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A prescription for including exchange effects in neutron-proton bremsstrahlung (npy) by
requiring gauge invariance of the complete npp amplitude is given entirely within a potential
framework. To lowest order in the photon momentum (K ) this prescription is unambiguous
and it includes, as well as exchange effects, any other nonlocal effects in the nuclear poten-
tial. The lowest-order contribution is written, with the use of the Schrodinger equation, so
as to eliminate the necessity of integrating over the nuclear potential. The higher-order ex-
change contributions are treated through order X2 using the one-pion exchange (OPE) only.
(Because the effective expansion is E/p, , where p is the mass of the exchanged meson, the
pion is expected to dominate. ) These higher-order terms are the same as the Feynman-
diagram prescription would give for nPy due to OPE. Calculations with the Hamada-Johnston
(HJ) and Bryan-Scott III (BS) potentials are compared to the experimental results at 208 MeV

by Brady et al. and at 130 MeV by Edgington et al. This inclusion of the exchange brems-
strahlung (order K ) increases the cross section by roughly a factor of 2, providing generally
good agreement with both experiments. An estimate of the order-E terms indicates that
they contribute & 2%; possible implications of this result on order-K contributions are dis-
cussed. Contributions arising from nonlocal terms other than exchange such as momentum-

dependent and spin-orbit effects amount to about 1%. There is little difference between the
npy predictions for the HJ and BS potentials. Our npy coplanar results for the HJ potential
are compared to those obtained in a calculation, which uses the low-energy theorem for
internal radiation, by Celenza et al.

NUCLEAR REACTIONS Neutron-proton bremsstrahlung (npy), E =130, 200 MeV;
calculated coplanar 0 (9„,9&, 8&), 0 (8„,0&) including meson-exchange contributions,

comparison to experiment. Developed higher-order corrections arising from
OPE.

I. INTRODUCTION

Neutron-proton bremsstrahlung (Npy) is of
interest as a possible means of using off-shell
behavior to distinguish among various nucleon-
nucleon potentials and also as a means for testing,
in the simple two-nucleon system, theoretical
models for exchange effects in photonuclear re-
actions. For proton-proton bremsstrahlung (ppy),
which is easier to measure experimentally, the
exchange effects are mostly absent and fairly good
agreement with experiment has been obtained'
with either of two potentials, the hard-core .'

Hamada- Johnston' (HJ) and the momentum-depen-
dent, meson-exchange potential of Bryan and
Scott IIP (BS).

In earlier npy calculations, 4 without exchange
effects, there was little difference between the HJ
and BS potentials and, for each, the theoretical
predictions were considerably smaller than ex-
periment. ' In the present work' we include the
exchange effects appropriate to the nuclear poten-

tial (HJ or BS) used to fit the elastic np phase
shifts. We find that inclusion of these exchange
effects greatly increases the predicted npy cross
section and gives generally good agreement with
both the experiment of Brady and Young' and the
recent experimental results of Edgington et al. ,

'
although some disagreement still persists at some
angles.

We still find little difference between the npy
predictions for the HJ and BS potentials for a wide
range of np opening angles. In fact, there seems
to be even less dependence on the nuclear poten-
tial in npy than was found in ppy. This is dis-
couraging from the point of view of using brems-
strahlung to distinguish between potentials but,
on the other hand, encouraging in that it indicates
that potentials might constitute an appropriate
way to calculate some off-energy-shell effects.

We formulate (in Sec. II) a prescription for in-
cluding exchange effects in npy by requiring gauge
invariance of the complete spy amplitude. We do
this by making the usual minimal electromagnetic
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replacement (V- V-ieA) in the momentum repre-
sentation of the nuclear potential as well as in the
kinetic-energy part of the Hamiltonian. This
procedure is unambiguous to lowest order (K') in
the photon momentum K and includes, as well as
exchange effects, any other effects (to order E'}
due to nonlocality (including explicit momentum
dependence, or spin-orbit terms)' of the nuclear
potential. To this lowest order, all the exchange
and nonlocal contributions are given quite simply
in terms of the original nuclear potential. Al-
though we use the momentum representation in
our derivation, we show that our lowest-order re-
sult should apply even to phenomenological poten-
tlR18 fol' which R IQGIQentunl l'epl esentatloD mRy
not exist. To this order in E, our exchange con-
tribution is the same as has been derived by
previous authors. '

Beyond lowest order in K, imposition of gauge
invariance alone does not unambiguously define
the exchange contribution. " We discuss this in
Appendix B and develop a reasonable prescription
fox' genelRtlng the exchange contx'lbutlon fox' hlghel'
order in E from the explicit momentum represen-
tation of the potential. The prescription, given
entirely within a potential framework, leads to
the same exchange contribution (to all orders in
K) for one pion exchange (OPE) as does the ap-
plication of field theory" to describe the pion.
Goi, ng to higher order in K requires an explicit
momentum representation of the potential, which
either does not exist or is impractical to calculate
for most phenomenological potentials (such as HJ).
But we indicate that OPE (which is a common
feature of almost all reasonable potentials), with
an explicit moxnentum representation, should
dominate these higher orders (although all ex-
changes are important to lowest order) because of
the pion's lighter mass (or, equivalently, the
longer range of OPE).

The various contributions to spy can be catego-
rized as follows: (I) The electric pole (EP) terms
arising from the minimal electromagnetic substi-
tution in the kinetic-energy part of the Hamil-
tonian. (2) The magnetic pole (MP) terms arising
from the physical (Dirac + anomalous) magnetic
moments of the nucleon. These pole contributions
(EP) and (MP) taken together are usually called
the external radiation (EXT). Then, there are a
number of so called internal radiation (INT) terms:
(3) The so called (RES) rescattering term arising
from the above electric and magnetic terms acting
between successive nuclear scatterings. (4}Ex-
change (EXCH) contributions arising from an ex-
plicit exchange part of the nuclear potential.
(5) Otllel' contributions (NL) al'lslllg f1'0111 11011lo-

cality (or explicit momentum dependence) of the

II. THEORETICAL BACKGROUND

We start with a completely general nonlocal po-
'te11tlal V(1 )) = V(r) ) r1 ) r)i 1'2) wlllcll we will
relate to an equivalent form in terms of the dif-
ferential operators V', . Any matrix element of
the potential is given by

8N
— dr. 8 rj. ~r2 ~r] n r~~ r2 ~ (2 I)

We expand the wave functions in terms of pla, ne
wRves to give

M,.=(2.)- J~. ),.-" "' ' "()(a.u. )

)( y(p)&)(p) ~ r 1+ p& ~ ~r2)y (~p ~p') (2 2}

=
Jl dp; 0$(p,', p.')~(p, )e.(p„p.), (2.3)

nuclear potential.
In previous spy work EP, MP, Rnd the internal

radiation RES, Rll to all orders in E, were in-
cluded. In the present work' we include calcula-
tions for the rest of the internal radiation EXCH
+ NL to order X'. In Appendix B we expand the
OPE exchange contribution to order X' Rnd K'.
We have explicitly calculated those order-E' terms
that can be incorpox'ated simply into our present
calculation and find they have little effect. The
possible relative importance of the order-K' Rnd
order-K' terms is discussed in Appendix B.

