PHYSICAL REVIEW C

VOLUME 8, NUMBER 6

DECEMBER 1973

Structure-Invariant Perturbation Theory in Three-Particle Scattering™

K. L. Kowalski
Deparviment of Physics, Case Western Resevve University, Cleveland, Ohio 44106
(Received 28 June 1973)

A perturbation theory for three-particle scattering is formulated which in each order of
approximation leaves invariant the essential structural features of the scattering amplitudes.
The correct primary and secondary singularity structure is reproduced along with unitarity
(both off shell and on shell), the correct threshold behaviors, and the correct residues of the
double-scattering poles in the 3-to-3 amplitude. The only integral equations to be solved are
of the sort which appear in the case of finite-rank two-particle interactions. The formalism,
which is related to some recent work by Noyes, depends crucially on the proof of the exis-
tence of a decomposition of the two-particle transition operators into so-called essential and
residua. parts. The special case when the residual part is ignored provides a practical ex-
ploitation of the separable expansions found by Fuda and Osborn.

I. INTRODUCTION

An interesting and practical alternative to the
full complexity of exact three-particle scattering
calculations exists in the form of perturbation
theories.’ In Ref. 1 the general formulation and
relative features of two distinct types of perturba-
tion theory, one due to Alt, Grassberger, and
Sandhas (AGS)? and the other due to Sloan,® were
discussed. Both theories treat part of the two-
particle transition operators ¢, as “weak” and
handle that part perturbatively while the “domi-
nant” portion is, in effect, dealt with in an exact
fashion.

The usefulness of the perturbative approach is
indicated by Pieper’s* calculations of elastic nu-
cleon-deuteron (N-d) scattering. With the use of
the Sloan method (in first order) and regarding the
N-N tensor force and P-wave components as per-
turbations Pieper achieved the first reasonable
predictions of all of the measured spin observables
in N-d scattering.>® The mode of calculation and
the results obtained provided strong support for
earlier conjectures’ as to the physical origin of
the behavior of these observables for low-energy
N-d elastic ‘scattering; further and decisive sup-
port was obtained through Doleschall’s monumen-
tal exact calculation.®

Bencze and Doleschall® using the AGS method
(in first order) and treating only the P-wave parts
of the t, as perturbations have recently shown that
this technique also reproduces the results of the
exact calculations® rather well. With identical
N-N input it appears that the results of these au-
thors are in somewhat closer agreement, particu-
larly for the nucleon polarization, with the exact
calculations than are those of Ref. 4.° This would
seem to indicate that (in lowest order) the AGS
method is superior to the Sloan theory at least
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with the treatment of the tensor force used in Ref.
4. A definitive comparison would involve using
Sloan’s procedure but with only the P-wave parts
of the ¢, treated perturbatively.

The AGS technique has several advantages not
possessed by the Sloan method. For example, the
former has relatively simple properties with re-
gard to estimating the validity of the perturbation
approach, carrying out higher-order approxima-
tions, and in the perturbative determination of the
breakup amplitude. In addition, the Sloan pertur-
bation theory violates unitarity in any finite order.
However, we show that with a suitable choice of
the dominant and weak parts of the #,, which we
shall term essential and 7esidual, respectively,
the AGS perturbation theory yields fully unitary
(off-shell as well as on-shell) three-particle am-
plitudes in any order of the perturbation.

However, unitarity is only one aspect of the gen-
eral singularity structure which a proper set of
three-particle scattering amplitudes possesses.
Because this singularity structure is determined
only by the “essential” part of the ¢, operators
the preceding perturbation theory generates a suc-
cession of approximate but structure-invariant
solutions each of which preserves the basic phys-
ical characteristics of the scattering. In particu-
lar, the threshold behaviors are necessarily the
same as for the exact amplitudes as well as the
location and residues of the physical-region double-
scattering poles in the 3-to-3 amplitude.

