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We have evaluated energy- and non-energy-weighted sum rules (N and M) for the nuclear
charge monopole and dipole modes. Sums are given for different intermediate isospins,
using the method in which sums are split into isoscalar, vector, and tensor parts. This
facilitates the separation of model-dependent quantities, and we particularly consider possi-
ble modifications of shell-model evaluations arising from correlations. Four important
specific results are: (i) The shell-model value of M in the dipole case is carefully calculated
for Pb, and is 30/p larger than the observed value; this difference must arise from corre-
lations. (ii) The previously suggested smallness of the isotensor part of M is not general, but
depends on using a shell-model wave function; it is shown theoretically and from experiment
that the isotensor part may be large. (iii) The effects of correlations on M can be displayed
in a form requiring no new calculations (given published Tamm-Dancoff diagonalizations).
(iv) There is a close relation between the charge-exchange part of N in the dipole and mono-
pole problems, so one can use data on the former to evaluate the latter; also, a connection
with the effective M1 charge and effective mass is shown.

I. INTRODUCTION

The present paper arose out of a study' of Cou-
lomb mixing in nuclei. For such a project, an es-
sential preliminary is the evaluation of the pa-
rameters of the nuclear vibrational mode of the
charge monopole type. We have set up a theory
for this based on sum rules. No data exists on
this mode, but it is closely analogous to the charge
dipole mode, for which data is available. There-
fore we have also applied our theoretical methods
to the dipole mode, and have checked the results
against experiment, thereby validating the me-
thods. The object of the present paper is to pre-
sent several new results (mostly on the dipole
mode) that have emerged.

In the dipole problem, sum rules have been used
for many years (for example, see Refs. 2 and 3)
and with great profit to analyze photonuclear data.
The energy-weighted sum rule, determines the
integrated absorption cross section o, = jo dE, and
the non-energy™weighted sum rule determines the

I

bremsstrahlung-weighted integrated cross section
o,—= J dE(o/E). For economy of words we will
refer to the former as the N sum and the latter as
the M sum, these being the symbols we use for
these quantities in the text. The kinetic-energy
part of the former is model-independent; this part
is often called the classical sum rule. The latter
and potential-energy part of the former are model-

dependent, and are normally evaluated theoreti-
cally with the shell model. Formerly, it was
said' that there was reasonable agreement with
experiment. In a recent presentation' of the data,
however, the observed value of 0, is of the order
of 50% of the traditional oscillator shell-model
evaluation' of Levinger (0.36A' ' mb). This fact
has largely passed without comment, perhaps be-
cause it was considered that other potential well
shapes might strongly reduce the shell-model
value (Levinger quoted~ a reduction of 15% when
the finite square well is used in place of the os-
cillator). In fact, we will argue that there is
little uncertainty (much less than 15%) in the
shell-model value, once the rms radii of the outer
orbits is prescribed, and that there is a real dis-
crepancy of order 30% between the data and the
best shell-model value. Barring large changes in
experimental values, this means that tuo-body
correlations reduce the skell-model value of M
by this amount. This is an important result be-
cause there are remarkably few examples in nu-
clear physics where one can pinpoint the effect of
correlations in so explicit a way. It is true that
there are several other areas where the shell
model needs correction. For instance, strong E2
and E3 transitions to individual low-lying states
often require collective two-body correlations for
their explanation. However, these situations are
not in the same category as the present one in the
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sense that the E2, E3 data do not yield a value for
a ground-state expectation value of a two-body
operator to parallel that given by a „viz.
(Olg, , f„t»z, zz l0). (Indeed, the only other
case of such a value is that of the total energy
where the operator is the Hamiltonian. ) In ran-
dom-phase-approximation (HPA} treatments of di-
pole problems, it is implicit that the calculated
value of 0, is substantially smaller than the shell-
model value, but this important fact is usually not
brought out.

Turning to another aspect of the dipole case,
there has recently been interest' ' in the separate
sum rules for the different isospins of the states
excited by the dipole operator. The separation is
very conveniently made by expressing the squared
dipole operator as a sum of its isoscalar, vector,
and tensor parts. This has the great merit of
facilitating separation of the model-independent
aspects (those involving one-body operators) from
the model-dependent aspects (those involving two-
body operators). It turns out that the model-inde-
pendent quantities are the vector part of M, and
the scalar and tensor parts of the kinetic contribu-
tion to N. All others are model-dependent and

can, in principle, be affected by correlations. We
have already mentioned that a, is so affected.
The major part of this is the scalar part of M, so
this must be affected. There is special interest
in the tensor paxt of M, which has been shown to
be small compared to the scalar part when evalu-
ated with the shell model. (If the dipole operator
is referred to the well center rather than the cen-
troid, the shell-model value becomes zero. ) It is
tempting to assume that the smallness of the shell-
model value of the tensor term arises from the
tensor nature rather than the use of the shell mod-
el, in which case the term is also small in the
presence of correlations. Leonardi' has recently
made this assumption and then inferred properties
of the neutron and proton densities in nuclei from
the photonuclear data. Unfortunately there are
experimental and theoretical reasons to doubt the
validity of the assumption, as we will show in our
second main result: The smallness of the tensor
term in M is a shell-model property, and does
not apply to correlated &eave functions in general.

Little explicit attention has been given to the
effect of correlations on the sum rules. Levinger4
quotes a detailed numerical calculation by Oka-
moto which found a reduction of 0, by a few per-
cent arising from the first-order effect of two-
body forces. We have studied the question of the
first-order effects and found the important re-
sult that these effects can be expressed in terms
of known quantities, viz. the N sum rule and the
giant resonance energy as obtained from the di-

agonalization of 1p-1h states. In other words,
there is no need to embark on numerical work:
We find that correlations can have an effect of the
order of the 30% effect deduced from the data, ,
i.e., much larger than Okamoto's value.

Finally, turning to the monopole problem, we
find great assistance from the dipole results in
making estimates of the monopole sum rules. Not
only does the structure of the formal analysis
apply, but one can arrive at conclusions about the
reliability of shell-model values and the effect of
correlations. In the case of the potential part of
the N sum, the relation is much closer than mere
analogy. It turns out, remarkably, that the vital
radial integral on the two-body potential is the
same in both problems. Thus its evaluation from
the dipole data can be directly used to provide an
evaluation of the N sum in the monopole problem.

In Sec. II we present formal results for the N
and M sums without making any separation of dif-
ferent isospin contributions. Shell-model evalua-
tions are given. In Sec. III, comparison with
photonuclear dipole data for '~Pb shows the in-
adequacy of the shell model for the M sum. Sec-
tion IV gives details of the method developed for
including correlation corrections to the shell-
model value of the M sum. Section V extends the
formal definitions of N and M to separate iso-
spins and introduces corresponding isosca1ar,
vector, and tensor quantities. Section VI adapts
the method for correlation corrections to the case
of separated isospins. Finally, Sec. VII discusses
the monopole problem, and Sec. VIII describes a
connection with effective M1 charge and effective
mass.

II. STRENGTH DISTRIBUTIONS AND SUM RULES

A. Formal Expressions

The general form of a one-body isovector opera-
tor causing excitations from a given state l P, )
=

l P,(T, T,)) is

where f is a constant chosen so that (P, l El P,)
=0. The action of E on the state vector l P,)
creates other states of the system, l Qz) say:

Two crucial quantities for characterizing the ef-
fect of E on l P,) are the non-energy-weighted
sum-rule quantity M and the energy-weighted
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sum-rule quantity N defined by the equations

&x-&o ) + 0 '~

(4)

Since II=K+ U, where K is the kinetic energy
operator and U is the potential-energy operator,
the energy-weighted sum rule is a linear sum of
two parts, one from K and one from U:

N=N(K)+N(U). (5)

From now on, expectation values will be under-
stood to be taken in the state

~ P,). Inserting (1)
in (4), one readily finds

N(K)=()('/8m)(g I v&f(r, )( ) (6)

where H) Q), ) =E~ j P~), H ) Q,) =E, ) Q,), H being
the Hamiltonian. The sums here are unrestricted
in the isospin indices. The isovector operator I'
admixes states with T'= T —1, T, T+1. In this
and Secs. III, IV, we consider the unrestricted
sum rules; the restricted ones are discussed in
Secs. V, VI.

By using closure, the sums of Eq. (3) can be
reduced to expectation values

terms of z& referred to a fixed point, this be-
comes S= D+D, where D=-g, t„z„D,
= (I/A)(g, t„.)(Qzz&}. When used with internal
wave functions, the part Do has no effect and can
be dropped. In practice, one rarely uses such
functions, so the D, term should be retained.
However, in order to keep the discussion focused
on essentials and to stress the parallel with the
monopole case, we first present results for D and
later we note the small effects of changing to B

Since most of the present work is concerned
with the dipole case, we will henceforth use the
notation of Sec. IIA for this case, with the under-
standing that the general operator E is now the
specific operator D; f (r) =-z, f =0.

1. Evaluation with the Oscillator Shell Nodel

If the oscillator shell model is used, the quan-
tity (D') is for most parent states P,(T, T ) sim-
ply related to the model-independent counterpart
N(K) of (6). Such states are those for which all
components of DP, (T, T}have the same excitation
energy, viz. ken, the oscillator quantum. The ac-
tion of D on a general oscillator state P, excites
components of excitation energies +km. However,
for nearly all low-lying states P„ the Pauli prin-
ciple prohibits any components with negative ex-
citation. From the definitions of 1lf and N, it
follows that, for such a state (I()„

N(K) =I(dM =Re(D2)

From Eq. (6), putting f(r) =-z, f =0 (z being re-
ferred to the well center):

with
N (K) = (b /8m) A . (12)

b, , = [f(r, ) f (r, )]—'v(~„)(7, t, —t„.t„}(f(fP;, +H). . .

(8)

In obtaining Eq. ('I) we have taken U =-,' P,. „~v,.~,
with

v)~ = (W —MP;~P;)+BP)~ HP)))v(r), ).-
The above results apply to a "parent" state, i.e.,
one with T, = T. More general expressions valid
for T t T, will be given in Sec. V. Finally, we
define a quantity P to be the ratio of the potential-
energy contribution to N to the kinetic-energy
contribution:

Thus the oscillator value for the model-dependent
quantity (D') is

(D') =(b/8m(d)A= —', Ab',

where 5 is the oscillator size parameter such that
b'/mb' =A(d. Table I gives evaluations of various
quantities for ~Zr and ' 'Pb using oscillator wave
functions. According to Levinger, 4 the value of
(D') for a finite square well is about 15% less
than for the oscillator. (In Sec. III we mention
the value for the Woods-Saxon well. ) The table
also shows that the Pauli principle reduces (D')
by about '10/0.

P=—N(U)/N(K). (10) 2. Evaluation with the Dipole Operator Referred to

the Centroid

B. Specialization to the Dipole Case

The correct EI operator is B = Q, (2 —ts, )z,".

=-Qt„z,", where z," is taken relative to the
centroid and therefore satisfies Q; zf' = 0. In

Let us now expose the effect of replacing D by
S=-D+D„where N and D, have been defined at
the beginning of Sec. II B. %e denote the sum rule
quantities referring to B by a double prime:
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N". First, we note that

(~'&-&D'& =-&D.')+2(D. ~& . (14)

weighted sums can also be easily obtained. It is
straightforward to show that

Next, the oscillator gives (Do&& = 0, since the
wave function is separable in the two coordinates
D, and S. Also, it gives ( D,') = T' b'/2A, so

N"(Z) =-,'([u, [Z, n]]&

E NZ
( )

h2T2

2m A 2m' (16)

Ng 4T2
bfll —(cQ2) (D2) b2 (D2& I

2A 2A A'

This is a special case of a well-known result. On

writing X) =D„—D&, where D„= (Z/A)Q(2+t3, .)z, , D~

=(N/A) g (z —t»)z;, the shell-model property
(D„D~& =0 implies (I)') =(D„'&+(D~'&. For the
oscillator, the use of (13) for D„', D»' gives (15).

The evaluation of ( B2& for MZr and 'O~Pb is
given in Table I.

The effect of replacing D by 8 on the energy-

This result is also model-independent. One sees
that the change equals h~ times the corresponding
change for the oscillator in the non-energy-
weighted case above. For the potential part, we
immediately obtain the result N" (U) =N(U), since
the isoscalar part of X) commutes with U.

C. Potential-Energy Contribution
to the Energy-Weighted Sums

We now turn to an evaluation of N(U). If the
parent state is a Slater determinant, then

N(U)=2 Qb ~ (17)
TABLE I. Oscillator evaluation of various quantities

relevant to the dipole problem occurring in Secs. II and

V. Subscripts n, P on (x2) signify average taken over
neutrons and protons, respectively; no subscript means
average over all nucleons. The same oscillator param-
eter, Sco =5 /mb, is used for neutrons and protons,
thereby ensuring isospin purity of states but also giving
a larger neutron mean-square radius: (x )„&(r )&. For
densities with the observed property (r )„=(~ ) p,
Mi/(r ) =g (N -Z).

with

b,') ——b, q (1 P",)P ~i P~i-q), (18)

N (U) = =2 NZ (II + 2 M ) Pz(np), (19)

and where nas means evaluated with a product
(i.e., nonantisymmetric) wave function. On per-
forming this we obtain

2

( )p
52

&y')

Q2

"Zr 208pb

15/4 393/82

71/18 1086/208

41/10 693/126

where N, Z are the neutron, proton numbers of the
parent and Pz(np) is the average space-exchange
integral for the operator —,'[f (r, ) —f (r;)] 'v(r„).
This is explicitly defined and evaluated in Appen-
dix A.