To order X' we show that the Schrodinger equa-
tion can be used to eliminate the nuclear potential
from the (EXCH+NL) contribution so that both ef-
fects can be included quite simply. We have also
made some calculations of EXCH only, using the
explicit exchange part of the potential and find
that leaving NL out of the momentum-dependent
BS potential has very little effect.

In Sec. II, we give the theoretical background
for our calculations. Also displayed in Sec. II
is the difference between our treatment of the
internal radiation scattering and that of Celenza,
Gibson, Lion, and Sobel (CGLS)." This compari-
son is included because CGLS use the HJ potential
Rnd dlffex'8 fl om the px'esent cRlculRtlon only ln
the treatment of the internal radiation. Earlier
calculations" of npy using different methods or
approximations have been discussed elsewhere. '

In Sec. III, our calculational procedure is de-
scribed. Section IV contains our results for the
HJ and BS potentials as compared to experiment"7
and the CGLS results.

In Sec. V, we summarize our conclusions. In
Appendix A, the connection between nonlocality
and momentum dependence of potentials is illus-
trated. Appendix B extends the theoretical treat-
ment of Sec. II to higher order in K.
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where

U(p, l=(2w) 'fdr, . e "2 ""2 '*'

x V(r )e"P2' '2+&a ' '2' (2.4)

Now ere reintroduce the original spatial wave func-
tions so that

Me =(2w) 'fdp, dr,. qw(r, ', r', )e"P('('e."',"'

x U(p&)e "P2 '2+]'2 ~ 22)t[] (r r )

is the potential in the momentum representation. (2.6)

which can be written as

Mw„=(2w) 'f de dr qw(q, r')q„'(,r, , q)U(q(/i q,'/i, —2/~ -q /) ', P ' *P ~ P P (2.6)

We integrate by parts repeatedly so that

M „=(pw) fdp. d'r'. e"2 '('2 '' 2 ' -2 " 'U(-q,'/i, —q,'/i, q/i, q/i)qe(r, ', ,')2, ( „)2. (2.2)

Any surface terms from the r, integration in Eq. (2.7) will go out in the integration over p, We can now

perform the p,. integrations leading to 5 functions, so that the r,. integrations can be done, resulting in

Ma„=lim U( V,'/i-, V,'/-i, V,/i, V, /i)/MB(r, ', r2)p (r„r,) .
y ~0

(2.8)

Equation (2.8) shows that the nuclear potential can be represented by its corresponding momentum rep-
resentation with the momenta replaced by the appropriate differential operators. Now we can introduce
the vector potential into Eq. (2.7) or (2.8) by the usual gauge-invariant replacement

V, -V, —iq, A( )r, (2.9)

V,' V,'+ iq-,' A(r,'), (2.9 )

and similarly for particle 2. Here q, is the charge of particle i.
We now rework our steps to go back to define an induced electromagnetic potential V',2' (r, ). Making the

replacement (2.9) in Eq. (2.7) and working backwards, we see that the nuclear potential V„(r,) gets re-
placed by

p, ,„(r,.)=(pw) 'f dp )i [q, /i —q.,,' tw(q,'), q','/i-q, ' A(2,'), —wr /i —q, A(r, )—q / —q, A(r,,)]

~ ~g ~P ~P ~P
xp Pl 1 P2' 2 Pl'~l P2 2

The induced electromagnetic potential is then given by

(2.lo)

The radiation vector potential is given by

(2.ll)

A(r) = (2v/K)'/2er ) e '"'af, ), +Hc. (2.l2)

for the emission or absorption of a photon of momentum K and polarization x. Because V and A(r) do not
commute, we cannot simply make the replacement V-ip in Eq. (2.10). However to zeroth order in K in
the exponential e-«2, V and A(r) do commute. We continue this derivation here to zeroth order in K and,
in Appendix B, we investigate the contribution of higher order terms in K for a specific case (pion ex-
change). To this order we can write

'q',"(r)=(2 ) fdp[U(p, ' —2''A, )q —q'A, p, —qA, p, -qA) — (pU)]
" e'r'2' ' r ' e ' '. (2.)2)
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For application to bremsstrahlung without radiative corrections only first order inA (to create one photon)
is desired and, to this order, we have

~p ~p ~p
V&&)(r )-(2v) & +p s~&P& ~ ~z+Pz ~ ~z Pz ~ && P2 ~ &2&A, [ qlv, qlv, q v + &U I» &em g

(2.14}

We next integrate by parts giving [there are surface terms to E&l. (2.15) but these vanish when V, (r, ) is
integrated over, as in E&l. (2.1), to define a matrix element]

V"'(r,-)=iA ~ (q,'r,'+q,~r,'-q, r, —q, r, )(2&&)
'

dp, e "P~ '~+» '2'U„(p, )e "» '~+» '2' (2.15)

=iA ~ (q,r,'+q, r,' —q,r, —q, r, )V„(r,) .
Thus the electromagnetic potential required by gauge invariance is given, to this order, by a simple func-
tion of the vector potential multiplying the original nuclear potential. Equation (2.16) is general in the
sense that it does not matter whether the potential V„(r,) came from a meson theory, but only that it have
a well-defined momentum representation. For potentials that are generated by meson exchange E&l. (2.16}
leads to the same result (to zeroth order in K) as using the Feynman diagram for photon emission by the
exchanged meson. There are ambiguities to higher order in K, but in Appendix 8 we show (for pion ex-
change) that Eq. (2.10) can be used to give the same result as the Feynman diagram to each order in K. A
hard-core potential (such as the Hamada- Johnston potential) can be used in E&l. (2.16) if the core is con-
sidered to be an abstraction of a large, but not infinite, repulsion. Then, although the infinite-core poten-
tial would have no momentum representation, use of the hard-core potential in E&l. (2.16) to calculate
electromagnetic effects leads to no problems.

It is convenient to introduce the usual center-of-mass coordinates for equal mass scattering

R = —,'(r, + r, ), r = (r, —r, ) (2.1V)

and similarly for the primed coordinates. In terms of center-of-mass coordinates the nuclear potential is
given by

V„(r&) = 6(R —R')V„(r', r) .

