# Electromagnetic Transition Rates in <sup>56</sup>Ni

N. Schulz, J. Chevallier, B. Haas,<sup>\*</sup> J. Richert,<sup>†</sup> and M. Toulemonde Centre de Recherches Nucléaires, B. P. 20 Cro, 67037-Strausbourg Cedex, France (Received 11 June 1973)

The lifetimes of the first two excited states in <sup>56</sup>Ni have been investigated using the reaction <sup>54</sup>Fe(<sup>3</sup>He, $n\gamma$ )<sup>56</sup>Ni and the Doppler-shift attenuation method. Pulse-shape discrimination was employed for the neutron- $\gamma$ -ray coincidence measurements. These measurements lead to the following mean lives:  $\tau$  (2699 keV) = 76<sup>+49</sup><sub>-44</sub> fsec and  $\tau$  (3924 keV) > 1 psec. The E2 transition strength for the 2<sup>+</sup>  $\rightarrow$  0<sup>+</sup> transition is compared to shell-model predictions.

### I. INTRODUCTION

Different schemes assuming either a closed  $f_{7/2}$ subshell for the ground state or allowing for admixtures of up to four holes and four particles have been proposed to describe the <sup>56</sup>Ni nucleus.<sup>1</sup> Until now the reported information<sup>2-8</sup> is based on the two-particle-transfer reactions  ${}^{54}$ Fe( ${}^{3}$ He, n),  ${}^{54}$ Fe( ${}^{16}$ O,  ${}^{14}$ C), and  ${}^{58}$ Ni(p, t) and on the  ${}^{54}$ Fe( ${}^{3}$ He,  $n\gamma$ ) reaction. In these articles, excitation energies, spin assignments, and  $\gamma$  transitions are given. However, because of the limited amount of experimental data, it has not been possible to draw definite conclusions about the dynamical structure of <sup>56</sup>Ni. In the present work, Doppler-shift attenuation measurements were performed on transitions from two excited <sup>56</sup>Ni levels in an attempt to get a sensitive test for predicted wave functions.

## **II. EXPERIMENTAL PROCEDURE**

Levels in <sup>56</sup>Ni were excited through the <sup>54</sup>Fe- $({}^{3}\text{He}, n)^{56}$ Ni reaction. The target consisted of 1.3  $mg/cm^2$  of iron, enriched to 95% in <sup>54</sup>Fe, deposited by electrolysis on a silver backing. The target, which was inclined 45° to the beam direction, was bombarded with a 10-MeV <sup>3</sup>He beam. Neutrons were detected with a 4-cm-thick by 25-cm-diam NE213 detector placed at  $80^{\circ}$  to the beam axis with its front face at 34 cm from the beam spot. The  $\gamma$ -ray flux in the neutron detector was reduced by a 1-cm-thick lead shield and the detected  $\gamma$  rays were rejected by a crossover time discriminator method. In order to reduce feeding of the first excited state via  $\gamma$  rays issuing from higher states, a threshold was set on the neutron energy so as to reject neutrons with energies less than about 6 MeV.  $\gamma$  rays were detected in an 84-cm<sup>3</sup> Ge(Li) counter placed with its front face 5.8 cm from the target and  $\gamma$ -ray spectra were recorded at three angles. Under actual running conditions, the resolution width of the Ge(Li) detector was 6 keV for a 2.6-MeV  $\gamma$ -ray line. To check the stability of the system gain,  $\gamma$ - $\gamma$  coincidences from a <sup>56</sup>Co source

1779

placed between the Ge(Li) detector and an Na(I) crystal shielded from the target were continuously recorded.

In addition to the 2.70-MeV  $\gamma$  ray from the first excited state, only a line at 1.22 MeV was found to be in coincidence with the neutrons. According to Schneider *et al.*,<sup>8</sup> it corresponds to the transition between a  $J^{\pi} = 0^+$ , 3.92-MeV level and the first excited state. In order to get a more precise value for the attenuation factor of this transition, another set of runs was performed. The 84-cm<sup>3</sup> Ge(Li) detector having a 2.8-keV resolution at 1.3 MeV. In this case, a <sup>60</sup>Co source was used to check the gain stability of the system. No transitions from higher excited states in <sup>56</sup>Ni to the 3.92-MeV state having been seen in previous <sup>54</sup>Fe(<sup>3</sup>He,  $n\gamma$ ) work,<sup>8</sup> the neutron threshold level was lowered to 2 MeV.