Our development has much in common with an
investigation by Noyes, particularly in the ex-
ploitation of the essential-residual decomposition
of t, to obtain forms of the three-particle equa-
tions which provide a vehicle for generating a
class of unitary solutions. However, our empha-
sis and final equations differ and the latter pro-
vide a practical means for calculating the scatter-
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ing generated by the residual parts of the ¢,. More-
over, we find that in order to carry out our devel-
opment (or, in fact, that of Noyes') in general,

we have to exercise considerable care in the def-
inition of the essential-residual decomposition.
This, in addition to our main result of providing

us with a structure-invariant form of the AGS per-
turbation theory, yields the realization of a prac-
tical means for exploiting the separable expan-
sions of Fuda’ and Osborn.*®

II. ESSENTIAL AND RESIDUAL PARTS OF THE
TWO-PARTICLE TRANSITION OPERATORS

In this section we establish the existence of a
decomposition of the two-particle transition opera-
tor #(z). (The latter is defined on the relative two-
particle space and so we omit the particle-index
subscript.) Only a few new results are established
beyond what is already contained in the voluminous
literature on two-particle off-shell scattering.
However, these are crucial for establishing the
general validity of our later investigation of three-
particle scattering, and they also provide a means
for actually exploiting the separable, although pos-
sibly term-by-term singular, expansions found by
Fuda'! and Osborn.!?

t(z) has the following properties'3:

(i) #(z) is operator analytic in the entire z plane
cut from 0 to +« except for possible bound-state
poles for negative z. It is bounded on the cut and,
except within arbitrarily small domains about the
bound-state poles, for negative z as well.

(ii) Reflection property:

t(z*) =t(2)".
(iii) Off-shell unitarity:
At=t(+) - #(-)
=-2mit()8(E — K)t(F)

across the cut, where K is the (relative) two-par-
ticle kinetic-energy operator. For z negative, At
=0 except at the bound-state poles.
(iv) The residues of the bound-state poles of #(z)
are rank unity operators.

Next let us write

Hz2) =t°(2) +1"(2), (2.1)

where e and » refer to essential and residual,
respectively. The principal result of this section
is the proof that a decomposition of the form (2.1)
exists with #(z) and #'(z) satisfying the following
conditions:

(i) #°(z) contains the (possible) bound-state poles
of t(z). :

(ii’) #°(z) and #"(z) are bounded on the cut and, ex-

cept for z within some arbitrarily small domains
about the bound-state poles in the case of #(z),
for negative z as well.

(iii") #7(z) =¢>"(#)T for all real z.

(iv’) At =At for all real z.

(v') For real z the projections of both 6(z)#°(z) and
6(-z)t°(z) onto states of well defined angular mo-
mentum are finite-rank operators although not
necessarily of the same rank.

(vi’) For z positive and for either |p’| or |D|
equal to [z [Y?

®|t"(2)[B) =0.
1t follows from (iii’), (iv’), and (vi’) that
At"=0 for all real z,
and across the cut
At =12(+) - t°(=)
=-27it°(+)6(E - K)t°(F) .

It is also easy to show as a consequence of the pre-
ceding properties that the resonance content of
t(z) (if any) resides in t%(z).'*

Let us now prove the existence of a decomposi-
tion (2.1) with properties (i’)-(vi’).

A. Positive Energy

For the sake of simplicity we consider only the
single-channel scattering of spinless particles.
The off-shell amplitude in a state of definite or-
bital angular momentum, the index for which we
suppress, will be denoted by #(p, q;z). The ex-
tension to the case of where there exists a cou-
pling between spin and orbital angular momenta is
entirely straightforward. For positive z =k%+ie
=k%+, it is well known that off-shell unitarity and
time-reversal invariance imply that

t(p, 4 #*+) =f (b, DE(k*<) f (g, B) +R(p, g; ) ,
(2.2)

where f and R are real and continuous across the
cut and satisfy

f(k,B)=1,

R(p, k; ¥*) =R(k, ¢; k*) =0,
and

H(k£) = t(k, k; kP+) .

The functions f and R are well behaved except
for those k for which #(k?+) =0,1%1% 1415 For guch
k the singularities in R and in f(p, k)i(E*+)f(q, k)
must cancel to yield a bounded #(p, q; ¥*+). Also
the half-off-shell amplitudes f(p, k)f(k*+) and
#(k*£)f (q, k) must be bounded. Therefore, the
singularities in R must have residues which fac-
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torize in p and ¢ and separately vanish when p or
q is equal to k. In addition, the residues of the
singularities in f(p, £) must vanish when p =%.°

In an interval of % for which #(k*t) #0 the partial-
wave amplitudes of #(z) and #"(z) can be identified
with f( p, R)E(F?£)f (¢, k) and R(p, q; k?), respec-
tively.1o 17

On the other hand, if for some partial wave we
have a range of %* within which #(%?+) =0 at least
once then the preceding identification is invalid
because the separate boundedness conditions on
t¢ and ¢ are violated. Our problem, then, is to
find a suitable identification under these circum-
stances.