III. EXPERIMENTAL EVALUATIONS OF SUM RULES AND

COMPARISON WITH SHELL-MODEL PREDICTIONS

(with Pauli principle)
(y 2)

&D')
(Pauli principle ignored)

Mg

(a (Z)) 2N (Z)
a 2/m a 2/m

&N, (X))
~/m

Two-body part of z'/

&S ')
(y 2)

2.82

7.5

1.16

22.5

4.57

3.32

2,79

5.00

17.3

4.80

52

25.0

19.5

4.78

If higher multipole contributions and finite wave-
length modifications are ignored, the absorption
cross section gives N", M" through the relations
fodE =(4v'e'/hc)N"=0. 288N" and f(o/E)dE
=(4v' '/ )

For experimental numbers we refer to "'Pb,
where the data" is especially good. The two inte-
grals from 7.3 to 26 MeV are 3.48 (+0.23) b MeV
and 0.251 (+0.020) b. The contributions outside
7.3 to 25 MeV can be estimated on the basis of a
Lorentzian shape, which gives an excellent fit to
the datainsi, d e this range. (A Breit-Wigner shape
gives an almost identical fit, but has the proper-
ties that it does not vanish at zero energy, and
fodE diverges. If the shape is cut off at zero en-
ergy and at a large positive energy, say 50 MeV,
then it is essentially equivalent to the Lorentzian
in the present context. ) This fit implies that the
region above 25 MeV increases the two integrals
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by 13 and 4% while the region below 7.3 MeV in-
creases them by 1-,' and 5% respectively. How-
ever, there is data below 7.3 MeV suggesting that
the latter are too large; we estimate the correct
values to be ma and &2%. The resulting value
of jadE is 4.03 b MeV, implying N"=1395 MeV
fm', or 36% larger than the kinetic energy value
2w'e'kNZ/mcA Th. e value of f(a/E}dE is 0.267 b,
implying M =93 fm'.

A. Non-Energy-%weighted Sum hf" = (S )
2

If we use the oscillator, and allow different os-
cillator parameters for neutrons and protons,
then

(20)

(5)') =135 fm'. (22)

We have results" for E1 integrals for the case
of a Woods-Saxon potential Vo[1+exp(r —a)/
(r,A"'}] ' with parameters a=0.60 fm, r, =1.30
fm Vp 43 MeV for neutrons, 58 MeV for protons .
In fact, integrals are given only for those transi-
tions which are nonzero in the oscillator. For
these, the energy-weighted sum rule is 0.935
times the classical sum rule, indicating that other
transitions account for 6.5 jp. Since these transi-
tions will have energy ~35~, the correction to
(5)') is 2/0. For the oscillator-type transitions
alone (I)2) =137 fm~, so we deduce

(I)') =140 (a2} fm-. (23)

This particular Woods-Saxon calculation corre-
sponds to too large (r')„, as one can see by com-
paring with a calculation" which is chosen to re-
produce (r')„=(r')~=(5. 2)4' fm', and particle
energies a=0.75 fm, r, =1.18 fm (neutrons), 1.26
fm (protons), V~ = 51 (+I}MeV (neutrons), 61 (+1}
MeV (protons). The small variation (+I MeV) in

If we choose the parameters to reproduce the ob-
served rms proton radius (r')~'" = 5.42 fm and
assume that the neutron one is equal, then we get
(using the values of (r')„, (r')~ in Table I): 5~„
= 7.75 MeV, Se& = 6.75 MeV. Inserting these in
(20) gives

(21)

A better value is obtained by choosing the param-
eters to reproduce the radii of the higher orbits
that are "active" for E1 transitions, i.e., are al-
lowed to contribute to ( S') by the Pauli principle.
From a detailed study" of overlaps of oscillator
functions and Woods-Saxon functions chosen to fit
observed radii and particle energies, we find her„
=9 MeV, Aco~=7 MeV, giving

values of V, from orbit to orbit arises from fitting
observed ener gies accurately. Unfortunately Vp

may be different for two orbits with large E1
transition, so this transition does not obey the
classical sum rule. However, the effect shouM
be small since the variation is small. The os-
cillator-type transitions of this calculation give
(B') =128 fm'. (Note that Ref. 15 places the j»„
state 2 MeV higher than Ref. 13, from evidence
on spectroscopic factors. This decreases the
transition strength to the i»» state by 24% and
decreases (I)') by about 3/0. ) Allowing for non-
oscillator transitions finally gives

( u ') = 131 (+2}fm'. (24)

B. Energy-%weighted Sum N

Let us consider the ratio P" of potential to ki-
netic energy contributions to the ¹'sum rule.
From (10), (12), and (19)

P" = -(Zm/@2}(8+2~}6:,. (25)

This ratio is an experimental quantity, viz. , the
fractional increase in the integrated photonuclear
sum over the classical kinetic-energy part. Re-
cent data». » on 2P8Pb»~Au ~8~Ta ~65Ho

and "'La suggest that it lies in the range 0.25-0.4.
The actual integrated cross sections to 25 MeV
are 10-22%%uo above the classical limit. Extrapola-
tion to higher energies with a Lorentzian shape
fitted to o(E) below 25 MeV gives an increase of

Thus, we see that the shell-model evaluation of
(Q') is closely determined at =131 fm', once the
potential is chosen to fit obvious parameters like
(r')~, (r')„,and particle energies. This value
needs to be reduced by 29% to fit the observed
value 93 fm'. This reduction is much larger than
any uncertainty in shell model, or experimental
error in the observed value. Thus we deduce that
the shell-model value of (B') is reduced in prac-
tice by 29% by correlation effects.

A possible objection to our shell-model evalua-
tion is that we have used different wells for. neu-
trons and protons, so the wave function does not
have pure isospin. First we note that using the
same oscillator well, and imposing the condition
that Sco reproduce the mean of best overlaps for
neutrons and protons (K&o= 8 MeV) gives essentially
the same value. More important, however, is the
fact that the quantity (5) ') itself involves no evi-
dent relation with isospin purity, since it is re-
lated to the sum M without isospin distinctions.
It is "observed" in the sense that jdE(a/E)
=0.288(X)'). The requirement of isospin purity
is more critical when discussing separate iso-
spins (Secs. V, VI).
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-15%. For light nuclei, &c 40, data below 30
MeV indicate no evidence for p" &0. Apparently

then, in lighter nuclei the giant resonance has a
higher, more extensive tail than in heavier nu-
clei. This agrees with the fact that o(3E~/2)/o(E~)
is of order 0.3 in light nuclei, while, for '"Pb,
the ratio is 0.11, E~ being the peak energy.

Wide classes of forces v;~ give values of
(H+2M) 6:z in accord with the observed range
of values. We defer giving sample values until
the end of Sec. IV, when we present the corre-
sponding values of the M sum rule corrected for
correlation effects.

C. Mean Energy E"

Although Z" is trivially related to the previous
quantities M", N" by E"=N"/M"—, we consider
it explicitly to stress that it differs significantly
from the observed peak energy E~. The observed
value of N"/M" is 15.0 MeV, which is 1.7 MeV
above the energy of the observed peak, 13.3 MeV.
This difference arises from the asymmetry in the
Lorentzian shape fitted to the observed cross
section, especially the high-energy tail. For a
symmetrical shape like the Breit-Wigner one
(o/E) o- [(E —E~)'+ ,' I'] ', the—difference does
not occur, i.e., Z"=E~. From the viewpoint of
line-broadening theory, a difference between E"
and E~ is expected, viz. , the second-order shift
associated with the spreading width of the dipole
resonance, as described in Appendix B. The dis-
tinction between Z" and E~ will not concern us
further since we will not be considering second-
order effects (see Sec. IV).

IV. EFFECT OF TWO-BODY CORRELATIONS

ON SUM RULES

We have seen in Sec. GI that the shell-model
value of M" =(I)') needs to be reduced by 29% to
fit experiment. Actually, this should not surprise
us if we note the relation M" = N"/E", where E"
is the mean energy of the giant dipole resonance.
For '"Pb, the observed value of Z" is of the order
of twice the shell-model value (ka& = 7 MeV); we
have seen in Sec. III that N" is about 36/o larger
than the shell-model value, so it follows directly
that N "/E" is appreciably less than its shell-
model value.

This reduction in ( &') is not contained in a
theory of the Tamm-Dancoff (TD) sort where the
shell-model ground state is retained. Since this
theory gives a strong shift to E", it is not consis-
tent in the sense that E" is given to higher accu-
racy than ( K)2). A consequence of this is that the
TD evaluation of the N" sum rule is incorrect, as
is well known. In contrast, an RPA evaluation"

A. Qualitative Remarks

We can see by simple qualitative argument that
two-body correlations reduce (S'). We have

(26)

where Z,&= —,'(z,"+zz'), z, &
—=(z,". -z&'). The first

two terms are expected to be unaffected by corre-
lations to a good approximation, while the third
is obviously affected by them. Writing

4 t)t~z~ = z]) + z~

g~g (27)

where nn means summation over neutron-neutron
pairs, etc., we see that a reduction in (B') re-
quires a net increase in this combination. Clearly
the use of antisymmetrized wave functions acts in
this direction since the chance of a nn or PP pair
being in a spatial antisymmetric state is greater
than the chance for a nP pair. (We already know
from Table I that the Pauli principle reduces
(I)') strongly. ) Furthermore, we see that a fur-
ther reduction in ( B~) occurs if nP forces are
more attractive than nn or pp forces. Since this
is a known fact, we may say that we understand
qualitatively the origin of the reduction in ( S')
from its shell-model value. Essentially it is a
symmetry energy effect, and agrees with the ele-
mentary picture that the amplitude of dipole os-
cillation of neutrons against protons is neces-
sarily reduced if neutrons and protons attract

of the sum rule is correct, essentially because,
as Thouless" showed, the ground state in the RPA
theory has correlations in it. As a result, the
RPA evaluation of (&') is smaller than the shell-
model value, as required by experiment. Instead
of using an RPA framework to describe correla-
tions, we will use an alternative and essentially
novel method which takes account of correlations
consistently to first order in v, &. To make an
evaluation of ( B') with this method requires only
the results of a TD calculation and an evaluation
of P".Since the special selection of second and
higher-order corrections included in RPA theory
has not been shown to be physically significant,
the results of the present first-order theory are
as good as those of RPA theory.
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each other.
The two kinds of correlation (Pauli and dynam-

ical) are distinguished by the quantity (D„D~& oc-
curring in (Q'& =(D„')+(D~'& -2(D D~) with

D„, D~ defined below (15). (D„D~) =0 for Pauli
correlations but 40 for dynamical ones.

(28)

where 8'=8-8, =-,'g«~ v~ —Q,. V, , Q= 1
—

I C,&(4,I, and E, is the shell-model eigenvalue
of 40

+o@o= Eo@o ~ (29)

It follows that the correction to the shell-model
value of M is

&@.ID'le. &-&C.ID'IC'. &=-2&@.ID' E 8'IC.).
0 0

(30)

Our problem is to evaluate this correlation effect.
At this point, we could try to proceed in direct
fashion by developing the expression on the right-
hand side. However, there is an alternative means
of evaluation. Recalling that Z is, by definition,
equal to N/M, we evaluate the two quantities N
and E, then take the quotient M =N/E. The merit
of this procedure is that the perturbation expan-
sions and approximations are more readily dis-
played in the quantities N, E than in M. This is
particularly so in the case of N = N(K)+N(U)
As shown by (12), N(K) is just a number, 5'A/8m,
and is not subject to any perturbation corrections.
Since the operator in N(U) = —,'(gl [D, [H', D]]l P, &

is first order in H', it follows that corrections
arising from replacing g by 4, are second order,
whence

N = N&" + O(8"/2hcu), (31)

where N ' =—,'(40I [D, [H, D]] I 4,). The denomina-
tor 28co represents a typical excitation energy of
corrections to 40 arising from the perturbation
a'.

8. Quantitative Analysis

Now we will make a quantitative analysis. We
can do this for the dipole operator referred to well
center or centroid. For economy of notation the
following discussion is made for the former case,
but it applies equally to the latter when D is re-
placed by S and double primes inserted.

