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Microscopic Calculation of Rearrangement Energies in' O~
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The second- and third-order rearrangement contributions to the single-particle energies in
0 are calculated microscopically using the Sprung-de Tourreil force. The s-state second-

order rearrangement has been evaluated by an energy-averaging procedure proposed by
Engelbrecht and Weidenmuller. The second order is as big as the third forP states and much
bigger for the s state. Thus it shouM be included before comparison to experiment. The
average rearrangement energy per particle is 10.5 MeV and the s-state spreading width 13
MeV.

ln the present work we compute the rearrange-
ment energy in "0entirely microscopically,
starting from a two-body interaction and calcu-
lating explicitly the second- and third-order con-
tributions to the single-particle energies [Figs.
1(a) and 1(b)].

The first calculations of rearrangement cor-
rections in nuclear matter by Brueckner et al."'
and by Kohler" indicated the importance of these
corrections to the single-particle energies.
Brueckner, Gammel, and Kubis' obtained for the
contribution of diagram 1(a) 26.8 MeV at the bot-
tom and 4.4 MeV at the top of the Fermi sea.
Calculations using nonlocal density-dependent
single-particle potentials in nuclear matter by
Brueckner, Meldner, and Perez''and in finite
nuclei by Meldner and Shakin' again indicated
large rearrangement contributions to the separa-
tion energies. A similar conclusion may be drawn
from the recent density-dependent Hartree-Fock
calculations of various authors. ~" We note here
that in "0all separation energies are known ex-
perimentally"; they lead to an experimental esti-
mate of the average rearrangement energy of
approximately 8 MeV per particle. "

Regarding evaluations of rearrangement ener-
gies in finite nuclei by explicit computation of
diagrams with finite-nucleus wave functions (with-
out making use of nuclear-matter results), we
note that while the third-order rearrangement
contribution [Fig. 1(b)] has been treated in the
framework of renormalized Brueckner-Hartree-
Fock theory by various authors, '~ "there is for
the second-order term apparently only one micro-
scopic result calculated with a G matrix, that of
Becker and Patterson. " Bassichis and Strayer"
have also considered a second-order rearrange-
ment, calculated with the bare Tabakin inter-

action.
We first compute the single-particle energies

taking into account the third-order rearrangement
diagram 1(b). Thus

e = ~'+a'

where

e ',. = f, + g (ik( G ( ik),
A occ

(2)

and

~;= g(fkiG ]fk)p,',
A occ

is the third-order correction. Here

i(kj/Cfmn)i'
Pkk 2 ~ (eo y eo eo eo)2

k j m

Nl, n unocc

(4)

FIG. 1. Second-order (a) and third-order (b) re-
arrangement contributions to the single-particle ener-
gies of occupied states.

represents the occupation-probability correction. "
The total energy is computed according to Bran-
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dow's prescription, "which we express as"
g0

with

(5)

C'I

z'= P I, +- g QklGlfk&
1

(6) (a)

and

j occ g, k occ

FIG. 2. Two four-body cluster contributions to the
ground-state energy, corresponding to third-order (a)
and second-order {b) rearrangement contributions.

E"*'=— Q pl &)'k I Gl ik& p))~ .
j,k occ

(7)

E""is the four-body-cluster energy correspond-
ing to the diagram of Fig. 2(a).

In the next step the single-particle energies (1)
and the occupation-probability corrections (4) are
used to compute the diagonal part of the second-
order diagram 1(a). This diagram represents the
lowest-order off-shell contribution to the self-
energy operator M and is energy dependent:

l&fI I Gl jk& I'(I+ pM(I+ pea)
QP + 6m —6g —6k —$5

j,k occ
m unocc

(6)

where 6 is a positive infinitesimal. The matrix
elements appearing in all these equations are anti-
symmetrized. The G matrix is to be evaluated on
shelI as shown in Ref. 6.

The single-particle energies corrected for the

&M'"(&u)&, =M'"(()+i(r) . (10)

The expressions for the real and imaginary parts

second-order process 1(a) appear as the solutions
of the self-consistency equation

off
(() =E(+M(. ((()) .

In our calculation, Mp~ ((()) for the p states is a
smooth function of v in the relevant energy inter-
val and was computed without energy averaging.
In contrast, the s-state self-energy operator
M,',"(up) has poles on the real axis corresponding
to the 2h-1p excitations and is a strongly varying
function of co. Following the suggestion of Engel-
brecht and Weidenmuller" we have performed an
averaging of M'"((d) over an energy interval r&d,
where d is the average spacing between the ener-
gies of 2h-1p configurations:

of &M'"((d)& are:

iM o(rl )i ~ ((d+& -eg —e)))I&am I o I jk& I (I +pgy)(I + p)))))

((() + eeee
—Eg —e),) + t2 2

Jyk occ
m unocc

o('f ~ &I&'I~ IG I jk& I'(I+ p', ,)(I+p)))e)
((() + ele —e~ E)) ) + T.

j,k occ

(12)

(u = e, + Re&M,',"((o)& . (13)

The spreading width of the s-state quasiparticle
and the residue of the quasiparticle pole are given
by

and

I', = 21m&M,',"(((),)& (14)

see(M:."(e.)) (, eRe(M.,(e))
B(d

(15)

The present calculation has been performed with
a recent realistic soft-core two-body force of de

The s-state quasiparticle pole ~, is again given by
the solution of the self-consistency equation

Tourreil and Sprung" (their potential C) which fits
the two-body data very well. The tensor compo-
nent is fairly strong, giving a deuteron d-state
probability of 5.5%. Nuclear-matter calculations
with this potential, performed in second-order
perturbation theory and in Brueckner theory,
agree closely with each other, saturation occur-
ring at kz =1.6-1.7 fm ' with E/A =-17 MeV. The
wound integral is K =0.075 at saturation.