Let us write

f(p,B)=B(p, k) +S(p, ), (2.3)
where B(p, k) is nonsingular and satisfies
B(k, k) =1,

and S(p, &) contains all the possible singular struc-
ture associated with the occurrence of zeros of
the on-shell amplitude. We note that S(p, k)f(#%)
is nonsingular for all & and vanishes for p=k.
Specifically, we learn from the work of Fuda'!

and Osborn*® that S(p, k) has the structure

N
S(p, =3 L) (2.4)
i=1

where ¢,(p, k) is nonsingular and satisfies
¢i(k, ) =0,

and
D t(koi) =0

corresponds to a zero of f(k*+) at k=Fk,}, i=1,...,
N, such that the ratios #(k?*+)/D, (%) are finite for
all »2>0.

If we use the expression (2.3) for fin (2.2) we
obtain a decomposition of the form (2.1) with the
identifications

t°(p, q; K*+) = B(p, R)E(K*£)f (g, k) +S(p, B)E(k*+) B(q, )
+iS( p, k) Im[#(k*+)] S(q, k)
=f(p, B)i(E*+)B(q, k) + B( p, k)E(k*£)S(q, k)
+iS(p, k) Im[#(k?+)] S(q, &) , (2.5a)
t"(p, a; ¥*£) =R(p, q; k*) +S(p, k) Re[{(k*+)] S(q, k) .
(2.5b)

It is easily seen that eack ferm on the left-hand
side of (2.5a) is nonsingular.’® The residual part
defined by (2.5b) is nonsingular, although not term
by term, due to the cancellation of the singular
terms at the appropriate energies.'? It should now

be clear that the identifications (2.5) satisfy condi-
tions (i’)—(vi’) for positive z.

We have seen from (2.5a) that in any particular
angular momentum state ¢° will be at most of rank
3, independently of the number of on-shell zeros,
or equivalently, the number of terms in the expan-
sion (2.4). Moreover, in contrast to the expan-
sions of Fuda'! and Osborn,” (2.5a) is term-by-
term nonsingular. Nonetheless, (2.5a) still is not
entirely satisfactory for practical use because of
the singular separable-term form factors. How-
ever, it is quite easy to rewrite (2.5a) in a form
in which the latter quantities are well defined. For
example, let

N
o(k) =] D:(®).
i=1

Then we can rewrite (2.5a) as
t°( p, q; k*+) = B(p, R)U(K*£)F (g, k) +S(p, k)E(k*+) B(q, k)

Im[#(k%+)]

+i§(1>, k)( S)(k) )g(q’ k) ’ (2-6)

where
T(k*) = #(RP+) /D(R) ,
f(q, k) =1 (g, B)D(E)
and
5(p, k) =S(p, k)D (%)

are each nonsingular. (2.6) is in a form suitable
for use in a standard, finite-rank interactions,
three-particle calculation with the approximation
t=te.

The implication of the work of Fuda'! and Os-
born®? is that if f#(?+) has N zeros, then one is led
to a (N+1)-rank lowest-order approximation to
t(z). However, we have shown that by regrouping
the relevant singularities the rank of the lowest-
order approximation, obtained by neglecting ¢",
need not be greater than 3 but, if there are zeros,
it cannot be less than 3 if one is to make practical
use of the approximation.

B. Negative Energy

For negative z the decomposition (2.1) can be
realized in a variety of well-known ways since the
constraints (iv’) and (vi’) are relaxed considerably.
Indeed, (vi’) is irrelevant and (iv’) is quite easily
satisfied in conjunction with (i’) since for z2<0 #(z)
is continuous across the real axis except at the
bound-state poles. So in this case the question of
the existence of the decomposition (2.1) is trivial.

The real problem, of course, is to find an op-
timal form for the decomposition. If one appends
an additional requirement that #°(z) should approx-
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imate #(z) to some desired accuracy then we have
the very familiar problem of representing #(z) for
2<0 by a finite-rank form.