Let us write the shell-model wave function as
@„and expand the true wave function Qo to first
order in the two-body forces. If H, =K+ Q,—V; is
the shell-model Hamiltonian and H = K+-,'Q, „~v,~

is the true one, then

Now we turn to E, which we may write

Z = E), -E a~, (32)

where a &,

' is defined as (MIDI P,)'/(Q, ID'I $0)
and satisfies +~a„'=I. Let us discuss separate-
ly the quantities (E~ E,—) and a z'. In lowest or-
der, E, is (4, IHI4, ) while E~ are the energies ob-
tained by diagonalizing H' amongst any near-de-
generate shell-model states of spin 1 . The low-
est of these are clustered around the oscillator
energy h~, the next around 3Sco, and so on. Di-
agonalization of H' in such a cluster is a Tamm-
Dancoff calculation and the resulting values of
(E~ —E,) are the TD energies. Interaction be-
tween clusters produces changes in (E~ —E,}of
order O(8'/25&@), provided only that the original
diagonalizations cause no levels to migrate into
adjoining clusters. An example of a level moving
appreciably out of its cluster is the collective di-
pole state, which separates from the cluster at
1Scu as described by Brown and Bolsterli. " How-
ever, it moves less than halfway to the 3h~
cluster, so that the proviso is met.

The quantities a~' are, in contrast to (Ez -E,),
subject to first-order changes when their TD
values are corrected. Although this is true in
principle, iri practice the changes are very small,
and no larger than second order. There is a
simple reason for this. TD diagonalizations have
the remarkable property that nearly all (&90%}of
the sum +~a~' arises from states in the imme-
diate vicinity of the giant dipole state. In other
words, actual distributions are quite close to the
extreme Brown-Bolsterli" distribution in which
a z' is zero for all states but one, the giant dipole.
In this extreme case, changes in a ~' are obvious-
ly second order, since az is itself first order.
Thus we see that, in the approximation where we
neglect any a),' outside the giant dipole region, E
is given to second order by the TD value, E»
=- Q(E~ -E,) a~'(TD).

Now we check on this approximation by compar-
ing a TD calculation for Pb with the correspond-
ing RPA calculation. " The latter includes almost
all first-order and a selection of second- and
higher-order effects. From the results we find
that E» =11.15 MeV, while ZRpA =10.85 MeV.
The difference of 3% is negligible. Upon more de-
tailed study, we find that la% arises from the
change in (E ~ E,}, and 1—,'% f-rom the change in

a z'. Thus we see directly that the changes in a),2

while formally first order, are no larger than
second order. Only I%%uo of Qzaz~(TD} arises
from the 24 states below 10 MeV, implying a
mean value for a ~'(TD) of 0.003. (If this 'l% were
ignored, the value of ETD increases by only 2.5%
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to 11.42 MeV. ) For comparison, 9% of Qza~'(RPA)
arises from states below 10 MeV, so that the
mean value of a~'(RPA) is 0.004. Thus the change
in distribution is only 2%. In contrast, the RPA
value of M = (P, ~

D'~ P, ) is 1990 less than the TD
value. Thus we see that, to an excellent approxi-
mation, first-order effects bring about a large
change in the over-all normalization of dipole
strengths Q &~D ~ $0), but cause essentially no

change in their distribution. This remarkable
fact means that M may be evaluated as the quo-
tient N "/Ern, ruith corrections effectively of
second order in H'/Zs~.

Before passing on to exploit the formula for M,
we pause to note some interesting features of it
and its derivation.

(i) It may seem odd that the value of M given by
this formula includes first-order correlation cor-
rections due to matrix elements (pp'~ v~ hh'), yet
neither N~' or Z» apparently involve reference
to these quantities. E» certainly does not, since
it involves only (ph'~ v~ p'h). In fact, the missing
quantities occur implicitly in N, but do not arise
explicitly because it is a sum-rule quantity in
which closure is performed, so that these quanti-
ties are removed in favor of the diagonal expecta-
tion value of the commutator [D, [ U, Dj].

(ii) We have mentioned that the RPA theory in-
cludes first-order effects, along with a selection
of higher-order effects. The leading corrections
to it are of the phonon self-screening type (in-
volving two-body matrix elements of types
&pp'( v~p"h) and (hh'(v~h"p)). These "change
E by &0.1 MeV. It has been shown that, at least
for some modes like the monopole one, the omit-
ted terms are comparable with the included ones
and tend to cancel them. Thus RPA results are
not to be trusted beyond first order. For our
purposes of exposing first-order effects, they are
sufficient. The fact that RPA theory includes
first-order effects is reflected in Thouless's
theorem" that the RPA eigenvalues and dipole
matrix elements satisfy the energy-weighted sum
rule to first order. In fact, with self-consistency
the sum is exactly N~'~, which, as we have seen,
differs from Ã in second order.

(iii) We have seen that the essential reason why

the first-order effects on the distribution of a),'
are so small is that the TD values of a~' are very
small for states outside the giant dipole region.
if the correction to a~(TD) is 5a~, then the
correction to a„2 contains the first-order
part 2az(TD)5az, which is small for small
a„(TD). This provides the basis for our
result that the distribution of az' is very little
changed by first-order terms. There is a further
aspect of the corrections to a),' which, although

not needed for our results, is remarkable in it-
self, viz. , RPA distribution follows the TD one in
details, "besides showing the giant dipole domi-
nance. This means that the first-order correc-
tion 6a z to a z tends to be proportional to a ~,
which means that the first-order correction to
&4~( D (4,) tends to be proportional to &C„)D( 4,).
As far as we know, this feature has not been ex-
posed or discussed in the literature. We com-
ment further in Appendix C.

(iv) It is noteworthy that the derivation of the
result M =N~'1/Ern + O(H'/M&u)' does not depend
on any special choice of single™particle potential
V, ; in particular, it need not be the self-consis-
tent potential derived from the two-body potential
v;&. However the usefulness of the result requires
that V,. be reasonably close to self-consistency,
otherwise some of the second-order correction
terms to (E~ -E,) may be large, viz. , those con-
taining matrix elements of H' in which H' excites
a single particle in 4, to a higher principle quan-
tum number. These vanish under self-consistency.

C. Evaluation of Sum Rules for Pb

First let us consider a TD calculation with zero-
range forces (e.g. Ref. 13) such that the E1
strength is concentrated near the observed peak
energy E~=13.3 MeV =1.73h(d with Se = 7.89 MeV.
Because of the zero range, P"=N(U) =0. This
disagrees with the '"Pb data P"=0.36. The im-
plied value of M" is N "(K)/E "rn or 42%%uo less
than the shell-model value N "(K)/k~. The ob-
served value is 29/o less. Thus, zero-range TD
calculations do not constitute a satisfactory fit to
the data, even when they reproduce E~, since
M", P" are too small.

In order to see whether the same criticism
must be leveled at the finite-range calculation,
we estimate P" implicit in such a calculation.

If an RPA calculation were available then, from
Thouless's result" that this gives the correct
value of N' " (assuming self-consistency), we

could obtain P". Unfortunately, it cannot be ob-
tained from a TD calculation so we must fall back
on a direct evaluation from (25) which we can
write as

P"=-A(++2M)„—,Z, (0) F (a/It),
D

where FD(0) is the average direct integral of (A10)
and Es(a/R ) is the finite-range correction factor
defined by (A14).

As an example of a finite-range TD calculation,
we consider the work of Perez, '~ who uses a
Yukawa force of range a =1.55 fm, strength vo
= 40 MeV, and exchange mixture H = 0.025, M



EFFECT OF TWO-BODY CORRELATIONS ON SUM RULES. . . 1989

V. ISOSPIN-RESTRICTED SUM RULES

A. General Discussion

Recently, there has been considerable interest~'
in the separate sum rules for the different iso-
spins of the states excited by the dipole operator.
In this section we set up the restricted sum rules
and then, in Sec. VI, we study the effect of corre-
lations upon them.

We first define the restricted sum rules by

M(T')= g (4,(T', T,)IFly, (T, T,))',
X.(X') (34)

N(T') = g [Z,(T') —Z, (T)]

x&y, (T, T,)IF I y, (T, T,)&,

where the notation X(T') means that the summation
is over states pz(T', Ts) of isospin T' only.

=0.625, W =0.125, 8 =0.225. Choosing the radius
parameter for '"Pb as described at the end of
Appendix A, 8=6.5 fm, (A10) gives m5D(0)/I'
=0.093. The ratio 6's(0)/FD(0) is, from (A15)with
Fermi momentum k~= 1.25 fm ', equal to 0.030,
while Ex =0.75. Inserting these values in (38)
gives P" =0.54.

It may be that this evaluation of P is somewhat
inaccurate [since the method of Appendix A for
6s(0)/0~(0) is based on an extrapolation from
light nuclei]. On using it, the implied value of M"
is 90%%uo of the shell-model value. Thus this par-
ticular finite-range calculation overestimates P
and M". It seems certain that a calculation with
smaller range would reproduce both to better ac-
curacy.

Finally we mention a calculation" where both
TD and RPA results are available for the same v, &.

(Another calculation" gives similar results. ) The
peak energies are (using 5&v = 'l. 3 MeV) 11.5 and
11.3 MeV for TD and RPA (both being about 2 MeV
below the observed peak). The values of fV are
1.54K" (K), 1.23iv" (K), respectively. The value
of M" from the RPA results is 0.74M ", which
is quite close to the value from our first-order
theory, 0.80M ", if we assume that N " is the
HPA value 1.28iv"(K). (Since the calculation has
no Hartree-Fock self-consistency, there is no
guarantee of this, and this probably accounts for
the small discrepancy. )

"reduced" quantities M(ll T'll ):

M(T') = C (TT„ IOI T'T.)M(ll T'll ),
where these may be written

(85)

—2(2T+1)(F')+(F-F'&],

(86)

M(ll T ll ) = —[2(T+1)(F')-(F-F')],

M (ll T+ Ill ) =-,'&F-F'&;

also

[(T'- T,')(&F'F-&+&F-F'&)

+ 2(2T,'- T)(F'&].

&F') =& 0.(TT)IF'I y.(TT)&

For reasons which will appear, it is very useful
to express the operators in Eq. (86) in terms of
isoscalar, isovector, and isotensor combinations
as done in Ref. 6:.

F' =E,' = g C (10; 10I Y0)(P x P) r,

(F') =M, ,' M„--
, F'F- = -2F,F,= g c(11;1-1lYO)(p xp), ,

(39}

(F'F-& =2(M, +M, +-', M, ),

F-F'=-2F,F, = g c(1-1;11lY0)(pxp) „,
(F F+) = 2(MO - Mi+ ~ M2),

where:

M, =--~((px p),) =-', (F,'+ ,'(F F'+F'F ))—-

These results have been given previously. "E,E'
are obtained from E by changing t, to t, t+, re-
spectively. The brackets signify expectation value
taken in the parent state of Q,(TT,), viz. , that
with T= T„e.g.

B. Decomposition into Isoscalar, Isovector, and

Isotensor Parts

j. iVon-Fnergy - Weighted Sums

Since E is an isovector, the Wigner-Ekhart
method can be used to express M(T') in terms of

M, =- —~((px p), ) = ,'(F'F -F E'), —(40)

M, =--8~&((Px P), ) =(-,'(E F'+ F'F )-F,')
= —,'( p ~ p 3F,'& .



1990 A. M. LANE AND A. Z. MEKJIAN

Besides facilitating systematic analysis, the ad-
vantage of expressing M(T') in terms of M„M„
M, is that the model-dependent and -independent
aspects of M(II T'II) are made clear. M, involves
the one-body operator

—,'(F'F -F F")= ,' g t„[—f(r, ) —f ]', (42)

so M, depends only on the neutron and proton den-
sities, p„and p~:

Substitution of (39) in M(II T'II ) gives:

M(II T'II) =&F'& — [T'(T'+ Z) —T(T+ l) -2]&M, —M, &

2T+1
+Gag ~ ~2 2 M2,

We note that the combination (A+ +A ') is a sum
of double commutators:

A'-+A-'=[F', [H, F-]]+[[F',H], F-]
=[F', [H, F-]]+[F-,[H, F']]. (48)

Since N(IIT'Il)~ » No Ni, N, are linear in H=K+ U,

we can again write each of these quantities as a
sum of two parts, one from the kinetic energy E
and one from the potential energy U. First we
consider the former.

(i) Eineti c-energy contribution. Denoting this
by argument K, it is easy to see that

N2(K) =0.

This comes from the vanishing of the operator,
i.e., it does not depend on any model wave func-
tion. Thus:

~a ———,
' r — 2 p„r -pp r (43) N(II T'II, K) = —,'( B(K)) ——[T'(T'+ l) —T(T+ l) 2] N,

(50)
and is therefore essentially model-independent.
In contrast, M, and M, involve two-body operators
so are model-dependent. [The relation between
our quantities and those of Ref. 6 are: (F')
=s(o), M, =~,s(0), M, =n,s(0).]

2. Energy-Weighted Sums

Now we turn to the energy-weighted sums where

N(T') = c2(Tv;; loI T'z;)N(II T'II). (44)

The reduced quantities N(II T'II) are given by ex-
pressions like those given in (36) for M(II T'II)
with the substitutions

2F,'-B=-[F, [H, F]],
2F+F A' = E+[H, E ]+[E+,H]E"
2F-F'-A-'= F-[H, F']+[F--,H]F'.