The corresponding photon-emission potential is given by

V&2)(~& ) s-iK ~ R6(R RI)V&2)(f I f)
with

(2.18)

(2.19)

V',"(r', r) =i(27&/K)'" 2e~„[(q,'- q,')r'- (q, —q, )r]V(r', r) . (2.20)

The factor e '"'~ in Eq. (2.19) leads to the modification of momentum conservation (P'+ K =P) appropriate
to photon emission. In the expansion in powers of K, the e-«'R cannot be expanded because the R integra-
tion is taken over all space (leading to momentum conservation). However, the magnitudes of r and r are
limited by the nuclear range allowing an expansion of e-« ~ and e-«.~' in terms of (K/p, ) where 1/&u repre-
sents the range of the nuclear potential.

For proton-proton bremsstrahlung, Eq. (2.20) leads to no modification to this order (K'), since all the
charges are equal. For neutron-proton bremsstrahlung, we use the isotopic spin formalism with the
charge operators given by

q, , =(2e)(1 —T,") . (2.21)

We can rewrite E&l. (2.20) as

V~'(r', r) =(r', q,', q,'(V,&"~r, q„q,), (2.22)

where ~r, q„q,) is a definite charge state and V&@ is an operator in both coordinate and isospin space
given by

(2.23)

The only effect of the operator —,'(7,' —7',) is to change the total isotopic spin of an n-p state while V„con-
serves isospin. Therefore V',"only connects n-p states of different isospin.
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The exchange and nonlocal contribution to np
bremsstrahlung is given by (I', p" 'I VP'lI, p'"),
where II, p &'&) is an eigenstate of the strong two-
nucleon Hamiltonian corresponding to relative
momentum p, isotopic spin I, and (outgoing/in-
coming) wave boundary conditions. We can elim-
inate the nuclear potential from this matrix ele-
ment by using the SchrMinger equation

V„II,p"') = [(»'+ v')/~] II, p"')
and its Hermitian conjugate

(2.24)

(I', p" 'I V„=-&I,p"-&Ifp" +g2]im (2.24')

where the notation v' means that the differential
operator acts to the left, "and m is the nucleon
mass (assuming m„=m~). Applying this to the

bremsstrahlung matrix element for V(,"gives

(I', p'' 'IV',"II,p'+') =(fe/2m)(2»/K)'"e» &, 5,i, , ,(I', p'' 'I(7"+P")r —r(v'+p')II, p'"), (2.25)

so that the initial and final states must have different isospin. This result includes all nonlocal (or momen-
tum-dependence and spin-orbit) effects as well as exchange contributions, all to lowest order in K. It is
to be added to the corresponding matrix element of V,'" given by Eq. (3.2), which includes the "pole" and
"rescattering" terms arising from the kinetic-energy part of the Hamiltonian. In Sec. III we indicate how
to separate the exchange contribution in Eq. (2.25) from the nonlocal contribution. Explicit calculations
then indicate that the exchange emission gives the dominant contribution to Eq. (2.25).

It is of interest to observe that, to zeroth order in K, the kinetic-energy photon-emission term is given
by [the prime on V, and V,'" in Eqs. (2.26)-(2.31) indicates that e' ' is taken to lowest order in K, whereas
V,"' already includes this approximation]

V ', =&-(ie m/)( 2»K/)'" ,'(~,' v',-) e»-~ V'=-,'ie(2w/g'"-, '(&-', —7';)e») [r, v~ '/m]. (2.26)

Adding Eqs. (2.23) and (2.26), we have

(2.27)

for the total (kinetic energy + exchange + nonlocal) photon-emission potential in the extreme dipole limit
(order K'), in terms of the full nuclear Hamiltonian II„.

Now we can use the Schrodinger equation to write the bremsstrahlung matrix element as

&p" 'I V.'. I
p'") = —l&e(»/&)'"(& -&')(p" 'I e». 'rl p"&), (2.28)

where the initial and final state must have different isospin. For a process in which at least one of the
states was bounded (e.g. , photodisintegration of the deuteron or the decay of a nuclear or atomic system),
Eq. (2.28) could be used directly and would include all electric exchange and nonlocal currents in the ex-
treme dipole limit. For unbounded states (as in npy) however, Eq. (2.28) cannot be used directly because
all partial waves would contribute to this matrix element. Plane waves must be subtracted out of Eq. (2.28),
and this leads to the usual development in terms of four "pole" terms and a "rescattering" term for the
kinetic-energy part and potential contributions as given by Eq. (2.25).

It is instructive to show this plane wave subtraction explicitly. We have

where N= 2ie (2»/K-)'~', and Q is the operator ~(&', -7,)e r. The functions &I&~" and g~ satisfy the
Schrodinger equations II„g~"'= Eg~" and -(v'/m) y~ = Eyp (f& = z = 1), with II = v'/»&+ V„. We now use the
Schrodinger equation and Eqs. (2.23) and (2.26) in the first three terms of (2.29) to give

(p"-'Iv:.Ip '» =(y...V..'"ly,"-y,])+(4,'-, —y, ,l, V..'"y,) (y,+,, v.'."y,")—(y, ;', v.'."y,)

'(O'. V'-'" e.)'(E I'-'»([V."-4. 1 @[0-,'" 0]) . - (2.30)

At this stage we can relate Eq. (2.30) to the approximation used by Celenza, Gibson, Liou and Sobel"
(CGLS) who calculate npy to zeroth order in K (except for the pole terms, which they treat to all orders)
They drop the last term of Eq. (2.30) as being of order R and use the first four terms (and magnetic pole
terms) to calculate np&. However, independent of counting orders in K, we do not expect the last term in
Eq. (2.30) to be small because the integral is taken over all space with no cutoff, while an additional power
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of r comes from the operator Q. The importance of this term probably accounts for the large difference
between the CGLS results and ours. (We discuss other differences between the two calculations in Sec.
IV.)

Continuing from Eq. (2.30) and applying the SchrMinger equation to the last term we find

&p' 'I V.'.l
p"') = ((e, , V."."[C."'- e,l) + ([0,' '- 0o l, V'-'"e.6„+([tl '- 0. l V'-'"[t.'"- 0.l )„,

(2.31)

which, to lowest order in the expansion of e'
comprises all the electric terms for npy. For our
practical calculation we take the EP and BES
terms, as previously derived, "' to all orders in
K as well as including the magnetic part of V,'"
to all orders in K. The potential V',"has the short
range of the corresponding nuclear potential, so
it seems reasonable to keep the lowest order in
K for the term (p~. ', V~'g~"'). The term
(Q~, V(') P~), of course, does not contribute when
over-all energy conservation is required for spy.

