fig. 4 it is possible to esti-
mate the contribution of the diagram of Fig. 1(a)
to the total energy. This contribution is shown in
Fig. 2(b). Here the diagram corresponding to Fig.
1(a) can be treated approximately as an insertion?
taken at an average 2p-lh energy:

AE=3 My(w=w )0} -
i

For wjy. ;=70 MeV we obtain AE ~—2 MeV.
This contribution is of the same order of magni-
tude as E®" ~2.3 MeV. Of course our value for
AE is only a rough estimate. A recent careful
evaluation of AE and E " in nuclear matter by
Kohler?” indicates that AE <E®",

This calculation confirms that the second- and
third-order rearrangement corrections in nuclei
are indeed important and both should be properly
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FIG. 4. The nonaveraged curves M§{f (w) plotted in the off-shell range of w.
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taken into account when comparing to experimental
separation energies. Since the main contribution
to the off-shell diagram 1(a) comes from the long-
range part of the interaction,® any reasonable force
should give a non-negligible #°F,

In view of the results of this single-oscillator
calculation, it would be of interest to perform a
complete Brueckner-Hartree-Fock calculation
including both rearrangement terms, and with
G matrices evaluated from various hard-core and
soft-core forces. Furthermore, the inclusion of
the nondiagonal terms M,.‘}” (w) in the framework

[

of such a Brueckner-Hartree-Fock calculation
should improve saturation in finite nuclei for those
forces which tend to give too small a radius.
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