(45)

Each of these operators B, A', A ' can be ex-
pressed in terms of isoscalar, isovector, and
isotensor operators, exactly as before, with the
result

N(II T'II) = l&B)-,~ [T'(T'+ i) —T(T+ l) -2](N, —N, )

where

(a(z)) =(s'i4 ) g Ivy f(~)l'),
i

N, (K)=((8 /8m) Q (t, +tq -t, t)+)f. (r~)'
s ~ f

(i»)

x [f (r ), v,.']) + ( (e 2/4m) p t.~ I &~f (r() I
'& ~

(B(U)) = -NZ(H+2M)6's,

N~(U) = 8(N —Z )[(2H+ M)6'D —(2M +H)Fs],

N2( U) = 8(N- Z) [(2H+ M)6~ —(2M +H)6:s],

N(ll T'll, U) =-,'NZ(H+2M)S, - (52)

( B(K)) is model-independent but, unfortunately,
N, is a model-dependent quantity, because its
first term is a two-body one.

(ii) Potential-energy cont ibution. If a shell-
model wave function is assumed then, in terms of
the direct and exchange integrals, FD and F~ of
', [f (r, ) —f (—r,-)] 'v, ~, the potential-energy contribu-
tions are (Appendix A):

2T+1+5 . ,2 (46) —[(2H+ M)6D —(2M +H)ys]

x ', Z[T'(T'+l) T(T+ l) -2]

where

No=~(B+-,'(A' +A ')),
N~ =+~(A+ —A +),

N, =(-g B+,' (A' +A +)). —
(47)

2T+ 1
2T

N T', U =-~ NZ H+2M $'~+
(T' —T ') T'

gl

x[(2H+M)6D- (2M+H)6: ]



EFFECT OF TWO-BODY CORRELATIONS ON SUM RULES. . .

We note that. in contrast to N, (K) =0, N, (U) is
not only not zero, but is simply related to N, (U).
For a parent state T= T, the total sum rule,
Q r, N(T', U), depends on the exchange term 5z
only.

2. Potential-Energy Contributions

From (52) we see that for large T, the ratio of
the isospin-dependent part to the isospin-indepen-
dent part is equal to the factor

C. Specialization to the Dipole Case 2II +M P~

With f put equal to -z, Eqs. (43), (49), and (51)
give the model-independent results:

M, = — r'[p„(r) —p~(r)] d'r,

N, (K) =0,

(a(K)) =3'A/4m.
(53)

Oscillator-Model Evaluations

For the model-dependent quantities we may use
(11) and its extensions:

N, (K) =@+M„N,(K) =Su.M, . (54)

These follow from definitions if no negative-ener-
gy components occur when D acts on parent and
analog states, i.e., if DP, (T, T) and Dpo(T, T —1)
contain only components of excitation energy Sar.
Equivalently,

times a factor which is -2T/A, +2/A, +2T/A for
T'= T+1, T, T-1, respectively. For the Rosen-
feld force of range a=1.4 fm 5:D6:z=12 (see Ap-
pendix A), and (2H +M)/(2M+H)=0. 25, so the
first factor is =2. This corresponds to a relative-
ly small splitting, decreasing N(ll T +1II, U) by
about 20%%uo for 'O'Pb. For the Hamada-Johnston
force, the long-range part has (2H+M) =0, so
gives an effect of opposite sign. When the shorter-
range part is included, the net value of [(2H+M)
/(2M +H)] (5a/6'z) is 0.15 so the first factor is
-0.85 for the Hamada-Johnston force.

Unfortunately, there are no data against which
to check these estimates. However, the values
cited are sufficiently small that we may dismiss
this potential-energy source of isospin-depen-
dence as fairly negligible for conventionally used
forces. It is of the order of 10%%uo (or less) of the
isospin splitting of the kinetic-energy term
N(ll T'll, K), if the latter is estimated with the
oscillator.

«IIT'll K)=@~M(ll T'll) (55)
D. Evaluation with Dipole Operator Referred to Centroid

N, (K)= ~5(u(N(r )„-Z(r ) ),
M2=0, (56)

(D') = =-'Ab'
8007%

From (39), (D') =M, --', M, , so the oscillator
value of M, =(D'). Table I gives evaluations of
the various quantities for "Zr, ' 'Pb.

for T'= T -1, T, T+1. (If negative energy com-
ponents occur for the parent, but not the analog,
this is valid only for T'= T, T+1.)

From (11), (53), (54), the model-dependent
quantities are

1. Model-Independent Results

Let us now expose the effect of replacing D by
S =- D+D,. We may approach this problem either
by writing D, as (I/A)(Q, t„)(Qzzz) and regard-
ing it as a (two-body) isovector operator, or by
writing it as [(N —Z)/2A] gzzz and regarding it
as a (one-body) isoscalar. We take the former
attitude since B is then an isovector and we may
use the structure of Eqs. (39) for M(ll T'll ) in
terms of M„M„M3 (note that the formulas
apply to two-body as well as one-body operators).
Let us again denote the quantities referring to &

by a double prime. Since D, cannot change iso-
spin, M(ll T+ 1II ) are unchanged by its inclusion.

From the relations

M(ll T II) = [»M(IIT + ill) -(T-1)M(ll T —ill)]+2(T +1)M„

&D'& = [(2T'+ T+1)M(ll T+ Ill)- T(» -1)M(ll T -III)]+2TMi,1
2T+1

(5V)
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we deduce

M "(II T II) —M(IITII) =2(T+1)IMl' —M ),
(58)

(u') -(D') =2T[M", -M, j.
Also,

If the oscillator potential is replaced by another
shape, we expect that the results quoted for frac-
tional changes in the non-energy-weighted quanti-
ties are not essentially changed. Some insight
into this is gained by rewriting (60) as

M,"-M, =-(2T —1)(M,"-M, ). (59) z,

The merit of expressing the changes in terms of
M, is that the operator is the simplest:

+ 8] ~g p 65

1 ~ 1
(60)

The effect on the energy-weighted sums is ex-
actly parallel. N(ll Tw ill, K) cannot be affected
by the replacement of D by S. Thus the changes
in B (K), N, (K), N, (K) are related. From the re-
sult of Eq. (16),

where the three sums on i are over nucleons, pro-
tons, and neutrons. With the oscillator the three
expectation values are —,'Ab', —,'Zb', —,'Ãb': whence
the second term is minus twice the first, giving
the quoted result M,"-M, = -(T/4A)b2. For any
well shape, the first expectation value is the sum
of the others, so

ne, ~, =,„', '(~+a)((g z,.)')
k NZ k T

& ~'(K)& =——„=&~(K)&—

it then follows that

(61)
(66)

T 2T —1
N", (K ) —N, (K) =—

Ni" (K) —Ni(K) = ——8' T
(62)

k2 T
N"(II TII, K) —N(II TII, K)=—

These results are all model-independent. As
noted in Sec. II, the potential-energy contribution
is unaffected by referring the dipole operator to
the centroid, so N,"(U) =N, (U), N,"(U) =N, (U),
(D"(U)& =& D(~) &.

With the oscillator, there is quite a strong can-
cellation between the neutron and proton terms in
this expression, the result being = (2T/A) times a
single term, i.e., 0.22 for '"Pb. We have seen
in Sec. IDA that the expectation values are insen-
sitive (to within 3%) to change of well shape pro-
vided that the rms radius of the "active" orbits is
unchanged. Thus we conclude that the degree of
cancellation is not essentially changed, and the
oscillator evaluation (M", —M, )/M, = —3/8A re-
mains valid for other wells provided that the rms
radii of active neutrons and protons —especially
their relative value —is unchanged.

2. Oscillator-Model Evaluations E. Experimental Lower Limit on M~' for Pb

An important feature is that this analysis does
not depend on any model so far. Now, to proceed
further, a model must be introduced. The oscil-
lator gives (D, f)) =0, since the wave function is
separable in the two coordinates Do and X). Also,
it gives (D,') = 'bT'/2 Aso

Applying (41) to the case where the operator is
referred to the centroid, we have

M," 1 M," M (II T+ 1 II) M,"
&u') T &K) ) M"(IITII) &n')

M", —M, = -(T/4A)b2. (63)
(6'l)

From (58) and (59) all other quantities follow. ln
particular, from M2=0,

T(2T —1)
4A (64)

Using Table I, (63) gives M,"—M, = —T(r2)/16A
=-3M, /8A. Thus the fractional change in M, is
very small (~0.3% for all nuclei with A ~ 90).
M," rises to 0.05 (B') in heavy nuclei.

M(ll T+ 1 II) (68)

We see that, since the first term is positive, we
have the lower limit

M "/(u'& & 0.16, (69)

Using the experimental va. lue (X& ') = 93 fm' quoted
in Sec. III and estimating M,"=108 fm on the basis
of (r')„=&r')~ =(5.42 fm)' gives
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which is considerably larger than the shell-model
value from (15) and (64), viz. , T(2T- I)/2NZ
=0.05. In fact, there is an experimental observa-
tion" of a cross section -3.3 MeVmb to T+1
states in Pb at energy 25 MeV. This indicates
M(IIT+1II)/M"(II Tll)~ o 0» ~hence

0 18 (VO)

VI. CORRELATIONS AND THE SUM RULES VfITH

RESTRICTED ISOSPINS

A. Sum Rules for Separate Isospins

In practice, the diagonalization of TD or RPA
matrices for separate isospins has rarely been
attempted. If j„j„,j, are wholly occupied,
wholly unoccupied, and neutron excess orbits,
separation of isospins requires that the basis in-
clude states of type (j, j,)~(j, j„)„in addition
to (j, 'j„)~ and (j, 'j„)„.When isospins are not
distinguished, the former may be omitted since
they have no dipole strength. (They are in the
same energy region as the other, so can cause
some splitting and redistribution of strength. )
They must be included to separate isospins how-
ever, and this increases the size and complication
of the matrices to be diagonalized. Only "Ca,
"Sr, Zr have been studied' '" for separate T.
One could also include ~"Pb since only 2 of the
35 basis states of energy 1St' are of type jo 'j„,
i.e., almost all basis states are of pure isospin
(T=22) so that the usual TD results are relevant
to.this isospin.

In view of the absence of calculations for sepa-
rate isospins, it is very useful to have a method
for estimating by other means. In particular, we
may calculate M(ll T'll) as N(II T'll)/ETD(T )

apply the result of Sec. IV for M to separate iso-
spins. (The equations and analysis in the present
section refer to the dipole operator referred to
well center. They also hold for the operator re-
ferred to centroid if D is replaced by R and dou-
ble-primed quantities are used. ) The derivation
is the same, and the correction is second order
if the distribution of az' for the separate isospins
is strongly peaked. [For the few cases mentioned

Of course, since cancellation of large numbers is
involved, and numbers given are subject to exper-
imental error, this result must be taken with some
caution. Further, the physical states involved
slightly violate the condition of isospin purity. If
M," is assigned its shell-model value (0.05(&')),
then (6V) implies M,"=S5.5 fm', which gives
(r')„'"=0 SS(r. ')~"' To. the extent that it is un-
likely that (r') „"'&(r')~' ', so it is likely that
M," exceeds the shell-model value.

—(M„- /if, )[T+1)6 —eD]

+ 2(e, —Tb )M, .2T+1

These may be supplemented by the inequalities
resulting from the positive-definite nature of
M(ll T+ I II), N(ll T+ I II), viz.
N, —N, & —,'(B) (Actu. ally, given one of these two
inequalities, the above relations imply the other. )

As a special case, we have 6+=6 (=6, say);
this corresponds to a simple symmetry-type split-
ting of E(T'), and leads to

—,'(B)=(D')(e, +5) —(M, —M, )6,

N~ = —( D ) T 5 + Mi (eO
+ 2 5) - M26

2T+1
2

6M~+ (e ~bD)M2.
2T-1

2
('I2)

The three relations may be applied to observed
quantities to try to give observed values for the
six quantities, or they may be applied to theoreti-
cal estimates. The input and output are different
in the two cases:

(i) Observed values. Given E(T') and the ob-
served values of (B), (D'), M„ the three relations
are sufficient in principle to determine observed
values of the quantities, N„N„M, . Unfortunately,
this cannot be done in practice since the first
equation gives M, -M, as the difference between
two large numbers, both with experimental errors,
i.e., the first equation essentially confirms that
—,'(B) =(D') e„and gives no new relation. The last
two equations provide relations between the three

where isospins have been separated, '4'" this is
true. j It is important to realize that, while N
=N~'~ to second order, it is not true that N(II T'II)
=N'(IIT'II) to second order since N, (K) has first-
order corrections. Thus, for given E(T') the re-
»tions N(II T'll) = M(ll T'Il)E(T') do not provide val-
ues of M(ll T'll) from values of N(ll T'll), but ran er
constitute three relations between the six sum-
rule quantities N(II T'II), M(II T'II). To separate the
quantities which are readily evaluated from those
that are not, we replace these quantities by the
six quantities Nr, Mr (Y=O, 1, 2). Let us write
E(T) =e„E(T+1)=e, + (T+ l)6„E(T- I) = e,
—Tb Then. the three relations give, using (41)
and (46):

2 (B)=(D )(so+ 5+) —(Mi —M2)6+,

(N, -N, )=-(D') Tb++(M, M, )(e,-+T6+);

(N, -N2)+2
1 N2 = —T5 (D')27+1
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quantities N„N„M, but do not determine them.
If we accept the theoretical estimate of N„ indi-
cating that it is negligible in the last equation
(Sec V.II), then N„M, can be evaluated.