We emphasize that, except for very small K,
keeping the lowest orders of K is only a good ap-
proximation when the radial integrals are cutoff
by a short range potential as with V,'". We be-
lieve that there is evidence for this in the dif-
ference between our results and those of CGLS, "
who do not include the last term of (2.30) on the
basis that it is of order K. Since their method

corresponds to using the low-energy theorem, "
we conclude that the low-energy theorem for
orders K ' and K' is not a good approximation for
spy at reasonable photon energies.

III. CALCULATIONAL PROCEDURE

T —(p s(-)
i V ())+ V (2)

i p (+)) (3.1)

The electromagnetic potential V,'" which arises
from the kinetic-energy and magnetic-moment

In this section we outline the method of calcula-
tion used for the results presented in this paper.
The T matrix for spy, treating the nuclear inter-
action exactly within the framework of a potential
model and the electromagnetic interaction to first
order, can be written (omitting spin and isospin
indices) as

part of the nuclear Hamiltonian is given by'

V'"= (2)7/K)'"Qqe ' ' ' —q, e(" ' ']i e V/)))+ -,e/m [p.,e 'K ' 'o, K x e+ p,,e( ' ' o IYx ej), (3.2)

where e = (1/137.04)'~' is the charge of the proton,
o, and cr, are the Pauli spin operators, and m is
the nucleon mass (m„=m~). The operator (I( is
given by Eq. (2.21), and )u, of Eq (3.2) is .given by

W( =-,'(p„+))))1+z()) „—))()T3, (3.3)

where p.~=2.793 and p.„=-i.913 are the magnetic
moments (in nuclear magnetons) of the proton and
neutron, respectively.

The evaluation of the npy matrix element of Eq.
(3.1) for V,'" involves the subtraction of plane
waves from the initial and final states leading to
the usual external radiation terms and that part of
the internal radiation referred to as the rescatter-
ing term. For the rescattering term, V,'" is ex-
panded in partial waves; the cutoff in the expansion
of V," is limited only by the cutoff in the number
of nuclear states which are included in the calcu-
lation. In the present work the nuclear states in-
clude all partial wave contributions for total angu-
lar momentum J«4 (26 states) The meth. od of
calculation of these terms has been discussed else-

d l(-. '*
+ dr ),2 g(;) Y'P Y'P

y
(+)

dr dr (3.4)

I'(ll+ 1
d), ~sg(-) y(+) pi 2 p2 f ( 1

0
O' P ~a

l,' (l,'+ 1)

where g~") is the radial part of Q(+)), and R is the

matching radius used to determine the nuclear

where. '4
For the determination of that part of the internal

radiation scattering involving V,"' we use Eq.
(2.25). If we perform an integration by parts,
keeping in mind that the left (right) handed arrow
operates on the final (initial) state wave function,
we can express the radial contribution to Eq.
(2.25) as

d.l, (;)* d'(')
g (2) p3 O'0', t)(+) P y(;)

R
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phase shifts. In the barycentric system the z axis
is taken in the photon direction, and the polariza-
tion states of the photon are represented in the
circular basis corresponding to left and right cir-
cular polarization. In the present approximation
the effect of using the helicity representation for
the photon is to project out of V,'" the spherical
harmonics YP(r) (with m =+1 for the two photon
polarization states). The angular integration then
exhibits only electric-dipole transitions between
the initial and final nuclear states.

The result using Eq. (3.4) includes exchange as
well as other nonlocal effects to lowest order in
the photon momentum. In an earlier calculation'
only the exchange term was included and was re-
ferred to as exchange bremsstrahlung. To see
how this separation is made, consider V',"as given
in Eq. (2.23), where V„ is an operator in isospin
space and a nonlocal (or derivative) operator in
coordinate space. In terms of direct (V, }and ex-
change (V„) potentials

V„= V„+ V„=v~I+v, T, ,

where I is the identity and

(3.5)

(3.8)

is the exchange operator in isospin space. Since
we are in the np subspace (T, =0), we have

7'+ v' =03 3

so that Eq. (2.23) can be written

2fe(2v/Z-)"2 [7'r V]

(3.7)

=--i2e( 2v/K)'" {e[v'„V]r+v,'[r, V]] . (3.8}

The effect of the exchange potential is obtained by
using only the first term in the curly bracket,
since

[~,', V„]r = -2 V„~',r . (3.9)

V —vto p+ 1 1 (3.10)

where Tp and T, are the isotopic- spin projection
operators given by

The operator ~, insures that the initial and final
nuclear states have different isospin. Since charge
independence is assumed for the two-nucleon inter-
action, V„can also be written

The Schrodinger equation cannot be used to
eliminate V from the exchange bremsstrahlung
matrix element; consequently, the evaluation is
considerably more difficult than for the full contri-
bution (2.25), where the potential has been elimi-
nated. There are additional complications in the
evaluation of the exchange-bremsstrahlung term in
the case of a momentum-dependent nuclear poten-
tial (see Appendix C), although the complications
do not arise using Eq. (2.25) for the full contribu-
tion.

IV. RESULTS

The cross section for nPy has been calculated
using the Hamada- Johnston' (HJ) and Bryan-Scott'
III (BS)potentials at various coplanar geometries
to compare with the experimental results at 130'
and 208' MeV. The calculation includes all partial-
wave contributions of the nuclear matrix elements
with total angular momentum J«4. The invariant
form of the cross section appropriate for spy
averaged over initial spins and summed over final
spins and polarizations is used. "4

The coplanar differential cross section do/
dQ„dQ~, calculated at 200 MeV and various neu-
tron (0„) and proton (8~) exit angles, is compared to
the experimental results (208 MeV) of Brady and
Young' in Table I. A comparison of the results for
the HJ and BS potentials is included. The calcula-
tion includes V,'" to all orders of the photon mo-
mentum K that enter and V'," to order K' as given
by Eq. (2.25). The sum of these contributions in
the present work is referred to as EXT+INT. The
calculational results are within experimental error
with the exception of the (8„=38, 0~=38') cross
section, and in two cases, (30, 30') and (45, 30'),
the agreement is good.

The results of Celenza, Gibson, Liou, and Sobel"
for the HJ potential are also included in Table I.
It is seen that our results for HJ are close to those
of CGLS at (30, 30'), but the discrepancy increases

TABLE I, The coplanar npy cross section do/dQ„dQ&
in pb/sr~ for incident laboratory energy E =200 MeV and
various neutron (8„) and proton (8&) exit angles. The re-
sults for the BS and HJ potentials calculated in the pres-
ent work including EXT+INT are compared with the H J
results of Ref. 12 and the experimental results of Ref. 5.