#### III. DATA ANALYSIS AND RESULTS

Figure 1 displays  $\gamma$ -ray energies versus  $Q_1 \cos\theta$ , where  $Q_1$  is the finite solid-angle correction factor for the Ge(Li) counter and  $\theta$  the angle between the



FIG. 1. The attenuated centroid shifts of the 1225- and 2699-keV  $\gamma$  rays resulting from the decay of the 3924and 2699-keV levels in <sup>56</sup>Ni. The solid lines are leastsquares fits to the measured points and the dotted lines are the full-energy shifts calculated from the kinematics. The attenuated Doppler shift of the 2699-keV  $\gamma$  rays, corrected for the 1225-keV cascade transition, is shown by the dashed line.

1780

detected  $\gamma$  rays and the recoiling ions. Experimental Doppler shifts were determined by leastsquares fits to the observed peak centroids.  $\gamma_{-}$ transition energies were also derived from these fits and the precision on these energies takes into account the differential nonlinearity of the system gain. The  $\gamma$ -ray full-energy shifts were calculated from the kinematics. The uncertainty on the full shifts is estimated to be  $\pm 7\%$  from consideration of the anisotropy of experimental neutron angular distributions.<sup>9</sup> An attenuated Doppler shift of  $0.12 \pm 0.18$  keV was obtained for the  $1225 \pm 1$ -keV  $\gamma$  transition. Thus, by adding 2 standard deviations to the calculated Doppler shift, an upper limit of 0.09 could be set on the attenuation factor of this transition.

The experimental Doppler shift for the  $2699 \pm 3$ keV  $\gamma$  transition observed with the 6-MeV neutron threshold results from a direct neutron feeding of the first excited state and a feeding by  $\gamma$  rays from the second excited state. The ratio of the yields of the 1225- and 2699-keV  $\gamma$  rays was found to be constant within the errors at the different detection angles and equal to  $0.37 \pm 0.07$ . The corrected attenuation factor,  $F = 0.64 \pm 0.07$ , was obtained by taking into account the fact that the observed  $\gamma$ rays had shifted and unshifted components. From consideration of the limit of the attenuation factor for the 1225-keV  $\gamma$  transition, the accuracy on the centroid of the unshifted component was taken to be 9% of the full-energy shift of the 2699-keV  $\gamma$ transition.

The  $F(\tau)$  curve was calculated using the formulas of Blaugrund<sup>10</sup> based on the theory of Lindhard, Scharff, and Schiøtt (LSS).<sup>11</sup> Corrections  $f_e$  and  $f_n$ were applied to the LSS theoretical electronic and nuclear stopping powers. The correction factor  $f_e$ , the ratio of the electronic stopping power deduced from Northcliffe and Schilling's table<sup>12</sup> to the LSS one, was found to be 0.83. Northcliffe and Schilling's range value could be reproduced by multiplying the theoretical nuclear stopping power by the factor  $f_n = 0.95$ . Uncertainties of 20% were assigned to both  $f_e$  and  $f_n$ . The present analysis yields a mean life  $\tau = 76^{+49}_{-24}$  fsec for the first excited state in <sup>56</sup>Ni and a lower limit of  $\tau > 1$  psec for the level at 3924 keV.

#### IV. DISCUSSION

From the present experiment, an E2 transition rate between the 2<sup>+</sup> state and 0<sup>+</sup> ground state of  $77 \pm 32 \ e^2 \ fm^4$  can be deduced. This B(E2) value is compared to the results of two shell-model calculations.

The shell-model treatment of Oberlechner and Richert<sup>13</sup> predicts the first 2<sup>+</sup> state to be at 2.37 MeV. The basis states used in these calculations include 0h-0p, 1h-1p, 2h-2p, and 4h-4p states. The single-particle energies are derived from the <sup>41</sup>Ca spectrum, and furthermore the  $1f_{5/2}$  single-particle energy is lowered by an amount of 2.5 MeV in order to get a good agreement for the level energies. This reduction of the  $1f_{5/2}$ - $1f_{7/2}$  separation leads to a strong mixing of 2h-2p (40%) and 4h-4p (40%) configurations into the ground-state wave function. Using effective charges calculated to the first order in a perturbation expansion<sup>13</sup> and Oberlechner and Richert's wave functions, a  $B(E2, 2^{+})$  $\rightarrow 0^+$ ) rate equal to 42  $e^2 \text{fm}^4$  is obtained, 33% of its strength arising from the 4h-4p components of both states. This calculated B(E2) value appears to be in fair agreement with the experimental value.

