
PHYS ICA L BEVIE%' C VOLUME 8, NUMBER 5 NOVE MBER 1973

Scattering Amplitudes at High Energies. III. An Approach with Green's Functions
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The scattering amplitude at high energy is calculated in various approximations, explicitly
incorporating both the single and double hard collisions. For the purpose of improving the
large-angle behavior of the amplitude, approximations are introduced directly to the full
Green's function rather than to the scattering function, thus avoiding the usual assumption
of a straight-line trajectory. The previous study using the semiclassical Green's function
gave very accurate amplitude up to a moderately large angle, and we have further examined
its applicability to more general forms of potentials. Some of the practical difficulties in
carrying out the amplitude integrals are pointed out, and the problem is simplified by intro-
ducing an angle-averaging procedure and also by an eikonal approximation to the semiclas-
sical, Green's function. These procedures are then tested using Gaussian and Yukawa forms
of the potential; they are relatively simple to apply and the over-all accuracy is improved.

I. INTRODUCTION

This is the third in a series of reports' on the
study of the eikonal representation of high-energy
scattering amplitudes, with the emphasis on im-
proving the behavior of the amplitude at large
angles where the dynamical correlation effect
of the target system plays a more prominent role.
Extensive numerical calculations were performed
earlier' to determine the effectiveness of the vari-
ous forms of impact-parameter amplitudes pro-
posed by many people. Although the need for an
improved amplitude is common to both atomic
and nuclear high-energy collisions, we examined
the approximations in the framework of potential
scattering using the Schrodinger equation, always
with the understanding that much of the result
obtained here may be generalized to the relativ-
istic case by the usual kinematic adjustlnents. '" '
Various forms of the potential, the Yukawa and
Gaussian types, were studied at different scatter-
ing energies and scattering angles in order to
make the study as model-independent as possible.
Generally, cross sections with sharper diffrac-
tion structure are harder to reproduce, and we

concluded in the two previous reports that none
of the known approximations on the amplitude
were sufficiently accurate at large angles to be
used in the extraction of physical informations
about the target system from experimental data.

More recently, however, we have presented' a
new approach to this problem by explicitly con-
structing a simple Green's function, with full
interactions, in the semiclassical approxima-
tion, G,',", ,and its effectiveness was briefly tested
for high-energy scattering. Although the actual
form of the Green's function was much simpler

than the corresponding WEB form, ' the resulting
amplitude was extremely accurate over wider
angular ranges. In the case of a Gaussian poten-
tial, the amplitude with the Green's function G,',"
can be reduced immediately to a double integral.
Moreover, the usual assumption of a straight-line
trajectory is not required. The semiclassical
formulation of the two-particle Green's function
can be extended' to systems involving three parti-
cles, and we indicated how it can be simply gener-
alized to many-particle cases.

However, except for the simple case with a
Gaussian potential, or a Gaussian times a poly-
nomial, the application of G,'," becomes more
difficult, because the amplitude integrals do not
simplify so easily. In view of the effectiveness
of G,'," demonstrated previously, 4 it is of interest
to examine in more detail some additional approxi-
mations on G,'," which could reduce the amplitude
integrals to simpler forms and still retain some
of the desirable features of the original Q,",&.

judge the effectiveness of a given approximation
by comparing it with the Glauber amplitude, which
requires two numerical integrations, one over
the trajectory for the eikonal phase and the other
over the impact parameter.