(ii) Theoretical values. First we note that, in
the case of the shell model without two-body
forces, the three relations reduce to (11) and
(54). Putting 6=0, e, =bra:

~(B) ~N ~N
(D') M M (73)

When first-order correlation effects are present,
we assume that Z(T') are given by the Tamm-
Dancoff values ZrD(T'). The quantities (B), N,
are readily specified to second order (Sec. IV), so
the three equations give us three relations between
the four quantities (D'), M, , M, , N, . As we have
seen above, the first equation essentially gives
(D') =(B)/2ZTD (T), so the last two equations give
two relations between the three quantities M, , M, ,
N, . If we insert the observed value of M„ then
M» N, may be evaluated. This last step requires
that the two-body forces used in the evaluation of
N, are consistent with the observed one-body
densities in M, .

In this discussion of the evaluation of sum-rule
quantities for separate isospins, we have assumed
that the mean energies E(T') can be specified and
used as input. The important subject of the iso-
spin splitting of the dipole peak has been previously
discussed qualitatively by Bohr and Mottelson, "
and more quantitatively by AkyQz and Fallieros. '
The next section is devoted to this topic.

At this stage, some remarks on the isospin
purity are relevant. We have noted (Sec. IV) that
it is acceptable to use isospin-impure wave func-
tions (like the self-consistent shell-model wave
function) for the evaluation of (D'), since this does
not depend on its definition or evaluation on iso-
spin purity. For M„M„M„however, the situa-
tion is different because these functions are set up
for isospin-pure states. Further, if one tries to
evaluate them with isospin-impure states„one
can see that drastic undesirable effects may ap-
pear. Thus one should evaluate these quantities
with isospin-pure states (except for the combi-
nation M, —SM„since this is (D').

In zeroth order (i.e. , when working with pure
shell-model states), this means that one must not
use the self-consistent potential, but rather a
nonphysical potential that is the same for neu-
trons and protons. However, in first order the
unpleasant feature disappears since we can as-
sume that the first-order wave function has iso-
spin purity restored to high accuracy, whatever
potential is used. In particular, it is quite in
order to evaluate M„M„M, from the self-con-

sistent potential, if first-order effects are in-
cluded.

B. Specification of ETD (T')

We have seen in Sec. VIA that detailed calcula-
tions of the TD or RPA types have rarely been
done for separate isospins, also that the mean
energies Z(T') are essential input parameters for
evaluating sum-rule quantities.

In the absence of calculations, we try to set up
a systematic prescription for ETD(T') as a func-
tion of A and T'. In fact, this has already been
done, ' and we merely justify and slightly modify
the previous result. The basic starting point is
the Brown-Bolsterli result for the collective dis-
placernent of a state. If matrix elements
(ph '~v~p'h' ') are approximately separable into
a product of the matrix elements gd»d„~ of the
dipole operator, then the collective shift is
gQd»', which is gM'", where M'"=(C,~D'~C,),
the shell-model value of M. In order to apply this
result to separate T' one must check that the sep-
arate Tamm-Dancoff problems have the essential
character of 1p-1h diagonalizations. We now do
this.

First let us consider T'=T and T+1. As an
example, consider ' 'Pb. Almost all of the 1p-1h
states of oscillator energy 15(d involve the excess
orbits so need no supplementary 2p-2h states.
They have pure isospin T (=ground-state isospin).
Exceptions are 1h„, ' 1i»» and 1&11/2 2gg/2. For
each of these, two 1p-1h and six 2p-2h states com-
bine to give one state of isospin T+ 1 and seven of
isospin T. In the isobaric nucleus '"Tl, in which
states T+ 1 occur but not states T, one sees that
the counterparts of the T+1 states are of pure
1p-lh type, viz. , (lh»~, ')~(lf»„)„,(lh»»)~(2g„, ) .
Thus the structure of the T+1 states may be ap-
proached as a Ip-1h diagonalization by considering
the isobaric nucleus. The occurrence of the
twelve 2p-2h states partially disturbs the struc-
ture of the isospin- T states in "'Pb which cannot
be described as pure 1p-Ih superpositions. How-
ever, the effect of these 2p-2h states is very
small. Both of the cited configurations have very
small dipole matrix elements (because of the spin
flip for iA»/, '1iyz/2 and because of poor radial
overlap for 1h»~, '2g», ). For the same reasons,
and because of their higher energy, these con-
figurations couple weakly to the others and have
little effect on the diagonalization of isospin- T
states; in particular, little effect on the giant di-
pole state.

Now let us consider states of T-1 occurring as
dipole excitations of the analog state in "'Bi.
Generally these are mixtures of (1p), (lh) „and
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those 2p- 2h states of the same energy. The latter
have mostly isospin T- 1, and there are more of
them, so there are more T-1 than T states in the
basis (by about a factor of 6). Nevertheless, the
T states have nearly all the dipole strength as
evidenced by the result M(T) =TM(T-1). This is
explained by the fact that the T-1:states have
strength through their 1p-1h components. The
2p-2h states contribute nothing to M(T —1), as can
be seen by writing:

D(T 40}-=T (De-o)+[» T ]eo .
The two-body operator T D gives states T, T+ 1,
while [D, T ] is a one-body operator exciting
mostly T-1 states. We know that diagonalization
of the 1p- Ih and 2p-2h states gives rise to a strong
upward collective shift of at least one state, viz. ,
the analog of the dipole state (isospin T) of the
parent, T (DP,); this is the first of the above two
terms (Si.nce such dipole states are a systematic
feature of all low-lying states of nuclei, we also
expect five more states to separate, viz. , those
of T -1 corresponding to the dipole states of the
five "configuration" states in 20'Bi.} We also ex-
pect that the T-1 part of D(T g, ), which is mostly
the 1p- 1h state D p„also has the same upward
shift. We expect that this state would also have
this shift if 2p-2h states were dropped from the
diagonalization, i.e., the shift results from the
interaction of (lp)&, (lh) „states, just as for the T
states of the parent system.

Now we return to the problem of setting up a
systematic formula for ETD(T') Akyilz an.d
Fallieros' give

E„(T')=E„+,'[Z'(T'+1)-T(-T+1)-2]V,/X
+gM'"(IIT II); (V6)

E,h is the mean particle-hole energy (=h~). The
second term is the symmetry splitting that is al-
may s present to split states of the same conf igura-
tion (or kinetic energy) and different T '. In the
diagonalization of two-body forces amongst the
1p- 1h and 2p-2h states, it emerges automatically
as a collective effect arising from coherent off-
diagonal terms betmeen any given 1p- Ih state and
those 2p- 2h states of the same nucleonic conf igura-
tion. The last term in the formula represents the
collective shift and splitting of the dipole states .
This would also automatically emerge in a numer-
ical diagonalization. The difference with the sym-
metry term is that the latter exists for each nu-
cleonic lp- 1h state, mhile the dipole shift emerges
from coherent effects betmeen different lp- 1h
states. Note that the collective dipole shift con-
tains the reduced sum rule, not M' &(T',0T,); this
must be so since me are dealing with a charge-

E,.(T) =9.2+gM'0&(ll T II),

ETD(T+I) =16.O+gM&'&(ll Z'+ I II).
(76)

Taking the value of ErD(T') from the main peaks in
the dipole strength, we get 15.5 and 19 for T' = T,
T + 1 implying shifts of 6.0 and 2.5. The ratio of
these is less than the value M "(II T+ Ill)&M"&(II Tll)

independent property of H, which does not change
wit T,.

The essential feature of the formula is the ex-
tension to separate isospins T ' of the Brown-
Bolsterli result that the shift is proportional to
sum-rule strength M'0&. The above discussion,
showing that the separate diagonalizations are es-
sentially between 1p- 1h states, justifies this ex-
tension. The only remaining issue is whether the
constant of proportionality, g, might depend on
T' ~ At first sight this seems likely. The diago-
nalization problem for T' = T states involves inter-
action of 1p- 1h states, both between like nucleons
(T=1) and unlike nucleons (mixture of T=0, 1). In
contrast, the problems for T' = T + 1 involves inter-
action between unlike nucleons only, e.g. for T + 1
the problem is essentially a diagonalization be-
tween (neutron-particle, proton-hole} states. How-
ever, for zero-range forces, one can show' that
the combination of W, M P II occurring in the col-
lective shift in the case T' = T is the same as that
occurring in the matrix elements of the T' = T x 1
cases, viz. , (W+M)+2(8+M)(Note , that this is
also the combination occurring in V, .) Thus there
is no general reason from this viewpoint why g
should depend on T' .

While accepting the general spirit of the above
formula, there are two modifications for T' = T + 1
that are expected and required in practice:

(1) It is clear that the form of ETO(T') needs
modification in heavy nuclei. In the form given,
EYn(T+ 1) for "'Pb is several MeV below the
lowest 1 state of T' = T + 1 at '25 MeV. The origin
of this anomaly is easy to find. The value of Epp
relevant for T' = T + 1 is much higher than for
T' = T. The energies of the 1h»g2 1$»/2 and
1Qy y/2 2gg/2 states in Pb are about 13 MeV in
stead of the average of 7 MeV for other transitions.
No such effect occurs in "Zr, since it depends on
a large neutron excess; 1p- 1h states needed for
T' = T + 1 involve excitation across the neutron
excess. For a systematic treatment one ean add
a term 'Czar z+&6» with e» =—,

' T MeV to a sufficient
approximation.

(2) Another modification is suggested by the
calculation" on "Zr. The collective shifts im-
plied by the results suggest that g is smaller for
T' = T+ 1 than for T' = T. E» is about 10.5 MeV
and V, is taken as 120 MeV, whence
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=0.60 from Table I. Thus the effective value of

g for T' = T+ 1 is apparently less by a factor =3.
This is not surprising since the basis of the above
formula is the schematic model in which the inter-
action matrix elements a.re separable: (ph~ v

~

p'h')

z„„zp.h. . Inspection of calculated matrix ele-
ments shows this to apply well to states ph with

large values of z», but less well to states of small
z pit Thus, for the latter states, matrix elements
are more random and less likely to give a large
shift. To go to the extreme case of "'Pb, there
are only two 1p-1h states giving T+1, both with

very small zph. The collective shift is essentially
zero. %'e may take 3g for T'= T+1 for all nuclei
as a working guide. For "'Pb, the value of
M'"(~~ T+ 1~~) is so small that the value of g is of
little significance.

C. Use of Modified Akyuz-Fallieros Formula

and Evaluation of Sum Rules

With modification (1) and using (41) along with

(56), we may write (75) thus:

E„(T')=E„+gM&'&

used for Mo"' —M,'". The best values of Ern(T')
are given in Table II for these two nuclei.

VII. EVALUATION OF ISOSPIN-RESTRICTED SUM-RULE
QUANTITIES FROM EXPERIMENTAL DATA AND FROM

PUBLISHED TD CALCULATIONS

We have seen in Sec. V that, once E"(T') are giv-
en, the observed values of (u'), (B"), M," can be

used, in principle, to deduce the remaining sum-
rule quantities M,", N,",¹,. In practice, because
of errors on experimental values, one cannot do
this; ra.ther one estimates a value of N2(U), then
deduces corresponding values of M," and N,".

Again, we will concentrate on '"Pb. From See.
III, we have the experimental values¹'= 1396 MeV fm'

(79)

To give an experimental value to M,"=,-", (N(r')„
—g(r2)~), we will set (r')„= (r')~, and use the re-
ported observed value (r')~ =(5.42 fm)', this gives
M,"=108 fm'

A. Evaluation of M

+ 5, , „,[e» -(g-g„,)(M&'& -M,"&)].

(77)

From (71) and (77) with the dipole operator re-
ferred to the centroid and ignoring the 6~. ~„
term

YABI E II. Values ofEYD{T') from the modified Akyuz-
Fallieros formula. All values in MeV. V& is taken as
120 MeV.

Input

EgD 6 pg gMO

Output E~D{T')
T —1 T T+1

90Zr
208pb

10.5 1.2 6.0
7.0 -5.5 6.5

12.8 15.9 19.6
8.5 13.3 24.5

The quantity gz„ is the effective value of g for T'
=T+1; as discussed above, we will take gg+y 3g.
g itself is fixed by requiring that the collective
shift for T' = T equals the observed value, which
is about 6 MeV for all nuclei:

gm&'&= 6 Mev.