Recently, Pasquini and Zuker<sup>14</sup> performed shellmodel calculations for <sup>56</sup>Ni including configurations up to 3h-3p. The matrix elements used for the twobody interaction are those calculated by Kuo and Brown<sup>15</sup> and the single-particle energies used are those derived from the <sup>41</sup>Ca spectrum. These calculations indicate that it is possible to describe low-lying <sup>56</sup>Ni states without the need of 4h-4p configurations, the 3h-3p configurations lowering the energies of the 2h-2p states. They lead for instance to a ground-state wave function which is mostly 0h-0p and to an energy of 3.21 MeV for the first 2<sup>+</sup> state. The computed  $B(E2, 2^+ \rightarrow 0^+)$ , 113  $e^2$  fm<sup>4</sup>, is about as close to the experimental value as the one from the former shell-model treatment. Thus it appears that the knowledge of the precise nature of the 0<sup>+</sup> and 2<sup>+</sup> states in <sup>56</sup>Ni requires further experimental investigations.

# ACKNOWLEDGMENTS

The authors wish to thank Professor P. Chevallier for many helpful discussions and Dr. A. Zuker and Dr. E. Pasquini for providing them with the results of their shell-model calculations prior to publication.

\*Present address: Laboratoire de Physique Nucléaire, + Université de Montréal, Montréal, Canada.

- <sup>2</sup>R. G. Miller and R. W. Kavanagh, Nucl. Phys. <u>A94</u>, 261 (1967).
- <sup>3</sup>R. P. J. Winsborrow and B. E. F. Macefield, Nucl.

<sup>&</sup>lt;sup>†</sup> Present address: Max Planck Institut für Kernphysik, Heidelberg, Germany.

<sup>&</sup>lt;sup>1</sup>A review of the different schemes for <sup>56</sup>Ni has been

presented by G. Do Dang and J. A. Rabbat, Can. J. Phys. 51, 737 (1973).

Phys. A182, 481 (1972).

- <sup>4</sup>D. Evers, W. Assmann, K. Rudolph, S. J. Skorka, and P. Sperr, Nucl. Phys. A198, 268 (1972).
- <sup>5</sup>F. Pougheon, P. Roussel, P. Colombani, H. Doubre, and J. C. Roynette, Nucl. Phys. <u>A193</u>, 305 (1972).
- <sup>6</sup>W. G. Davies, J. E. Kitching, W. McLatchie, D. G. Montague, K. Ramavataram, and N. S. Chant, Phys. Lett. 27B, 363 (1968).
- <sup>7</sup>G. Bruge and R. F. Leonard, Phys. Rev. C <u>2</u>, 2200 (1970).
- <sup>8</sup>P. Schneider, A. Nagel, K. H. Bodenmiller, and S. Buhl, Z. Phys. 253, 309 (1972).

- <sup>9</sup>M. H. Shapiro, Nucl. Phys. <u>A114</u>, 401 (1968).
- <sup>10</sup>A. E. Blaugrund, Nucl. Phys. <u>88</u>, 501 (1966).
- <sup>11</sup>J. Lindhard, M. Scharff, and H. E. Schiøtt, K. Dan.
- Vidensk. Selsk. Mat.-Fys. Medd. <u>33</u>, 14 (1963). <sup>12</sup>L. C. Northcliffe and R. F. Schilling, Nucl. Data <u>A7</u>,
- 233 (1970). <sup>13</sup>G. Oberlechner and J. Richert, Nucl. Phys. <u>A191</u>, 577
- (1972).
- <sup>14</sup>E. Pasquini and A. Zuker, to be published.
- <sup>15</sup>T. T. S. Kuo and G. E. Brown, Nucl. Phys. <u>A114</u>, 241 (1968).