T, =-,'(3+ v' 7') (3.11) 8„8p
(deg)

BS HJ
(EXT + TNT)

HJ
(Ref. 12)

Exper iment
(Ref. 5)

T, =-,'(1+7' 7') . (3.12)

V„= ~(v, —vo)T„. (3.13)

The exchange potential can be written in terms of
the isospin potentials as

30 30
35 35
38 38
40 30
45 30

34.1
44. 7
71.4
72.0

128

34.6
44.0
69.8
69.9

121

30
33
49

35+ 14
57+ 13

116+20
114+44
132 + 53
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TABLE II. The coplanar nPy cross section do/dO„dQ&
in pb/sr2 for incident laboratory energy E =130 MeV and
various neutron (8„) and proton (0&) exit angles. The re-
sults for the BS and HJ potentials calculated in the pres-
ent work including EXT+INT are compared with the ex-
perimental results of Ref. 7.

~n ~P

(deg)
BS HJ
(EXT + INT)

Experiment
(Ref. 7)

23
26
29
38
23
26
29
38

32

38.5 40.1
40.4 42.0
42.8 44.4
53.9 56.2
23.3 23.5
26, 5 26.6
30.6 30.6
55.6 55.2

47+ 35
16+29
35+28
64+ 24
17+29
66+29
77+ 32

116+21

with inclusive nucleon exit angle. As discussed at
the end of Sec. II, the calculation of CGLS uses the
low energy theorem" to treat all the internal radi-
ation (RES+EXCH+NL) to order K' in the npy
matrix element, while we do the rescattering (RES)
to all orders in K and the EXCH+ NL to order K'
in V',". The main difference comes from the con-
seciuent absence of the last term of Eg. (2.30) from
their calculation. Another difference arises from
the fact that their K expansion for the spy internal
radiation matrix element involves expanding the
wave functions to order E' while we expand V'," to
order K' but treat the wave functions to all orders
in K. They also do not include the magnetic RES
terms, but our explicit calculations indicate that
these are small. Their calculation includes some
relativistic effects, but they find these corrections
to be small.

A comparison to the experiment of Edgington
et al. ' at 130 MeV is made in Table II." Some of
our calculational results were presented in an
earlier paper' and are included here for complete-
ness. The agreement with the recent experimental
results of Edgington et a/. ' is generally good,
especially for small opening angles. It should be
noted, however, that the uncertainties are com-
parable with the cross sections. Also, a substan-
tial disagreement still exists at the largest open-
ing angle (38, 32'). CGLS also give a value for
130 MeV (30, 30') of do/dQ„dQ~= 18 pb/sr'. From
Table II our predicted value for 130 MeV (29, 32')
is 31 pb/sr' [interpolation" in Table II to (30, 30 )
would increase this value], so that there is still
disagreement with CGLS at this energy.

The coplanar cross section do/dQ„dQ~d8& at
200 MeV comparing the potentials HJ and BS and
illustrating certain contributions explicitly is
shown in Fig. 1. We use the convention that the
photon angle 8& is measured from 0' in the beam

direction to +180' (-180') on the side of 8~ (8„).
In Figure 1(a) a comparison between HJ and BS
is made for the angular distribution of the photon
corresponding to the 200 MeV (30, 30') entry in
Table I. As can be seen, there is very little dif-
ference in the results for the two potentials. This
small difference between the two potentials holds
true for all angles we have calculated.

As discussed earlier, V,'" as obtained by (2.25)
includes momentum-dependent and spin-orbit effects
as well as exchange (EXCH) only for the BS poten-
tial as calculated according to (3.8) and (3.9).
The contribution of external radiation scattering
alone (EXT) and the effect of exchange plus exter-
nal radiation scattering (EXT+EXCH) is also in-
cluded in Fig. 1(b). As can be seen" from Fig.
1(b) the interference of EXT and EXCH has an
important effect on the cross section, increasing
it by more than a factor of 2 over that for EXT
alone. The main contribution to the cross section
of Fig. 1(a) comes from EXT and EXCH. The re-
scattering term" increases the cross section about
10%%u~, although for 8„ forward or backward in the
lab the effect is more like 25/o. The terms desig-
nated as NL (from spin-orbit and momentum-de-
pendent terms) contribute about 1/o to the cross
section.

Presented in Fig. 2 are the 200-MeV cross sec-
tions do/dQ„dQ~d8& versus photon angle 8& for the
remaining cases in Table I. A comparison is made
between EXT and EXT+INT for the HZ potential.
A comparison between the two potentials is not
included because the results are so similar. In
Fig. 3 similar results are presented at 130 MeV
for four sets of exit angles from Table II, again
for the HJ potential.

A preliminary investigation indicates that the
higher order terms in V,'" will not alter our re-
sults significantly. We calculated the effects of
some order K' terms using the replacement
r - r —r g r)'/24 (see Appendix B). This order-
of-magnitude determination of E' terms is rela-
tively easy to introduce in the existing code as
compared to the order-K terms which require
major modification because of the spin dependence.
(The relationship between these order-R' terms
and the order-K terms is discussed in Appendix B.)
The percent increase in the npy cross section
dv/dQ„dQ~d8& is maximum at the peaks where it
is &2/p for 200 MeV (30, 30').

V. CONCLUSIONS

In summary, we have introduced a gauge-invari-
ant prescription for including exchange effects in
spy which are induced by the nuclear potential.
This prescription has the advantage of being formu-
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lated entirely within a potential framework. We
have shown that to lowest order in the photon mo-
mentum this prescription is unambiguous. Terms
llighe1' 01'del' (till'ougll Dl'der E ) 111 tile pllotoll nlo-
mentum have been obtained for the OPE part of
the nuclear potential only; these terms are ex-
pected to dominate the higher order-K terms be-
cause of the longer range in QPE.

Our calculations have been performed so that
the individual contributions from the various terms
can be examined. The major contributions to spy
come from the external radiation and from the
exchange part of the internal radiation. The con-
tribution from the latter is very important (in
col1t1'as't 'to pp'/ wllel'8 1't is 111ostly' absellt)' 'tllls

exchange part increases the spy cross section
roughly by a factor of 2 and is required to obtain
agreement with experiment. The next lar gest
contribution comes from that part of the internal
radiation called re scattering. The contribution
from rescattering varies with the photon angle,
and in our geometry reaches a maximum of about
25%. The nonlocal effects such as explicit mo-
mentum-dependence or spin-orbit effects con-
tribute about 1% to the npy cross section. We have
also looked at the order of magnitude of the E'
terms that enter V',"by the method described in
Sec. IV and Appendix B. These terms contribute
less than 2%. Because the order-K terms cannot
interfere with the dominant electric-pole amplitude

E= 200 M8V
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in IIpy (without polarization), it is suggested that
their effect might compare in magnitude with the
order-K' terms we have looked at. It would, how-
ever, be interesting to see the effect of initial or
final polarization in isolating the contribution of
the order-K terms.