Eph is tao = 4 1A. '" MeV . V, is usual ly taken to be
=120 MeV, while e» is (see above) = ,'T MeV. With—
these values, and Table I, we find that gM, /T is
about 0.37V,/A, 0.45V,/4 for "Zr, "'Pb, re-
spectively. Thus the net T splitting is reduced be-
low that from the symmetry effect by a factor
=0.41 (Akyuz and Fallieros' quote =0.6). The last
term is negligible for "Zr (due to cancellation of
the two parts, each =1.2 MeV); for "'Pb, it is
dominated by the term mph=5. 5 MeV, if Table I is

N" 422
—,'(27 —I)M,"5 a(r')5 (82)

For "Zr, 5 is 1.1 MeV (Sec. VI) and this ratio is
0.023; for "'Pb, 6 is 0.21 and the ratio is 0.032.
Although the estimate that the factor in square
brackets in Eq. (81) is of order unity or less is
based on Hosenfeld and Hamada-Johnston forces,
it seems very unlikely that other forces could in-
crease this by a factor of 30. [Note that such an
increase would imply N, (U)=N(U). ] Thus we ne-
glect the N2' term and get

(83)

M2 = (eo —2 5) '[2(2T —1)M,"5+¹,], (80)

where 6 is [(V,/A) —(gM,'o&/T)]. We evaluate N, (U)
thus, using (52), (16), and (19):

N, (U) N(U) „( &' „h ' (2H M)8
N(U) N"(K) 2A m (2M+a)6:

(81)

If we then estimate the last factor as of order unity
(as concluded in Sec. VC 2) and use (62) for N2'(K),
we see that N, (U) is of order P"N2'(K). Since all
estimates of P" indicate that it is &1, we have,
with M, = —,

' T(r'),
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=M; [(T+1)5 +T5, ] —&&'»(5, —5 }

+ 2 N," 84

We drop the term in ¹,as small for the same rea-
sons as above; upon inserting values of 6+=0.49,

=0.22 MeV taken from Table II, we find, for

M,"/&B') = 0.47(M,"/& S') ) —0.17 = 0.37 . (85)

Thus we see that the evaluation of M," is essentially
unaffected by the increase in 6, over 6 .

Referring back to (83) and dropping small terms,
we have

M,."/M,"= T5/~, . (86)

Thus we see that M,"/M," is equal to the ratio of the
isospin splitting of E(T') to the mean value. This
comes mainly from the familiar symmetry split-
ting of states of a given configuration [correspond-
ing to the splitting by the term 2V, (t ~ T}/A in the
optical model]. Thus we see that the isotensor
term (which is zero for the shell model. ) acquires
a large value when the most elementary correction
to the model is taken consistently into account,
viz. , the (t ~ T) splitting effect. Of course, it is
quite reasonable that any isotensor effect, which

is zero in the absence of isospin splitting, should
be proportional to such splitting. We note that the
present result is consistent with the previous low-
er limit (69) for M,", viz. , M,"~ 0.16(Q') . Further,
the result implies M(ll T+ Ill )/M" (II TII )=0.2, or
M(T+ 1)/M"(T) =0.01. The observed T+ 1 states
at 25.2, 25.8 MeV have an observed integrated ab-
sorption cross section~ of about 3.3 mb MeV, or
about 0.008 times the total amount observed (4070
mb MeV). This implies a contribution to M(T+ 1)
of about 0.0004M"(T). Thus the two reported
states account for only 4% of the value of

M(ll T + 1 II ) derived from our estimate M," = 0.37& XP).
The calculated dipole strength" of the states (based
on the shell-model configurations 1k„/, 1~yy/g

Ik»&, '2g», ) is about 3 times the observed value,
and about 12% of the estimated M(ll T+ ill ) for a

For ""Pb, using the observed values of &8'), M,"
quoted above, this ratio is 0.37; for "Zr, estimat-
ing &S') by its shell-madel value 2.79&r')/12, the
ratio is 0.10. In each case, the ratio is greater
than the shell-model value by about a factor of 10.
In the case of '~Pb the large value of M," is clearly
very important, while for "Zr the effects of M,"
are relatively small.

Now we consider the effect of the term 6~ ~„ in
(77). We have, from (71) instead of (80),

M"
[(2T+ 1) 2eo+ (2T' —T)5, —(2T'+ T + 1)5 ]

Woods-Saxon shape. (For each state, the transi-
tion matrix element to the T+ 1 component is
[ 2(T+ 1)] '"(d„—d~), where d„, d~ are the single-
particle values for neutron, proton normalized
such that the contribution to M is d„'+d~'.} (For
the oscillator, the factor is 5, equivalent to 20%%uo. )
Since there is a strong cancellation between &G')
and M," involved in the shell-model evaluation (with

pure isospin) of M(ll T+1II), viz. , 0.04M(ll Tll) (see
Table I), it is not surprising that correlation cor-
rections drastically increase the value; in fact,
shell models without isospin purity" chosen to
make &r')„= &r')~, give a value of (&'S') -M,"),
which is =0.20&6'), i.e. , 5 times that for pure
isospin. [The value of M(ll T+

ill�)

= &5)') -M,"+M,"
cannot be given, since it requires M,", which is
not known to us for the mixed-isospin shell model. ]

Our conclusion that the isotensor term may be
large is in conflict with other authors. Some''
have been tempted to hypothesize that the shell-
model result' M, =O of (56) is more general than
the shell model, and can be q.ssumed to hold for
actual nuclei. This is a matter of considerable
importance since, if it were true, one could infer
a value of M," (and thence the crucial nuclear pa-
rameter &r~)„) from photonuelear data We .will
now discuss in more detail the smallness of the
shell-model evaluation of M„and see how this
smallness may be lost when shell-model wave
functions are superimposed. We note that, even
with the oscillator shell model„M, does not vanish
unless the state is of pure isospin (requiring equal
neutron and proton potentials). In Sec. V, we
showed that M, =0 for the case of the oscillator if
no downward dipole excitations from the analog
are allowed by the Pauli principle. This is true
more generally for any shell model under the same
conditions. To show this, and to generally examine
the magnitude of M„ it is best to start from'

(87)

which follows from the equality of the scalar part
of D' in the two terms, plus the fact that the aver-
age of a tensor operator in Q, (TT —1) is (T —3}/T
times that in Q, ( T)T. From thisthe , shell-model
result M,. = 0 follows without any reference to the
oscillator. The condition of no downward dipole
excitations from the analog means that the excess
neutron orbits in the parent are all of one parity,
or the j values of opposite parity orbits differ by
more than one unit (as in '"Pb). When this is vio-
lated, M, is nonzero and positive. For shell-mod-
el states M, will generally be positive (when not
zero) since the action of the Pauli principle in re-
moving certain excitations in Dl Qo(TT, )) can be
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expected to be most pronounced when there are
the largest number of particles of one sort, i.e.,
when Z', = Z'. Thus one expects

& 4.(» 1)
l

-D'l 4.(» I))-

to be larger than &Q,(»)l D'l $0(TT)&, in which
ca.se M, &0. (Note, however, that if the spatia, l
factor is removed from D, the resulting tensor
quantity &

T' —3T,') is strongly negative, so the
result M, ~O depends on the spatial nature of the
operator. ) Let us now estimate M, for an oscil-
lator state for which it is not zero. Consider the
ground state of "'Pb.

The difference between the average of D' in the
parent and analog arises from the downward tran-
sitions 2g, ~,-2f, ~, Ih, f,. . Since these are two
transitions out of roughly 8Z', and since the analog
proton is in the 2g», orbit in only fraction 1/T of
the analog state, M, is =(D')/2T. Thus, even
when not zero, M, is small for shell-model states,
at least those of low excitation in actual nuclei.
(It may be larger for highly excited states, or
those containing mostly one type of nucleon. )

Of course, the fact that M, . is very small for all
low-lying states of pure configuration for physical
Ã, Z does not mean that one can infer M, to be
generally small for two reasons:

(1) Although the diagonal shell-model elements
in M, are small, the off-diagonal ones are not.
Thus, small admixtures of certain excited states
into the shell-model state can increase M, dras-
tically. As a. schematic situation, suppose that
the shell-model state 4p has an admixture of the
form u(QC, ); go=(I+ Q )4o„hwr egeis the tensor
operator such that M, = &Q& . M, is increased by
2o.&Q'&; for positive n, this can be inuch larger
than the original M, .

(2) Superpositions of shell-model states may be
such that there is constructive interference of
their contributions to M, w'ith the result that M,
is much larger than M, of the separate states.

B. Evaluation of Q'I - N~)

From the second equation (71}for the dipole
operator referred to the centroid, we get, using
values quoted above of (D'), M",, M",, 5, for '"Pb:
N, —N2'=- 1000+1850=850 MeVfm'. For com-
Parison, N" (K) is 1030 MeV fm' and the shell-
model value of N,"(K) N,"(K) is 990 M-eVfm' [Table
I and (62)j. The above equations do not permit one
to decide whether the reduction from 1050 to 850 is
due to correlation corrections to N,"(K), or to the
presence of [N, (U) —N, (U)]. Estimating the latter
quantity in the way that N, (U) was estimated above
we find [N, (U) —N, (U)] is of order 0.06¹'(K)= 60
MeV fm'. Thus we conclude that the reduction of

VIII. CHARGE MONOPOLE MODE

The appropriate form off in this case is f=r',
while f is

f= Qt„r, ') T, . . .

The model-independent quantities are from (43),
(49), (50), (51):

(88)

1
N& 4& 2&,

&

(N&r'&„-Z&r'&, )'
g1 4 n P N g

1
-4 N(&r'). —&r'&.') -&((r'), —&r'&,')

-N ~ ((r'). —&r'&,)',
N„,(K) = (h'/2m)A&r'&,

N~, (K) =0,
where the subscript M denotes the monopole case.

A. Oscillator Evaluations

The model-dependent quantities Mgp M@2 Ng,
can be evaluated if the oscillator shell model is
used. Exactly as in the dipole case (Sec. VC1),
we argue that, if F l4,& contains no components
of negative excitation energy, both for parent
and a,nalog states 4„ then all excitations are at
the same energy, 2k+, so

N (llT'll)'=2ff~» (llT'll}

for Z" = T —1, T, 7 + 1, whence:

M„, = (2h(u) 'N~, (K) = ~Ah'&r2&,

N~, (K) = 2k(u»~, ,

M„,=(2k+} 'N„, (K) =0,

(90)

(91)

where h~ = k'/mb' In Table I. II, we give evalua-
tions for these quantities and others for "Zr and
'"Pb, using the oscillator model. The model-
independent quantity M~, may be evaluated more
correctly with realistic densities. If we take
p and p to have the same shape, {1+exp[(r—a}/
c]j ' with a=0.6 fm, c =4.8, 6.5 fm for "Zr,
'"Pb, we find that M„, is reduced to about —,

' of
the oscillator value based on the same (r').

From Table GI, we see that in heavy nuclei the
two-body part of N»(K) is comparable with the
one-body part, that the Pauli principle reduces
M«by about 30%, and that the isovector term in
»~(ll T' ll) or N~( II

T' ll, K) is comp»able with the
leading term for T' = T + 1.

N,"-N2'=850 below the shell-model value of
[N,"(K)—¹,'(K)] =990 may be due either to correla-
tion corrections to N, (K) or the presence of the
potential term [N, (U) —N, (U)j, or to both.
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B. Potential-Energy Contributions

(B„(U))= (&„,/&, )(B(U)) = yR'(B(U)), (92)

These contributions to N(((T'(() are given by
(46), with B(U), N, (U), N, (U) given by (52). The
appropriate forms for the direct and exchange
integrals 5», P„~ for the monopole case are
given in Appendix A. The remarkable similarity
of the integrals to the dipole case means that we
can infer values for the monopole case from those
for the dipole case. In particular, since F~ can
be assigned an experimental value from the poten-
tial contribution to the energy-weighted sum rule,
we can infer a value for the monopole parameter
F„~. We have, from Appendix A,

a/R 0.20 0,26 0.31

Z~(a/R)
E~(a/R, aI ~)

0.44
0.78

0.35
0.72

0.30
0.68

typically 20% less than Fs(a/R) —see Tables lV
and V—we have

TABLE IV. Finite-size reduction factors for the dipole
case as a function of the range a of Yukawa force to
nuclear radius R. The values of a/R correspond to
heavy, medium, and light nuclei. The exchange factors
E& are calculated with a@+=i.75. (For a =1.41 fm,
this implies a Fermi energy 32 MeV. ) For this value,
the ratio 8'z(0)/Pz(0) is 0.037.

whence: P~ = 0.8P (94)

p
(B (U)) 3R' (B(U))F (a/R)
(B„(K)) 5(r') (B(K)) Fs(a/R)

With (r ) = —', Rr' and R =Rr —0.5 fm and F„s(a/R)

(93}

90Zr 208pb

91/4 10 185/252

g4
39/2 5055/164

TABLE III. Oscillator evaluation of various quantities
relevant to the charge monopole problem for 0Zr and

Pb. The same oscjllator parameter 5'~ =5' /mb j,s
used for neutrons and protons, in order to be consistent
with the fact that the states are assumed to have pure
isospin. Note (i) for densities which have the observed
property (r ) „~(r )&,f (r2) end (ii) for realistic den-
sities (see text), the model-independent quantity I&& is
such that M&~/(r2) =0.60, 2.75 for 9 Zr, 208Pb, respec-
tively.

As seen in Sec. III, experimental values" of P
for A. &130 lie between 0.25 and 0.4. For "'Pb
the value is 0.34, corresponding to (B„(U))/
(B„(K))of 0.23.