It is possible to obtain a representation for
t(p, q; z) for z = -F? very similar to (2.2) by mak-
ing use of the symmetry and reality properties

Hp, q;2) =t(q, p; 2) (2.7a)
t(p, q; k) =t(p, q; -k *, (2.70)

where (2.7b) holds except at the bound-state poles.
Let us define the real function (> 0)

b, B) =t(p, ks 1) /H(-F),
where
{(-k%) =t(k, k; —K?) ,
and trivially,
F (R, k) =1.
We then infer from (2.7) that we can write
t(p, a; ~F*) =f (b, DH-F)f (g, k)
+R7(p, ¢; -k, (2.8)

where R is a real symmetric function such that

Rk, q; =F*) =R(p, k; —F*) =0.

The entire contribution from the bound-state poles
resides in the factorizable term fH(~£%)f in
(2.8).%°

The functions £~ and R*” are nonsingular except
for those % for which f(—kz) =0. Unfortunately, it
is not possible to relate this last property to any
discernible property of the physical on-shell am-
plitudes. The Fuda-Osborn'**? analysis applies
equally well to negative energies and so does the
formal argument leading to (2.6). Therefore, a
possible choice for ¢° and ¢ for z<0 is

t°(p, g; —k*) = B(p, RYH~E) (g, )
+S7(p, B)H(-F) B (g, )
=F(p, RYE(-E) B (q, k)
+B7(p, R)E(~E*)S(q, k) (2.9a)
and
(b, q; k) =Rp, q; - &%)
+S7(p, YH-E)SNq, k),  (2.9b)
where
(-1 =H(-1%)/D(R),
Fg, &) =1 g, £)D(R),
and

5(q, k) =S (q, )D(k) .

oo

We have decomposed ) in a manner similar to
that depicted in (2.3) and (2.4) with obvious changes
in notation.

We note that #° as given by (2.9a) is now only of
rank 2 and, in addition,

@ | (-F) By =0

for |P’| or || equal to k. This last property
does not appear as interesting as in the positive-
energy case.

The preceding completes our proof of the exis-
tence of the essential-residual decomposition of
#(z). In the remainder of this section we exploit
the two-body integral equations to infer one fur-
ther aspect of the structure of the residual transi-
tion operator "(z).

It follows from the Lippmann-Schwinger integral
equation for #(p, g; z) that®™

2—
R(p, 1) =4 (2 qzqz)w, G #)

-t (55 Vet ), (2.10)
where the resolvent kernel®® |} satisfies
®R(p, q; ) =A(p, ¢; k°)
+f: dq' Mp, ¢'; )R(q', 45 F)
=A(p, q; &%)

+ f dq' &(p, q'; )G, g5 #7) ,
o)
(2.11)

and

AP, q;#) = (%) v(p, ;7

V(, ;1) =<;2?) (V(p, 9 - ZE:IS) V(E, q)) :

We are confining ourselves to positive energies.
We also ignore, for the moment, the complica-
tions related to the vanishing of the on-shell am-
plitude.

(2.10) suggests that instead of expressing R in
terms of ® we look for a related quantity with
another inverse Green’s function pulled out. Then
we will have an explicit and symmetrical represen-
tation of the half-on-shell vanishing of R. To this
end let us write

2 _ 2y
&b, ;1) =93?ﬁm( by a; ). (2.12)

We find from (2.11) and (2.12) that ®] satisfies the
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integral equations
R, a; ¥*) = A (b, a5 k?)
+ fo “dg AT (b, a3 IR 45 1)
=A(b,q; ¥°)

+ f dq' &(p, ¢'; )M, a5 1) ,
o
(2.13)

where

2
AT(pr qs kz) = <k2p_ 172> 'U(P, q; kz)

=A(q, p; ¥*)

is the adjoint'? of A and

Ap, ;%) = (kzi_z;) 0, 43 ) <k2q—2 «f)

is the symmetrical inhomogeneous term. We note
that

®RT(p, g; ) =R(q, p; K*) .

Given very weak conditions on the derivatives of
V(p, q) it is easily shown that A, is nonsingular
even in the double limit p, g~ 2. The fact that the
kernels of (2.13) are just A and A" implies that the
properties of ® with respect to singularity struc-
ture, in particular, are very similar to those of
®. The Fuda-Osborn' '? analysis can be carried
through with straightforward modifications for
(2.13), a fact we shall exploit below.

We infer from the preceding analysis that for
positive z the residual operator has the structure

7(2) =Go(2) "1 (2)Gy(2) 1, (2.14)

where the partial-wave amplitudes of the reduced
residual operator 7(z) are essentially & and
Golz)=(z -K)™".

The crucial property of 7(z) is that it is continuous
across the unitary cut. Since G,(z) is nonsingular

for negative z, (2.14) is trivially valid in this case.