It is perhaps worthwhile to restate what we have
learned thus far from the point of view that spy
might provide a testing grounds ln a simple two-
nucleon system, for the importance of exchange
effects in photonuclear reactions. If the lowest-
order terms in V'," resulting from our prescrip-
tion are combined with the corresponding terms of
V',", obtained from the usual minimal coupling in
the kinetic-energy part of the Hamiltonian, the
result displays the familiar operator 8 [2(T31

0
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~ I
I

-120

rar W
a~ ~r~a

I
l

a ~ I a I I a a I I
I a I

8 {deg)
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Sr
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-180 -120 -60 0 60 120 180
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FIG. 1. The ajar cross section do/do„dQ&d9& with in-

cident laboratory energy E =200 MeV and coplanar sym-
metric angles 0„=6)& =30' for (a) a comparison between
the Hamada-Johnston (HJ) and Bryan-Scott III (BS) po-
tentials including external (ZXT) plus internal (INT)
radiation as described in the text, and (b) the contribu-
tion of EXT, the exchange (EXCH) part of INT, and the
interference effect of these terms (EXT + EXCH) as
calculated with BS.

FIG. 2. The 'plP+ cross section do'/dQ~ dip d&y with in-
cident laboratory energy E =200 MeV and various sets
of coplanar angles (0„,0& ): (a) (35, 35'), (b)(38, 38 ),
(c) (40, 30'), and (d) (45, 30'). These results are cal-
culated with the Hamada- Johnston (HJ) potential com-
paring the contribution from external (EXT) radiation
alone to that including internal (INT) radiation as des-
cribed in the text.
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—r', )r, H„] which is associated with Siegert's
theorem. ' Application of this operator includes
all electric-dipole contributions including exchange
and any other nonlocal effects in the extreme di-
pole limit. For spy the kinetic-energy part of
H„ in this operator must be treated separately be-
cause of the initial and final unbound states. We
have demonstrated by explicit calculation that the
potential-energy contribution from this operator
is mainly exchange and that it is large, increasing
the cross section by roughly a factor of 2 at 130
and 200 MeV. In the absence of the importance of
magnetic terms involving spin changes, such as in
polarization studies or np capture at threshold, we
can conclude that exchange effects are, in fact,

large at the energies we have considered, but that
they would be mainly accounted for by the operator
obtained in Siegert's theorem.

A comparison of the HJ and BS potentials has
been included in. our spy calculations; the differ-
ence is less than was found for these same poten-
tials applied to ppy. ' It may be that these results
are due to the characteristics of the particular
potentials under comparison. However, the small
difference between potentials could be a general
feature of spy.

Finally, by comparing our calculation with that
of CGLS, "who used the low-energy theorem" for
the internal radiation, we come to the conclusion
that use of the low-energy theorem is not a good
approximation for spy at 130 MeV and higher.
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Appendix A

The connection between a nonlocal potential and
a momentum-dependent potential is well known,
but, for completeness, we indicate their relation-
ship in this appendix.

A nonlocal nucleon-nucleon potential is given by
Eq. (2.18) in terms of center-of-mass coordinates
as

V(r, ) =a(X -Fi')V(r, r) .
Equation (2.1) for a matrix element of this poten-
tial then becomes

~22 I, , I0 I r
I

~ ~

16-

8-

I, , I
I ~

I
I ~

I
~ ~

I
I I

M8~= r~r' &r' Vr', r g~r

Introducing the momentum representation leads to

dpdp' 8 p' Up', p „p, A3

with

1 2

8-

4w

I

I 2 ~re I I
I 2

I
~ I

I
I

8 ~z'
~ ~

I I

U(2', 5) =(I/Ie)'f r de'drd' V( ', r)e e'
(A4)

Reintroducing the original coordinate-space wave
functions gives

Ide =(I/Ie)'f dpdd'drdr'de(r')e'r '
0
-180

I

-120

I
I I I I I I I I I
I I I I

—60 0 60 120 180

8& (deg)

xU(p', p)e 'p' 'g„(r) .

We now use the variables

k=p-p', q=-,'(p+p'), x=r-r', p=-,'(r+r')
FIG. 3. The mPy cross section do/dQ„dQ& d0 with in-

cident laboratory energy E =130 MeV and various sets
of coplanar asymmetric angles (0„,8&): (a) (23, 20 ), (b)
(23, 32'), (c) (38, 20'), and (d) (38, 32 ). These results
are calculated with the Haxnada- Johnston (E7J) potential
comparing the contributi~n from external (EXT) radia-
tion alone to that including internal (LNT) radiation as
described in the text.

so that Eq. (A5) can be written

~8„=(&/2~)'J dpdp'drdr'y*, (p- —,'x)e '"'e '& "

x U(k, q)y (p+ —,'x),
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with U(k, q) = U(q- —,'k, q+ —,'k). If the original poten-
tial V(r', r) were in fact local [V(r', r) = 5(r'- r) V(r)j,
Eq (A. 4) would lead to a U(k, q) that had no (I de-
pendence and Eq. (A7) would lead back to a local
potential as expected. When V(r', r) is nonlocal,
U(k, q) will depend on (d( as well as k. In that case
we could rewrite Eq. (A7) as

ddp =()/2 p)' I dpdj dddpdl(p -',—x)p '"'
&& g„(p+ —,'x) U (k, iV„)e '" ' ".

(A8)

%e can do the q integration leading to 5 function
derivatives, and then the x integration resulting

~80 = CRp8

& lim (U(k, -iV„)[$E(p ——,'x) g (p+-,'x) jj .
x ~0

We can now introduce a "local" potential with

gradients to write

~a~= ~™~Iy-~&. 48I --.x ~V+-x

(A10)

(A11)

Equation (A10) could also be written

~() = 4 &E(p)V(p, q)P (p)

The higher-order (in K) corrections to exchange
(and nonlocal) bremsstrahlung are complicated in
our approach by the fact that the differential oper-
ator V does not commute with 7T(r) beyond zeroth
order in E. This leads to ambiguity in the ex-
change bremsstrahlung (beyond zeroth order) be-
cause the result depends on the order in which the
momentum operators are written in Eq. (2.8) and
also on which explicit momentum operators are
used. This ambiguity beyond zeroth order in K
is inherent in any method that uses only the re-
quirement of gauge invariance to induce exchange
brems strahlung. '0

The ambiguity cannot be resolved unless there
is an explicit form for the momentum representa-
tion of the nuclear potential. For the case of a
meson-exchange potential (e.g. , the Bryan-Scott
potential) a momentum representation does, of
course, exist. For purely coordinate-space po-
tentials there is generally a long-range part either
given by one-pion exchange (OPE) or closely
represented by one-pion exchange so that it can
be used for the momentum representation of the
long-range part of the potential. To the extent
that the expansion in K can be considered an ex-
pallslon ill 'tile dlmensloniess 1'atlo K/jj wh(61'6 p,

is the mass of the meson exchanged (or the in-
verse of the characteristic range of the potential),
OPE %111 be the dominant part of the higher order
(in') terms. We therefore use OPE to approxi-
mate these higher orders.