The necessary kinematics and notations are de-
fined in Sec. II. We emphasize the distinction
between the two ways of eikonalization of the ampli-
tude, in which either the total wave function or
the full Green's function is directly involved. A
particularly useful set of variables are introduced
for the evaluation of amplitudes involving Green's
functions. Section III contains various approxi-
mations on the Green's function and the resulting
expressions for the amplitude. The numerical
test is presented in Sec. IV.
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II. SCATTERING AMPLITUDES
AND THE GREEN'S FUNCTION

f(K~, R, ) = -— e 'K~ ' ' V(r)C; (r) d'r, (2 1)

where Ki and K& are the initial and final momenta
and we have set m =8 =c =1. The total wave func-
tion 4;, with the initial incoming wave boundary
condition, may be conveniently written in two dif-
ferent forms; for small-angle scatterings, we
may set'

e, -=e'"'e,.(r), (2.2)

where 4; is to be estimated directly from the
scattering equation

In this section, we define notations and kine-
matics, review some of the conventional impact-
parameter amplitudes, and point out the diffi-
culties brought about by the assumption of straight-
line trajectory. The scattering amplitude for a
potential V(r) is given by

where of course 0,'"' is the scattered part of 4;
with the outgoing wave boundary condition, and is
given by

afoot

G(+)(r~ ~ri)V(~ri)efKg ' r' (2.7)

In (2.7), we used the full Green's function

G~'& =(Z +i e T--V)-', (2.6)

R-=z(R, +R,)/IR, +R, I. (2.10)

The form (2.9) is especially useful at large angles,
and includes also the form (2, 2) as a special case.

With (2.6) and (2.7), the amplitude becomes

which is in general not known. However, the form
(2.6) allows the particle trajectory to deviate from
the original R; direction in a very natural way.
Thus, 4 ';"' may be evaluated either by introducing
an approximation to G'", or by making an ansatz,
as, e.g. ,

@out IK' r
(2 9)

where

(T+V —Z)4, =0,

where

(2 3) f=fa+f.
where

(2.11)

SK2 K
T ==,'v-' z = =— z-=IK

I
= IK, I.2m 2'

(2 4)

That is, Ci satisfies

(2.12)

is the usual Born amplitude, and f, is the correc-
tion to f, , given explicitly as

(T —i K( ~ V, + V)C; =0. (2.5)

The form (2.2) is useful for small-angle scatter-
ings but not for large angles. The assumption of
a straight-line trajectory is equivalent to the. TC;
term in (2.5) being small compared with the two
other terms in (2.5). With such an approximation,
we then obtain amplitudes of the Glauber type, '
in which all the collisions suffered by the projec-
tile are taken to be soft. ' The previous study'
was essentially based on the ansatz (2.2) for 4';,
and practically all the amplitudes tested there,
including the T4; correction, failed to provide
reliable values at large angles. The result strong-
ly suggested that the effect of both single and
double hard collisions had to be incorporated into
the amplitude explicitly in order to improve its
behavior at larger angles.

In the high-energy scattering of pions and nu-
cleons by complex nuclei, the multiple hard col-
lisions can be associated with the two- and three-
particle correlation functions of the target, and
their effect shows up more prominently at large
angles. To improve the reliability of the impact-
parameter amplitude at large angles, therefore,
we may try a slightly different form for 4,

iK] ' r + @out (2 6)

f, == d're "~'V(r)
2r

(2.13)

In (2.12), we used the momentum transfer vector
q defined by

q =K; —Kg, (2.14)

which assumes the values 0 & q & 2K for given K
In terms of the scattering angle 0,

q =2h. sin28.

The scattering cross section is given by

&(& O)= Ife+f. l'

(2.15)

(2.16)

eiKI:r-r '
I

Go" =(E+ie —T) ' =-—
2'F

)
X' —X' (2.17)

Evidently, the evaluation of f, is considerably
more difficult than fe or some of the other approxi-
mate amplitudes obtained with (2.2), even when a
reasonably simple form for 4,'"' is used. However,
in some cases, f, can be simplified, as will be
discussed in detail below and in Sec. III. As an
example, consider the free Green's function Gp"
in the place of G"', where
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u=r —r' and v= ,'(r -+r') (2.18)

with

That is, G,'" depends only on the variables jr —r' i,

and suggests that perhaps a more convenient vari-
able to use in f, may be the new set (u, v) defined
by

The boundary condition on y is

q7 0 as (2.26)

where z, is the z axis along the E, direction.
[(2.26) seems to be more convenient than the as-
ymptotic condition at z =-~ where z is parallel
to the initial K; direction. ] The solution of (2.24)
is given by

d xd'r'=d ud'v.