(2.14) constitutes an amplification of condition (vi’)
in that it is an explicit and symmetrical represen-
tation of the half-on-shell vanishing of #(z) for
positive z.

Except for the last remark similar statements
apply to the representations

7(2) = Go2) 175 (2)
=7,(2)Gy(2)™*

which we infer from (2.10). In particular, the
partial-wave amplitudes of 7, and 7, are related

(2.15a)
(2.15Db)

to ® and ®T, respectively.

(2.14) and (2.15) are valid in the general case
covered by (2.6). However, in this instance 7, 7,
and 7, are related to the nonsingular parts of ®,
®, and &', respectively. This follows from the
Fuda-Osborn' *? eigenfunction expansions for ®
and ®", since then each term in the expansion for
R [cf. (2.10)], singular or not, can be placed in
the forms (2.14) and (2.15).

III. STRUCTURE-INVARIANT PERTURBATION THEORY

We use the form of the three-body scattering
integral equations introduced in Ref. 2:

U(2) =8Go(2) ™ +3t(2) Gy (2)U(2)
=BGo(2) " +U(2)G,(2)t(2)5 , (3.1)

where we have employed the usual matrix nota-
tion®! with respect to the channel indices. That is,
U(z) represents the 4x4 matrix whose elements
are the three-particle scattering operators U, (2),
B, a=0,1,2,3. #(z) is a diagonal matrix whose ele-
ments are the two-particle transition operators
t.(z) on the three-particle space for a+0 and ¢,(z)
=0; the index « on ¢,(z) refers to that channel o
in which particle « (=1, 2, 3) is asymptotically
free. ©is the matrix with elements 1-564,, and
finally

Go(z) =(Z _Ho)—l )

where H, is the total three-particle kinetic energy
operator.

The results of Sec. II imply that on the three-
particle space #(z) admits of the essential-residual
decomposition

Hz) =t°(2) +t"(2) , (3.2)

where for z positive #°(z) satisfies off-shell uni-
tarity and for negative z it contains the two-body
bound-state poles. #(z) is continuous across the
real z axis and has the representation

17(2) =Go(2) "7 (2)Go(2) ™, (3.3)

where the reduced residual transition operator 7(z)
is also nonsingular for real z and continuous
across the real z axis. We employ also the nota-
tions

Tr(2) =7(2)Gol2) ",
7.(2) =Go(2) " 1(2) .

With the decomposition (3.2), (3.1) can be re-
written as

U(z) =U(z) +U(2)G,(2)#°(2) G, (2)U(2)
=T(2) +U(2)Go(2)#(2) Gy (2)U (2) , (3.4)
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where U(z) satisfies
U(2) =86G,(2) ™t + 58 (2)Go(2)T (2)
=8Go(2) " +TU(2)Gy(2)t"(2)5 . (3.5)

We next study the discontinuity relations satis-
fied by U(z) and U(z) using standard results.?! One
finds from (3.5) that for any residual operator # (z),
including some approximation to some “exact” #"(z)
provided the properties we have associated with a
residual operator still obtain,

AT=T() -T(-)=0() -T(H"
=Ag, (3.6)
where
£=5Gy(2)™

and we have again employed the notation + referring
to Exie. Since

AL ==5Gy(2) " HAG)G,(F) 7Y,

(3.6) is a singular type of off-shell discontinuity
condition. The appearance of such conditions and
their necessity was first pointed out in Ref. 21.

For any U(z) satisfying (3.6) we find from (3.4)
that U(z) satisfies®!

AUBO( =-2 E UB)\(ﬂ:)D)\U)\a(:F)
X

-2 [E st(i)Go(i)ti(i)J
X
XDy [ T 157G ool) | +8200s (31

where

Dy=m ) |oamn, EL)

E’)\' 7’)\
X 8(E - E3){dr(n, EV| - (3.8)

The channel states | ¢,(E,n,)) for a#0 refer to
noninteracting two-particle states comprised of a
particle @ moving freely and a bound state of the
other pair; |¢,(E,n,)) corresponds to a three-
particle plane-wave state. The 7, are any other
labels which are needed to specify the asymptotic
configurations including an index covering the pos-
sibility of more than a single bound state in a given
channel. In deriving (3.7) we have made no use of
the properties of U(z) except (3.6). We have, how-
ever, employed the well-known structure of the
two-body bound-state pole contributions to #(z).