The form of OPE in the nucleon-nucleon poten-
tial is usually written

(f/p)'6, kc, k7.,
'1

OPElp(l (2 )3(y2 d 2) (Pl P2 Pl P2 I

q = (I/2f )(v, —v,) (AI8)

with the further understanding that q operates only
on the wave functions and not on the p dependence
of V(p, q). The integral in (A12) usually allows
integration by parts with vanishing surface terms
and then we can write

dp P & p v p, 2
. v~ + v2 P~ p

where v, acts only on y (p) while v2 acts on q (p)
and on all the explicit p dependence of V.

The spin-orbit interaction is a special case of
nonlocality of the form V(p, q) = V1E((o)S p x q. If
V~E(p), by itself, is central (as is usually the case),
then p x Vp commutes with V1E(p), and the spin-
orbit potential can be written in its usual form

V(p, q) =VL, (p)S p&& 'vplf

=V1E(P)1. S . (AI5)

with

k = 2(pl pl —pa+pa) . (B2)

UopE (Pl) —
~ 3 c2'(P2-pd) ~ d~2 2&1'(P) —Pd)

x &(P, +P.- Pl-p.') .

The coupling constant f is the rationalized pion-
nucleon coupling constant used for the OPE part
of the potential (f'/4m=0. 08). Because of the
momentum-conservation 8 function in Eq. (BI),
there are a number of equivalent (for scattering)
ways in which we could write Eq. (B1). But these
could lead to different bremsstrahlung to higher
orders in E. We guide ourselves by choosing a
particular form for UopE(p, ) that leads to the same
result as the Feynman-diagram prescription would
give for bremsstrahlung due to pion exchange.

Such a form is
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The form (83) is set up as if the ordering (not necessarily time ordering) was that nucleon 1 first emitted
a pion which was then abosrbed by nucleon 2. The final bremsstrahlung matrix element turns out to be the
same for the opposite order (1 and 2 interchanged). The form (Bl) corresponds to instantaneous pion emis-
sion, transmission, and absorption, which is suitable for scattering in the adiabatic limit, but leads to in-
appropriate momentum dependence for bremsstrahlung. The explicit momentum dependence in (83) is
such that photon emission from the propagator [(p, —p,')'+ p'] ' will lead to the appropriate modification of
the momenta in the absorption factor o, ~ {p,—p,') [cf. Eq. (86)]. Because of the 6 function, the form (83)
is equivalent to (Bl) for scattering.

The result corresponding to using the form (83) in Eg. (2.10) is

V,„(r,) =(2v) '(f/g)' dp, P, [iv, +iv 2 q-A(r, )+ q2A( r2)]
[fv, + iv2-q&(r, )+ q2A(r2 )j'+ i(,

'

&&0 [i V +iV'-q A(r )+q'A(r'}]6(p +p, -p'-p/)8"» '~'»''~ »''~ »''2'.

We have not made the replacement V'- V- iqA in the 6 function, because it does not lead to a contribution
to V&2).~ The charges q, (q,') appearing in E(l. (84) are the charges of the ith (i'th) nucleon. We now intro-
duce the radiation vector potential of E(l. {2.12), perform the gradient operations, and subtract off V„ to
give

&'"(F,) (2 ) '(=//v)'(2~/&)"* ' 'f 4~(f& 4-il-))l)"'"'""''" "'"
5, g(q,'e '"'"2-q,e "'2)f, (p, -p,')

(5, —0')'+ v'

o'a'(p -O'Pi'&{qI~
(p. —p.')'+ v'

2o, (p, —p,'+K}o, (p, - p~ ,')(p, - p,') e(q,'e '"'2-q, e '"'2)
[{p2-p'+&)'+ ~'j[{p2-p')'+ ~']

(»)
We note that the p, in E(l. (85) are Fourier transform variables and are not the actual momenta of the
nucleons in npy Three o. f the four momentum integrals in (86}can be done immediately, leaving an inte-
gration over the variable R [defined in E(l. (82)]

V"'( r) ={y/ )'(2w)-'(2 /If)'"6( — ) dke-'"'
+ p. jP+ p2

2P, (k IY)o~ kR-ke '"' '[/q(P F]
[(k —K)'+ i(.'](k'+ (u')

= V(2)(r)6(r'-r) .

Now, the q, are to be considered the isotopic spin operators defined in Eq. (2.21). We note from Eq. (86)
that the bremsstrahlung potential from OPE is local, except for its obvious exchange character.

The charge-operator commutators give

[ „q'7P]=-[ „qf.'7-'j=fe(f'& P), .

The operator (-,'f)(F' x 7~), acting on eigenstates of total isotopic spin ~0) and
~ 1) with I,= 0 (nP system) has

the effect

(lf)(7'~ ~ ), Io& = Il)

(-.'f)(7'» ), ll) =- Io)

so that it just changes the isotopic spin {up to a sign).
We can change the integration variable in (86) and, using the fact that e K=0, put it in the form

(86 )
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&."(2)=-(l~~)(//v)*(&~) '(2 /&)'"( '~ ).(ace '"'

(k--2'K)2+ y.
2 (k+ —2'K)2+ P,

2

2e ko, ~ (k+-K)o, '(k- —K)

[k —-',K)'+ p. '] [(k+ -', K)'+ p.'] (B9)

Equation (B9) agrees with the result that would fol-
low directly from the Feynman diagrams of Fig. 4
if k is defined by (B2) and the momentum conser-
vation (p, +p, =p, +p, +K) [cf. the discussion fol-
lowing Eq. (2.20)] appropriate to bremsstrahlung
18 used.

The integral in Eq. (BQ) cannot be done exactly,
but it is useful to expand it in powers of K. This
turns out to be an expansion in K/I2, either ex-
plicitly or implicitly, because the range of V,"' is
I/p, . For photon energies for which the potential
picture would be reasonable, this expansion is
expected to converge rapidly. We write

with

M= 2e(f2-/-4wp2)(r'x P)2(e ""/r)[(o, xo2) rr(1+icr)

(o,-x o )p2,r] .