IX. EFFECTIVE CHARGE AND EFFECTIVE MASS

A. Effective M1 Charge

The exchange forces responsible for the increase
in the N sum rule from its classical value for the
dipole excitation are also responsible for a re-
normalization of other electromagnetic properties
of nucleons. It is interesting to note that the ef-
fective M1 charge involves the same radial in-
tegral J r'C'(her}v(r)dr which appears in the
N sum rule of the dipole and monopole modes
[in the integral 5:s(0) of (A14)]. This result is
obtained by considering the exchange current
defined by

N (r') -S(~') f
(N -Z) (r2) (y2)

1.40 1.31
A

J,„= U, g ier,. (-,
' —t„) (95)

(with Pauli principle)
(~2) 2

5.70 10.0 When evaluated using a Slater determinant of
plane waves, the exchange current of an excess

(Pauli principle ignored)
(y2) 2

(y2) 2

N~P(K)
( l. ~)

5 /m(~2)

6.85

0, 88

45

14.3

4.75

104

TABLE V. Finite-size reduction factors for the mono-
pole case a function of the range a of Yukawa force to
nuclear radius R. The three values of a/R correspond
to heavy, medium, and light nuclei. The exchange fac-
tors I'z are calculated with aha =1.75. For this value,
the ratio $&&(0)/8'»(0) is 0.037.

N„,(K)
I2/m (y2)

Two-body part of N~g(K)
a'/m(~ )

7.0 50

21
Z»(a/R)
E&J;(a/R, ak I,-)

0.20

0.22
0.65

0.26

0.14
0.57

0.30

0.10
0.53
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neutron with momentum kF is

(J., (kF)) = -Z (e/2)kr

z' g')C' k„r U x A'H+2M .

respectively, are

d= (k„k; ivik k,),

e„(k,)= g (k,.k„~vjk.k,.)/g 1,
ki

(101)

Defining the effective iM1 charge by equation

(i,„(k,)) = (e/m)e+, k„ (97)

the quantity ee*, is simply related to B(U)/B(K) =- p

of the dipole N sum rule. This relationship is,
using (A4), (A14), and (53),

2e~, =
I (98)

25@, = P. (99)

The last result has also been obtained by Fujita
and Hirata. "

Using the experimentally determined values" "
of P, which range from 0.25 to 0.4, we find that
exchange currents change g, by 12 to 20/0. The
exchange currents arising from a one-pion-ex-
change potential result in P=0.2 and 5g, =0.1.
For a Rosenfeld force of range g =1.4 fm and
depth u, =48 MeV, /=0. 65 and 5g, =0.32, while
a Serber mixture gives P =0.4 and 5g, =0.2. The
difference between the phenomenological poten-
tials and the one-pion-exchange potential arises
from higher-order processes. For example, the
charge-exchange part of the Hamada-Johnston
potential results in P=0.4 and 5g, =0.2, an in-
crease of 100% above the one-pion-exchange part
of this force.

and is valid for a force of arbitrary range and

shape. In arriving at this result we have assumed
an N =Z core. From it we can also obtain a con-
nection between the change in orbital g factor
Age due to exchange currents and the P, which

reads

where we ignore the difference between kF for
neutrons and protons that exists when N+Z. The
direct integral is independent of the velocity,
while the velocity-dependent exchange integral
can be reduced to Van Vleck's form"

3 2

e (k~)=, C(k~r)v(r) dr.o, F g3 F k y.
(102)

Comparing the resulting expression of t/' with a
quadratic approximation in k, we find that P„
follows the quadratic law very well for k s kF.
If we next define the isoscalar effective mass
m* at the Fermi energy through the relation

m nz

no* k„' ak
(104)

we obtain the following equation:

m/m* —1 = —,'Am (W —4M + 2B —2H)

~'C' kFr v r dz 2',". (105)

Comparing this equation with that for P B(U)/=—

B(K) of the dipole N-sum rule, we arrive at the
result

For a Yukawa shape, the e (kr) can be evaluated
analytically and is

9v, 1 +k~'a' —k 'a' 1+ (k„a+k~a)'
4H'k~' 2k a 1 —(k a —kra)'~

-2tan-', ,",, +2k & .2k„g
F

(103)

B. Effectwe Mass
m/m ~ —1 W+2B

P 2p +4M (106)

V„=A(W —~M + 2B —',H)d—
-A(~W —M+2B —2H)e (kr). (100)

The direct and exchange integrals d and e (kz),

The radial integral J r'C'(k~r)v(r)dr also appears
in an evaluation of the effective mass at the Fermi
energy. However, in this case, Wigner and Bart-
lett forces will contribute. An evaluation of the
one -body isoscalar velocity-dependent potential
energy t/ of a nucleon in orbit n interacting with
a Fermi-gas core results in the following expres-
sion:

m+ 1
m 1+4/ (107)

for these forces. With P taken as 0.33, the median
of the range of experimental values (Sec. III),
this gives m*/m =0.8. Values cited for typical
occupied states are typically 0.6 or 0.7. For
orbits near the Fermi surface, there is no clear
cut value from experiment or theory although
there is a suggestion' that m*/m increases here.

For both a Rosenfeld and a Serber mixture and for
the one-pion-exchange potential the factor (W+2B)/
(2H +4M) =-,', so that
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X. CONCLUSIONS

In the present work, we have considered those
aspects of dipole and monopole sum rules where
previous studies were incomplete or need re-
vision, especially the following:

(I) Lack of precision in the Literature about the
extent to which the shelL model fits, or fails to
fit, the value of M"=—(xP) derived from o z. We
have evaluated this quantity for '"Pb with a shelj.
model, chosen to reproduce the rms radius. The
conclusion is that the observed value is 30% less
than the shell-model value.

(ii) Lack of systematic discussion of the effect
of two body co-rrelations on sum rule qu-antities,
esPecially M. Mostly, correlations have been
taken into account with the RPA method, which
includes a restricted class of correlation diagrams
to infinite order. In such studies, the effect of
correlations is usually left implicit. Neither the
shell-model nor RPA value of (s') are quoted in
many publications. Various incidental questions
are unanswered, e.g. to what extent are the effects
of correlations taken into account by the lowest-
(first-) order terms alone? We have chosen to
make a systematic first-order study, rather than
use RPA. One reason is that it turns out that
the first-order effects can be evaluated simply
in terms of a quantity (Z») known from a, Tamm-
Dancoff calculation, and an evaluation of N',
the shell-model value of N: M N"'/Z». (Other
reasons are cited in Sec. V. ) It seems quite
clear nowadays that the higher-order terms in-
cluded in an RPA calculation are without signifi-
cance, and can be dismissed as an unnecessary
refinement (at least for high-energy modes). It
is more instructive to work with an explicit
first-order treatment of correlations.

(iii) Lack of attempt to evaluate the effect of
correlations on the isotensox tenn Mz. It has
been pointed out' some time ago (and subsequently
quoted"' without extension) that the shell model
implies M, =0 for most low-lying states of nuclei.
This leaves the crucial question: Does the small-
ness of M, depend on the use of the shell model,
or is it a property of a wider (correlated) class
of wave function? If the latter is true, this is
of great importance, since one can hope' to eval-
uate M, from data and thereby determine an ex-
perimental value of (r2), the neutron rms radius.
In Sec. VI, we have used our first-order correla-
tion theory to estimate the effect of correlations
oniVI, . We find that a large value of M, is induced
by the simplest correlation effect, the splitting of
centroids of different isospin states of the same
configuration. This means that the result M, =0
is a shell-model pathology, and cannot be used for
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APPENDIX A

Potential-Energy Contributions to N Sums

In the text, we see from (46) that the evalua-
tion of the potential-energy contributions N(ll T' ll,
U) requires the three quantities N, (U), N, (U),
N, (U} or, on using (47), B(U), A" (U), A '(U).
The quantity B(U) was already implicitly met
in Sec. II. From (44), (45), and (7)

(Al)

where b, , is given by (8). If the parent wave func-
tion is a Slater determinant, then:

(A2)

with

b(, b, , (1 -P(,=—P;,P,')), (AS)

where nas means evaluated with a product (i.e. ,
nonantisymmetric) wave function. On performing
this

(B(U)) = NZ(H +2M)5s(VP), - (A4}

where N, Z are the neutron, proton numbers of
the parent (N =~2A+T, Z = —,'4 —T) and 0s(np) is

other models.
(iv) Lack of attempt to relate the dipole and

rnonoPole sum mules. The monopole sum rules
are crucial for the calculation of Coulomb mixing
effects, and they have often"" been discussed.
However, no attempt has been made to obtain
values of parameters from a parallel study of
the dipole problem where experimental data exists.
It turns out (Sec. VIII) that the two essential un-
known parameters of the N-sum rules (the direct
and exchange integrals over the two body force)
are identical for the two modes for large systems.
Although less directly related, the M-sum rules
for the monopole problem are illuminated by the
study of their dipole counterparts, e.g. the fact
that correlations reduce the dipole M by 30%
means that one must allow for a similar kind of
effect in the monopole case. The evaluation of the
monopole sum rules will be given in a study' of
Coulomb mixing in nuclei.
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the average space-exchange integral

Pe(np) = g (u (r, )((). 8(r, ) ~ ,'[f(-r, ) f(r-~)]'v(r„)(u (r, )ua(r;))/ P 1, (A5)

where z, P label proton, neutron spatial orbits.
For A ' and d4', we find, from (45),

A-'(V) = g (b, , +x,—,.'),

A'-(U) = g (b„+x,',-),
idj

where x, ,', x,",. are obtained from b, , by replacing the isospin factor by 2t;, t, , ——,'(t, , + t, ,), 2t, ,t, , + —,
' (t„+t»).

The expectation values emerge as

(A7)

where 5'e(pp) is an exchange integral like 5e(np) above except that both orbits are proton orbits; similarly,
5:e(nn) contains neutron orbits. 5v are the average direct integrals

5'v = g ( u(r, ) 8u(r&) ~ zIf(r, ) -f(r&)]'v(r, &) ~u (r, )u8(r ))/g 1. (A8)

The terms n = P are included in the summations.
If we assume that the averages in $D, 5~ are the
same irrespective of whether neutron or proton
orbits are involved, then we get expressions (52)
in the text.

where

g(x) = x'(1 ——,'x+,x')

= x'(1 —zx)'(I + -'x) .

For the Yukawa potential

(All)

We may write this as the product of the leading
term for large g times a finite-size correction
factor Fv. If a is the range of v(r),

5'22(a/R) = Fv(0)Fv(a/R),

N (0) = l fId)r vtr), '
0

(A10)

2

Fv(a/R) = g(x)v(xR)dx x'v (xR)dx,

Evaluation of &D, Fz in the Dipole Case

From the snort-range nai-.ure of the Wo-body
force, we may evaluate these with the Wigner-
Seitz procedure. This means replacing spatial
states u by plane waves within a sphere equal
to the nuclear radius R. (The precise value to
be assigned to R is discussed below. ) The direct
integral becomes

IF = (2 N') *-', f d'r, I d'r, (F, -2,)* ( „:),
(A9)

where

v(r) = v, (a/r) pe[x-(r/ )]a,

8'v(0) = 3 (a/R)'a'v, ,

FD(y) = (1-3y+ rY)

(A12)

—e '/N (6y'+30y'+72y'+90y'+45y'),

where y=a/r Values in. Table IV show that the
finite size corrections are appreciable.

The exchange integral 5~ is the same as FD
except that the integrand includes the Wigner-
Seitz exchange function C (k„~r, , ~

) where k~ is
the Fermi wave number, and the function C(x)
is (3/x)j, (x) = (3/x')(sinx -xcosx). We have

FM(a/R} = Fe(a/R}PM(0}, (A14)

where all of these quantities are obtained from the
corresponding direct quantities above by multi-
plying v(r) by C'(kF (r ~). This factor causes the
integrand to decrease much more rapidly with
increasing r, &. This means that the finite-size
corrections are less important (although still
appreciable). If we take kr corresponding to
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Fermi energy 32 MeV (i.e., k~ =1.24 fm '), then
we get the values given in Table IV. As expected,
the finite-size correction is less crucial (but still
important) for 6:s.

It is evidently true that the estimates depend
quite sensitively on the value of the range a, and
therefore put a premium on our choice g = 1.4 fm.
It is noteworthy however, that any components
of v(r) of shorter range will be strongly suppressed
by the fourth-power radial weighting in the inte-
grals.

For a Yukawa force, the ratio of exchange-to-
direct integrals for an infinite system (a/R =0)
can be evaluated explicitly:

5,(0)/S, (0) = —,'~' —ln -- -1, (A15)

where I.=l + ,'u' and—c(—= (ak~) '. For c(=0.4, 0.5,
0.6, the ratio is 0.014, 0.027, 0.040, respectively.

Check Against Levinger's Shell-Model Results

for 0, Ca

Levinger' has made detailed shell-model calcula-
tions of B(U) for "0, 4'Ca. For a certain recipe
for the relative values of parameters k~ and R of
the Fermi-gas approach and of (r') of the shell
model, the former without finite-size correction
reproduces closely the value of the latter. The
recipe is that (r ) = ~5Rz' and R~ = (9')~'/2k,
where we add the subscript F to R to denote that
it satisfies these two relations. With this recipe,
the Fermi-gas approach gives values that are 4,
8%%u() too high for "0, 'OCa when Rz = 1.2A'~'. For
R~=1.5A'~', the values are 9 and 13%%uo. Thus the
Fermi-gas model without the factor F~ and with
the Levinger recipe for relative values of (r'),
k~, R is accurate to within about 10%%uo for a wide
range of choices of R~. Let us note that the only
occurrence of R in B(U), when Ee is removed,
is the factor R '. Thus, comparing our expres-
sion (including Ee) with Levinger's (without Es)
for the same value of k~a, we find that they are
the same if

rule Rr'=e(r') gives Rz=1.32A'~' fm for A=40
(corresponding to k~ =1.15 fm '). Thus R = 1.13Av'
fm.