In order to obtain the correct discontinuity rela-
tions for U(z) from (3.7) we have to specify a little
more concerning U(z). The problem is to bring
the zero-index operators Ugy(+) and U,,(+) into
(3.7).

|

We have
Upa(2) =Uyu(2) + Z Uy (2)Go(2)t5(2)Go(2)U 3 o (2)
A
(3.9a)

and
Uﬂo(z) =ﬁso(z) + E Ug )\(Z)Go(z)te)\(Z)Go(Z)ﬁ)\o(Z)
» (3.9b)

for all @, 8. On the other hand, (3.5) implies that

Upl2) = Golz)™? [SOa + Z Tx(z)ﬁ)\u(z)] (3.10a)
X

and

Ugol2) = [550 +> Uex(z)n(z)] Go(2)™!  (3.10D)
X

for all a, B.
Now, if we assume the validity of (3.10), which
was not done in deriving (3.7), then

DUy () =85oDoGol#) ™ (3.11a3)

and

U go(£)Dg = 850Gy () ™Dy . (3.11p)

The deduction of (3.11) from (3.10) can be rendered
somewhat less mysterious if we note that the right-
hand side of (3.11a), for example, is nonvanishing
only if it operates on singular vectors proportional
to G,(+).?* Given the validity of (3.11) it then fol-
lows from (3.9) that

Do [0 BECHE o) | =Dl ~ BoaGol™ ],
r (3.12a)

[ 06 @65 Do =0 5068) - BaoCole) 104,
* (3.12b)

and these equations, in turn, imply that

3
AUBOL =-2 Z Uﬂk(i)DlU)\(x(:F)
x=0

+24[U 5o(£)D G (£) ™28 + 8 5oGo (&) DU, oF)

+ (6801 - g1’506001)(;(:!(:{:)-!.DOG()(:F)-I] ’
(3.13)

which are the correct discontinuity relations for
U(z).?* As has been pointed out in Ref. 21, on-shell
Eqgs. (3.13) reduce to the usual statement of unitar-
ity for three-particle scattering; the general form
of (3.13), which includes the terms in square
brackets which vanish on shell, is necessary to
ensure the consistency of applications of the for-
malism which involve the operator

F(2) =G,(2)U(2)Gy(2) .
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The preceding argument shows that it is not
enough to state that any U(z) satisfying (3.6) when
used in (3.4) will yield (3.13). One must assume,
in addition, that (3.11) are valid. This can be done
by supposing that the Ug(2) for 8, @ #0 satisfy (3.6)
and that the zero-index operators U,,(z) and U gy(2)
for all B, @ are defined by (3.10). We note that the
latter definitions can be expressed entirely in
terms of the Ug,(z) for g, a#0.

However, the last point is of interest mainly in
connection with the over-all consistency of the
formalism and for the specification of off-shell ex-
tensions. Neither for the primary computational
problem, which is to solve (3.4) for Ug,, 8, @ #0
and which requires only those Uy, for g, a#0,
nor in the computation of the on-shell physical
amplitudes (3 to 3, 3 to 2, 2 to 3) corresponding
to Ug, and U, for e, $=0,1,2,3, do we need to
know anything about the operators Ug,, Uyy, B> @
=0, 1,2, 3, other than that they satisfy (3.11).

Obviously, we obtain a class of unitary approx-
imations to a model with specified #(z) by con-
structing various approximations to #"(z), with
1°(z) fixed, which satisfy the residual constraints
and using these approximate #"(z) as input in (3.5).
The latter because of (2.14) will be integral equa-
tions with nonsingular kernels.

The iteration series derived from (3.5) is

U(2) =8Gy(2) 2 +5¢7(2)8 + 54" (2)7x(2)5 ++ + - .
(3.14)

We see that any truncation of this series which in-
cludes the term §G,(z)~* yields an approximate
U(z) which satisfies (3.6) and (3.11) and which in
turn generates a U(z), via the solution of (3.5),
which satisfies (3.13). ’

(3.14) forms the basis for not only a unitary per-
turbation theory but also one which leaves the prin-
cipal structural properties of the scattering ampli-
tudes invariant. This is to be expected since, as
Noyes' has pointed out, the special case t"(z)=0
constitutes a perfectly valid model for three-par-
ticle scattering. The reason for this is that the
essential singularity structure of the three-parti-
cle amplitudes is independent of #(z).