(B16)
After some algebra, the second-order potential
can be written

V(r) =~24e(2)T/K)' '(r'x r') e r(K r)'V

+ ,'. ( v/K—)'"(f'/4si ')(r-'x P) e- "

x((o, eo2 r+o, ra, e)[(1+pr)(K r)2-K2]

-(1+p)rK r, er(o", Ko, r" +o, ro, K)

V(2) = ~ V'.
em

)=0

(Blo) +K r (o, K"o2 e+o, Co2 K) —2e ro Kcr K

+K2e r[(1+gr)o, ro2 r"-o, o2]]. (BI'I)
where the subscript i denotes the order of K in the
expansion. The V,. are given by

V, =-ie(f/i2)2(2)T) 2(2v/E)'"(r'x r2),

x dke-'"'v k (Bl1)

and the first three v, are

v, = e V„o, ko, k/(k' + Ic2), (BI2)

(o, xo, ) kk —k I
+ —I ~ K

k +i2 ) -k +((c

where I is the unit dyadic, and

(e k)(a, K)(o2 K)
2 2(k2+ ~2)2

(BI2)

(K r)2[(o, S)(o2 k)+(o, k)(o, i)]
8(k2+ iL2)

2(e k)(oy k)(o2 k)
[( K) )

(k(k2+ ~2)4 2 P'
(a) (b)

The first term of Eq. (817) comes from the modi-
fication of the meson propagator and would be the
same (with the appropriate V„) for any type of ex-
change. It can be taken into account in Eq. (2.25)
by simply making the replacement r-r -~24r(K r)'.
This then includes some order-EP corrections for
the entire potential (and not just OPE). We have
included this term in some npy calculations and it
has very little effect.

All the terms in V(@ of even order in K (not
counting the IC '/2 in the photon "wave function")
are of odd parity and, since the isospin must
change, satisfy ~S=O. On the other hand, all
terms of odd order in K are of even parity with
68=1. For V,', the electric terms have LS =0
while the magnetic terms (which are of order IC)

can have AS=1 or 0. This means that, if nucleon
polarizations are not measured, the order-K terms
of V,'" can only interfere with the order-K mag-
netic terms of V,'" to give an order-IP correction
to the npy cross section. Thus, a consistent treat-

(B15)

The zeroth order potential V, is just what we
have used when the commutator [A, V] was ne-
glected. The first order potential V, is the well
known "exchange moment" contribution and can be
put (after some algebra) in the form"

V,(r) =M H, H=- (i2vI/i)' /(2K xe), FIG. 4. Feynman graphs for V,~ due to OPE.
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ment of the higher orders in E of V,"' would re-
quire keeping both V, and V„which might be ex-
pected to contribute in the same order in the npy
cross section.

We indicate this schematically below. We can
write the npy amplitude as

A= [K 'E+M+ V, +KV, +K'V,], (BIS)

where E and M are the electric and magnetic parts,
respectively, of V,'", and K'V,. are the ith order
(in K) parts of V,'" [the V,. of Eq. (B10)]. The V,

are independent of K, and the terms E and M
approach finite values as K-0. The rescattering
contribution of V,"' starts out with one power of
K higher than the corresponding electric and mag-
netic-pole contributions and can be included with
E and ~ for this discussion. The unpolarized npy
cross section is proportional to K ~A ~' summed over
spins, which can be written

KI& I'=& '/&/'+2Re&"(V. +M~=.)+K(fM/'+ f VJ
'

+ 2 ReM~z ~,VO) + K'(2 ReM~~~=, V, + 2 ReE*V2)

+O(K') .
(B19)

Other cross terms are absent from (B19) as seen
in our previous discussion. It is clear from (B19)
that Vo can have a large effect because of its inter-
ference with the electric pole term E and that Vo

enters tsoo orders in A before either V, or 7, ,
which both first appear to order K'.

It has been suggested that the order-E term in
V,'2' will be important because it introduces new

spin transitions to the npy amplitude. " This is
indeed the case for threshold radiative np capture"
because it is the leading contribution to the tran-
sition 'S,-'D, (of the deuteron) which interferes
with the dominant 'S,-'S, transition. However,
for n-p threshold capture, initial S states are all
that need be considered and the magnetic part of
V,'" is the leading contribution. While for npy at
moderate energies, the S states do not play a
dominant role and the electric part of V,"~ is the
leading contribution. This could diminish the im-
portance of V, and make its effect comparable to
V, as discussed above. If nucleon polarization
data were obtained, then V, would be expected to
play a significant role.

We have indicated in this appendix how the high-
er-order terms in K can be generated. We limited
our discussion to the case of OPE because the ef-
fective expansion in K/p, indicates that the higher
orders will be dominated by the long-range force,
well fitted by OPE. Even two-pion exchange might
be expected to contribute more to these higher
orders than heavy-meson exchange.

The prescription that worked for OPE (in the

(-V /m+ V~)g, =Eg, ,

where

V, = V, -(1/m)(V'P(+ Q, V ) .

(C 1)

(C2)

The subscript i in Eqs. (C1) and (C2) represents
isospin; the fact that there are two separate iso-
spin equations is a consequence of the customary
assumption of charge independence. If we intro-
duce the usual transformation"

—
y /(1 + 2y )I/2 (CS)

then we obtain the familiar Schrodinger equation
for a static potential

( v'/m+W, )g, =sy, ,

where

(C4)

W, = (V, + 2y,.z)/(I+2y, ) —[y,'/(I+ 2y, )]'/m.

(C5)

The effect of the exchange potential (3.13) acting
on g, in terms of the second derivative of g,. and
the first derivative of It);, can be obtained using
Eqs. (C2) and (CS) and some operator manipula-
tions as

—,'(V, —V,)y, = -,'(I+ 2y. )

x (w; w, )y, + ~o ~( 4+@1+2po 1+ 2P, r
yiI pit

Ii+2/0 I+2/, 1+2/0

1+ 2{It)
(C6)

The primes in Eqs. (C5) and (C6) denote radial
derivatives. To obtain the corresponding equation
for the exchange potential acting on P, just inter-
change the subscripts 0 and 1 in Eq. (C6).

sense of reproducing the field-theory result) is a
reasonable one which is readily extended to more
general uses, if desired. For any potential whose
Fourier transform can be put in the form

(Pf) V(o21 P21 P2) (P2P P2) ( oil Plt Pl)5(pl P2 P1 P2)

(B20)

with V and 6 arbitrary, the same development will
work. The momenta have to be arranged in the
order shown (or 1 and 2 everywhere interchanged)
so that photon emission at one point will have the
appropriate effect on the other momenta, con-
sistent with momentum conservation everywhere.

Appendix C

The Bryan-Scott III potential is a momentum-
dependent, one-boson-exchange potential that
satisfies the Schrodinger equation
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