Let us now choose R so that our formula re-
produces the shell-model value in the case of ~Ca.
As mentioned above, this is smaller than the
Levinger value by 8-13/o depending on R~. Let
us take 109o for Rz = 1.32A' ~ fm; then we find R
should be 3% larger, viz. R =0.89R~ = 1.17A') ' fm
for "Ca. We note that this value gives Rk~=4. 55,
which is close to the value implied by the argu-
ments used in Ee(0.36, 1.75), viz. 4.85, so we have
consistency.

Having established the parametric values that
ensure that our formula gives the correct value
of B(U) for ~Ca, it remains to extrapolate to
larger nuclei. Since, for very large R, F~- 1 and
we know that the Fermi-gas approach becomes
exact, we must not extrapolate on the basis of a
fixed ratio R/R~. More appropriate is a fixed
difference: R =R~ -0.50 fm. For "'Pb, this
prescription gives a value 5% less than that from
a simple application of the Levinger prescription
to these nuclei. [This follows since Ee =O.V6,
(R/R~)' = 0.80.j

Thus our conclusion is that our formulas are
accurate (for Ee at least) if R is chosen as Rz
-0.50 fm, where R~ = (9')~'/2k+) and the shell-
model density is such that (6) =zR~'.

Monopole Case

6'„(a/R) = (qsR') ' ,' jf Jf d'—r,d'x&(r, ' -r~')'v(r, &)

=E„v(a/R)F„v(0), (A17)

where

We evaluate the average spatial integrals F»,
8:» as in the dipole case by considering a wave
function that is a Slater determinant of plane waves
distributed over a sphere of nuclear radius R;
this gives

E (a/R, ak )R '=(R ) '. (A16) 6 "
4P„v(0) =

5
r'v(r)dr .

0
(A18)

In Table IV we have used gk~ =1.75. We see that

Ee(x, y) is not very sensitive to x =0.25 for fixed

y =1.75. We expect a similar lack of sensitivity
to y for fixed x. [Since the factors C' and v in

$~ act similarly as radial cutoffs of ranges k~ ',
g, respectively, we expect them to enter S~
roughly in the combination (1/a+k~) so that Ee
will be fixed by R(1/a+kgb) =—(1+y)/x. ] Taking the
value Ee (0.36, 1.75) = 0.64, we find that the condi-
tion is satisfied if R=0.86R~. For a shell-model
system with (r') e(lual to its observed value, the

F» is the correction factor for finite nuclear size,
and a is the range of v(r). For infinite size,
R- ~, F~-1. For finite R:

F„(a/(()= f )(„(x)o(x())ch ( r'u(xR)dx
0 0

(A19)

where

x =-r/R,
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g„(x) = x'(1 ——,'x)'(1 + 5x)

= x'(1 —](5x +qx' —1gx';,'sx') . (A20)

g„(x)= ~E'I, (r) . (A21)

g„(x) has a strong maximum at x= 1. Unless v(r)
cuts off very sharply at range @=g, the factor x4

in the integrands means that the major part of the
integrals arises from well beyond y =g. For the
Yukawa form

v(r) =v —e '~'a
(A22)

This is simply related to the function I~ of earlier
work":

consisting in the replacement of the true ground
state (t)0 by the shell-model state 4,. It is im-
portant to realize that even the exact value of the
mean energy E is not equal to the energy Ep of
the physical giant dipole state; we now consider
the relation between these two quantities.

First we define the strength function s(E) de-
scribing the distribution of the state D

~
(j)0& /

(P, ~D'~ (j)0&'" amongst eigenstates (j)), of H:

( )
(y )D2~y ) Pk( )9

where the square brackets indicate average over
states Q& near energy E. A standard result of
line-broadening theory is

the maximum of r'v(r) is at r=3(2. Taking a=1.4
fm, and g = Sg, 6g for typical light, heavy nuclei,
the maximum of g„(x)v(xH) is at r = 1.5a =0.5B
for the light nucleus, at x=2.1g =0.35& for the
heavy nucleus. The explicit form of I'» for the
Yukawa form is

(1/2s)i'(E) =(E.~ -E)"-;r. ~

r(E) =2v[(n
~
[H, D]

~ y,&'],p„(E),

g(3) ~ J
((/1 )1(3') 33

(B2)

Euv(y) =1 V3'+253' Vy +F3'
e-2/y(5 y +20y2 + 135 3+ 105 4 + (05 5)

where y =(2/It. For the above parameters, the
last term with the exponential factor is negligible
for light and heavy nuclei. In Table V, we give
values of I'"„D. Even for large nuclei this is «1,
showing that the finite size correction to 5» is
always of crucial importance.

The exchange integral &»(a/ft) is the same as
the above 5» except that the extra function
C2(err, &) occurs in the integrand. This cuts off
with increasing y, ,, so that f~E is less subject
to finite-size modification than 5». The entries
in Table P show this.

An important feature of the above results is
tha. t the integrals in F„v(0), 5:»(0) have exactly
the same integrands as in the dipole case. The
relations between corresponding quantities are

5'„(0)='-,'R'P (0),

5:»(0)= '-,'R'5:s(0) .
(A24)

Evidently the values given for the ratio $s(0)/
5:D(0) apply to the monopole case also.

APPENDIX 8: RELATION BETWEEN THE MEAN
ENERGY J." AND THE PEAK ENERGY E„

The Tamm-Dancoff energy E» may be regarded
as an approximate evaluation of the mean energy
E=($0IDHD ((j)g /((t)0~D2~ P0&, the approximation

Here the states n are eigenstates of QIIQ where
Q projects out the state D~(t)g/((t)0~D2~(t)g'". In
general, 4 and l vary with energy E. However,
from normalization and the definition of E, we
have

( s(E)dE =1,

(B4)

These are evidently satisfied in the special case
when the set of states n have uniform character
for all energies; thenI'=constant, 4 =0.

As a more realistic case, we may consider
that ~, I have a mild long-range energy variation
than s(E) has a peak at energy E2, given by

E2 =E+n(E2). (B5)

Since I' cuts off at E =0, this gives a tendency for
~ to be negative. The fit to the data in terms of
a Lorentzian shape described in Sec. III implies
an experimental value A = -1.I MeV. (A similar
value results from using a Breit-Wigner shape
cutoff at E =0 and 50 MeV. )

A positive contribution to 4 comes from the
kinetic-energy part of II and those 1p-1h states
with energies Epj, scattered around an energy 6
below E~. We find

(B6)

where the angular brackets denote mean value over
1p-1h states with weight factors ~»'. For the
oscillator, where all E,5 are equal (=Il(d), this 6
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is zero. For a more realistic set of levels we
find (E»'& —(E»)' is of order 1 MeV, so, with
5=6 MeV, 4 is =30 keV, i.e., negligible. Thus
we i;nfer that b, is probably dominated by the po-
tential-energy part of H. This is likely to cor-
respond to intermediate states n of energy above
E~, i.e., to a negative value of 4. However, we
have not pursued this numerically to see if the
experimental value (=-1.7 MeV) can be repro
duced by the theory.

APPENDIX C: INSENSITIVITY OF DIPOLE STRENGTH
DISTRIBUTION TO FIRST-ORDER CORRECTIONS

In Sec. V, we mention that comparison of TD
and RPA results show that the first- and higher-
order corrections incorporated in the RPA have
very little effect on the distribution of dipole
strength, although the summed strength is re-
duced by 20/p. We refer to calculations" on "'Pb
for illustration. For all states, the amplitude
corrections are of the order of 10% of the TD
values. Since the TD values are 10 times less
for states below the peak than at the peak, this
means that the corrections tend to be proportional
to the original values, thereby preserving the
distribution. Even fine-structure details in the
below-peak region are preserved. The only ex-
ception is that there is destructive interference
in the peak region (reducing strength by 20k),
while it tends to be constructive below the peak,
increasing strength by about 10%.

Formally the first-order change in (O1[D ~ 4,)
arises from changes in 4 & and 4,. Since the for-
mer change contributes zero in the oscillator
approximation (no transitions of energy other
than h(p), the latter is expected to dominate, so

Ho-Eo
(C1)

= &&,~&p h . (C2)

The above results cited for "'Pb suggest that the
last term tends to be 10% of the leading term for
states near the peak, and -10/p for other states
This simple proportionality is unexpected, and
has not been brought out in the literature. One
might have expected that states excited by H'

were sufficiently complicated that their matrix
elements with states 4 ), were not affected by the
extent to which 4 1 overlaps D ~C p&. Apparently
this is not so. To develop some feeling for this
situation, let us consider the commonly used mod-
el in which matrix elements of the two-body force
are separable into a product of single-particle
dipole matrix elements:

(ph IH'
I
p'h'

&
= ((ph)(p'h')

I
ff '

I C.&

This model implies that QH '
~
C,) is $ QD'

~ 4g .
From the viewpoint of the collective model, this
state contains two dipole phonons. When inserted
in the above correction term the operator D de-
stroys one, leaving the one-phonon state D ~4g.
Thus we see that there is a suggestion that the
correction term for general state X depends on
the extent to which C 1 overlaps D ((I p&. Let us
now see how this suggestion is borne out by actual
results.

Let us label particle-hole states by ~, and their
energies and dipole matrix elements by e„,D„.
If we define the response function for the TD
solution

S»(e) =(I -Sph(e)l ' —1,
where

(c4)

S „(e)=(g
is the particle-hole response function.

The corresponding RPA result is

=[1-S„(e)-S»(-e)] ' —1+ —Q D„'.

Let us first consider the case where all ~„are
degenerate (=e). It is well known that this cor-
responds to all dipole strength being in one (col-
lective) state D with properties:

e~ =6+6,
(e, (D )e,&'=g D„'

(c6)

for the TD case where n —= $Q „D„', and

~ =+("+2«)"2
(( I&l(P=(~i& )(g&.') (c7)

for the RPA case. If 4 «, E~ can be approxi-
mated as ep[1 ——,

' (b./ep)']. For our purpose, the
important feature is that the inclusion of first-
order effects by RPA causes no redistribution
of dipole strength, which is 100% in one state.

Now let us consider that the e, are not degen-
erate. If their density does not cut off outside a
confined region, but extends at a low level on

(C2)
'k

where 4 )„Ez are the TD states and energies, then
it is straightforward to solve the dynamical prob-
lem with the solution
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d(e)-=PJ —",' d '. (C 10)

If the collective shift & = $p „D„'=Jsp„(e)de is
greater than the width of the distribution of sph,
then one can see that d(e), which vanishes at the
centroid (e, say) of sp(„rises above unity on the

upper .side of the distribution. It passes unity
inside the half-width point, and again near e =a+4,
the latter corresponding to the collective state.

The first-order difference between the TD and
RPA approaches is represented by d(-e). This is
typically of order 6/2e. Although of first order,
it is increased by the coherent collective effect

either side (e.g. as with a Gaussian form), then
we can conveniently describe the distributions
with strength functions defined with Lorentzian
average, e.g. in the RPA case

(C3)

6 is an energy a few times larger than the spacing
of Ez. We find

Sph

[1—d(e}J'+(vs „)' '

(cg)Sph

[1 —d(e) —d(-e)J'+(ss „)'
where spb(e) is the strength function of the original
strength D„' and

represented by 4; nevertheless we can see that
its effect on the distribution is small. For e in-
side the distribution of sp(„sp(, (e} is typically
of order (b./~) where (d is the width of the distri-
bution of sph. Observed values of the collective
shift a are ~(d; in '"Pb, 4 =6 MeV, while (d = 2

or 3 MeV. Thus (esp(, )' is a large number of
order 50, implying that srn/s pb is small. In con-
trast d(-e) is of order -b, /2e =-0.4, while d(e)
is zero near c with maximum and minimum values
of about +36/2~ at e x-,'~. With d=2(d, the effect
of the term d(-e) on s(e) is s10%%uo for e inside the
distribution of s». Because of the dominance of
the term (esp(, )' over (1 —d)', any fluctuation of
s ph from its general over-aII'. peaked shape will
tend to produce an opposite effect on s», i.e. , a
peak will produce a dip, and vice versa. The in-
clusion of d(-e) will not affect this conclusion.
Thus, to this extent, we see how s» and sRp„will
show parallel fluctuations.

We can see why the inclusion of d( —e) causes
opposite effects on the strength in the peak and
below-peak regions. In the latter, the effect is
to cause the zero of (1 —d)' to move upwards to
the region where s» is smaller, thereby giving
an increase in sRpA over s». In the peak region,
the effect causes the zero to move downwards to
where s» is larger, giving a deer- ase in sRp„
relative to s».
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