Thus, for any of the approximations discussed
we obtain amplitudes which in addition to satisfy-
ing unitarity also possess the correct primary and
secondary singularity structure.?®=2* As conse-
quences of this, the correct threshold behaviors
are preserved and also the existence, location,
and residues of the double-scattering poles in the
3-t0-3 amplitude are the same as for the exact am-
plitudes.

Because of the finite-rank character® of #(z),
(3.4) have the canonical form of the three-particle
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equations under the assumption of finite-rank in-
teractions. In this instance it is much more con-
venient to work with the operators F(z) which
satisfy

F(z) =F(2) +F(2)t°(2)F(2)

=F(z) +F(2)t°(2)F (2), (3.15)
where
F(2) =05G,(2) +87x(2)F(2)
=8G,(2) +F(2)7,(2)5. (3.16)

Let us separate off the discontinuous portion of
F(2) by writing

F(2) =5G,(2) +F(2),

where
F(2) =57 (2)5 + b7 () F(2)
=81(2)8 + F(2)1,(2)5. (3.17)
Evidently
AF=0. (3.18)

A structure-invariant perturbation theory can now
be defined via the iteration solution of (3.17):

F(2) =07(2)8 +0TR(2)0T(2)5 ++ -+ . (3.19)

The truncation of (3.19) in any order yields an ap-
proximate $(z) which satisfies (3.18) and gener-
ates a structure-invariant F(z) via (3.15).

It is unnecessary to repeat our previous discus-
sion in connection with (3.15)~(3.19). One should
keep in mind, however, that the various technical
points associated with the zero-index operators
[ef. (3.10), (3.11)] apply equally well to the F(z)
reformulation with obvious modifications.

The utility of the preceding formalism depends
crucially upon the rapid convergence of the series
(3.14) or (3.19) as well as on the closely related
constraint of maintaining the rank of #°(z) as small
as possible. Clearly, with a sufficiently accurate
choice for #°(z) the effect of #"(z) may be made as
small as one desires. In this connection we should
point out that despite the examples of t°(z) and "(z)
given in Sec. II in the course of proving the exis-
tence of the essential-residual decomposition the
latter is by no means unique for either positive or
negative z.

Some general criteria for and partial estimates
of the convergence in perturbation theories of the
general type (AGS) considered here are contained
in Refs. 1 and 8. We will expand upon these dis-
cussions very briefly. i

#"(z) is the source term for the auxiliary three-
body operators U(z) which satisfy integral equa-
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tions [(3.5)] formally identical to the ordinary
three-body equations. However, #"(z) contains no
direct contributions from two-body bound or vir-
tual states, is continuous across the entire real
z axis, and for z>0 vanishes half on shell thus
cancelling the singular behavior of the three-par-
ticle propagators. From previous studies® of the
three-body iteration series it would appear that
none of the mechanisms for generating the three-
body singularities (three-body bound and virtual
states) which cause the usual convergence prob-
lems in the iteration solution of the ordinary three-
body equations should be present in the "(z)-gener-
ated series. Therefore, there is some reason to
expect rapid convergence of the series (3.14) or
(3.19). Some indirect support of this conjecture
is provided by the estimates and calculations of
Bencze and Doleschall,® but further numerical in-
vestigations are clearly needed.

Finally, we remark on the fact that the use of
the essential-residual decomposition with the ef-
fects of #(z) taken into account approximately will

in general result in a loss of the global analyticity
properties of the three-particle scattering ampli-
tudes. This is a consequence of the fact that #%(z)
will in general not be analytic in the entire z plane
but only in the half planes z>0 and 2<0, separate-
ly.* 2" Thus, the complete analytic structure of
the scattering amplitudes is in general not left in-
variant in any finite order of perturbation. How-
ever, the question of the numerical importance

of the loss of global analyticity would appear to
depend entirely upon the previous question of the
convergence of the perturbation series. In this
connection, it is interesting to note that Bray-
shaw?” has proposed a decomposition of #(z) (suit-
able for use in a perturbation theory) into a finite-
rank part £5(z) and a remainder which has the prop-
erty that #5(z) preserves the analytic behavior of
t(z). However, #%(z) does not, in general, satisfy
off-shell unitarity and so that with an approximate
treatment of the remainder in the three-particle
equations one will violate three-particle unitarity
while maintaining global analyticity.

*This work was supported in part by the National Science
Foundation.
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