These results seem to justify the use of this
force in second-order perturbation in nuclei. Thus
for our effective G matrix we have renormalized
the bare interaction up to second-order ladder
diagrams. Furthermore, we have followed the
prescription of Kerman and Pal, "which uses
plane waves for the intermediate states. For the
parameters appearing in the renormalization we
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TABLE l, Effective G-matrix single-particle energies
e, occupation-probability corrections p, third- and
second-order rearrangement corrections (83 and Re
(M ), respectively), and final theoretical (e&) and ex-
perimental (e&exP) prOtOn Single-particle energieS ~Coul

and 6' ' are Coulomb and center-of-mass corrections.

24

22
T = 3.0 MeV

Osgg2 0P3n I8

~0

p
+3
~Coul

Re(M")
e& = e + 4 +Re(M' )

+ ~Coul + +c.111.

e exp

-54.8
-0.055

4.9
3.9

17.1

-30.5

-26.3
-0.081

3.6
3.6
3.0

-16.1

—21.4
-0.100

3.2
3.6
3.8

—10.8

-44 + 5 —19.0 + 1 —12.4 + 1

I6
X

l4

3
l2

tL. Cn
O ~

lp
V

8

have chosen the values 0~=1 fm ' and 6=20 MeV.
The diagrams of Fig. 1 were evaluated in the

oscillator basis with an oscillator parameter
y= 5/m~ =2.6 fm'. The unoccupied (particle)
states in Fig. 1 run through four major shells,
from the 1s-Od shell up to the 2p-lf-Ok shell.

The total binding energy E [Eg. (5)], with Cou-
lomb and center-of-mass corrections included,

. is 113.7 MeV, which is quite satisfactory for a
single-oscillator calculation. The four-body-
cluster correction E"" [Eq. (7)] contributes 2.3
MeV to E.

In Table I we first show the single-particle ener-
gies e' and the rearrangement corrections 6'.
Our occupation-probability corrections are some-
what smaller than those found by McCarthy and
Davies" using the Hamada- Johnston potential.
This difference probably reflects the softness of
the de Tourreil-Sprung force. Our rearrangement
corrections 4' are also slightly smaller.

Table I also shows the second-order corrections
ReM'" and the final single-particle energies for
protons as well as the experimental values of
Tyrdn et al." The second-order correction for
the s state was obtained using the energy aver-
aging explained earlier. In Fig. 3 we show the
curves of Re(kf;,"(&u)), for several values of the
parameter v. The average spacing d between suc-
cessive 2h-1p configurations is in our case of the
order of 3 MeV. For 7=3 MeV we see that there
are slight oscillations in the curve. The values
of 3.5 or 4 MeV for v. are just large enough to
smooth out the curve M„(&u). The results shown
in Table I correspond to 7'=4 MeV. The Rel'"
values again represent a sizable rearrangement.
In fact, for the more deeply bound state this term
is much more important than A'.

The results obtained for ReM'"(~) are in very
good agreement with nuclear-matter calculations

p I I I I I I I I I

6 8 IO I2 I4 I6 I8 20 22 24 26

(8 —t ObI/2 (MeV)

FIG. 3. The curves & M~f~ (td) &~ plotted for, four dif-
ferent values of the parameter 7. The intersection
points with the 45 straight line give the positions of the
quasiparticle pole [Eq. (9)].

of Refs. 2 and 3. Introducing the ratio

Re(M'. ."((u))
U)~

where

0 occ

we find it to be roughly -0.24 at k, /kz= 0.1, -0.22
at k, /k~=0. 8, and -0.06 at k, /k+=1. 0 in the nu-
clear-matter calculations. Our calculation in "O
gives: for the deepest bound (s,~, ) state, ft = -0.26;
for the states at the top of the Fermi sea (p», and

p», ), E = —0.07 and -0.09, respectively. Since
the ratio B essentially dep nds on finite geometry
only through the energy denominators" in the ex-
pression for ReM'", and the energy range of
these denominators is roughly the same in nuclear
matter and in finite nuclei, 8 should be quite in-
sensitive to finite geometry. The above-mentioned
numbers verify this feature of A.

To compare to the proton separation energies
from (p, 2p) experiments, we must also add Cou-
lomb and center-of-mass corrections A '"' and
d.' '4 to the single-particle energies. For the
p states the final energies (Table 1) are in good
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taken into account when comparing to experimental
separation ener gies. Since the main contribution
to the off-sheil diagram 1(a) comes from the long-
range part of the interaction, ' any reasonable force
should give a non-negligible M'".

In view of the results of this single-oscillator
calculation, it would be of interest to perform a
complete Brueckner-Hartree- Fock calculation
including both rearrangement terms, and with

G matrices evaluated from various hard-core and
soft-core forces. Furthermore, the inclusion of
the nondiagonal terms Mf '(&u) in the framework

of such a Brueckner-Hartree-Fock calculation
should improve saturation in finite nuclei for those
forces which tend to give too small a radius.
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