The exponent function in f, is rewritten as

K ~ r'-K r=q v —K ui f a

where

K, =-,'(K, +Kf), with q K, =O.

(2.19)

(2.20)

(2.21)

where

~a

VdZ, I .
K

(2.27)

(2.26)

Thus, (2.13) becomes

1f == d'v e'" ' ' d'u e ' '' "G'"(u v)

The primed quantities in (2.27) are dependent on
the variables r, ' = (x, '+y, '+z, ")"', and the sub-
script a denotes the variables in the coordinate
system in which the z, axis is parallel to K,(=K).
Using the solution (2.27), we have

&& V(v + ,' u) V(v ——,'u) . —

(2.22)

For G,"' of (2.17), and also G,',"derived pre-
viously in the semiclassical approximation and
to be considered further in Sec. III, the reduction
of (2.22) to a much simpler form depends on the
particular form for V(v+ —,'u)V(v ——,'u). For ex-
ample, we will show explicitly that f, reduces
trivially to a two-dimensional integral if the po-
tential V(r) assumes the form

f fa+f:"
where

with

H, =e "' V(r,')e'"& '&,

H = e'" ~ V(r )e' ~& '~

(2.29)

(2.30)

(2.31)

V(r) = —e "" (1+pr'+ p'r'+ ~ ~ ~ +p'"'r'")
2

(2.23)
qI =K —KI =q/2+(K-K, )K,/K, .

and if we use either G,'" or G,'," in the place of
G"', where these approximate Green's functions
depend only on the scalar variables u and v. The
difficulty in the evaluation of (2.22) arises es-
sentially from the angular dependence of u. v.
W'e will return to this problem in Sec. III.

Before considering the problem of evaluating
(2.22), we study briefly an alternate approximation
to f, which can be derived with the form (2.6). As
in (2.2), we adopt the ansatz (2.9) for 4' "' and
assume that y is a slowly varying function of r.
Then, neglecting the (Tcp) term, we obtain im-
mediately, from (2.3), (2.6), and (2.9), the equa-
tion satisfied by y,

&K V, y —Vq = Ve'&' ',
where

Note that H; is not a Hermitian conjugate of H&

(even with r, -r,'). Equation (2.30) shows explicitly
that the momentum transfers at the collision
points r, and r,' are qI/O and q;/2, respectively,
with q;+qf =q. This is a direct consequence of
the choice of 4","' we made in (2.9). The particle
is to travel in the K, direction between the two
hard collisions, accompanied by soft collisions
which give rise to the distortion factor exp(+i y.,).
Both these effects are seen to be important in
producing accurate amplitudes at large values of
q. (See Sec. IV. ) It turns out that, although (2.30)
usually involves a tripLe-integral and thus harder
to evaluate than (2.22), it has the advantage that
almost any form of potentials can be used.

It is interesting to note that (2.30) is consistent
with the eikonal approximation on G'", with

q K,
q = ——(K-K )—'.2 ' Ka

(2.25)
(2.32)
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A more general form of f,", in which the separa-
tion of q into q; and q& is not specified, has also
been worked out. '

III. APPROXIMATE AMPLITUDES

We simply note that f«of (3.5) involves Neo inte-
grations, one for X«and the other over the im-
pact parameter 5, and that X.«does not seem to
depend on the momentum transfer q. This is the
main simplifying feature of the Glauber amplitude.

(3.1)

We consider in this section several approxi-
mate forms of the a,mplitude derived from (2.6)
and (2.11), which will then be tested in Sec IV.
For convenience, we adopt the Gaussian form for
V(r) which was also used in the earlier studies, '

given by

V(r) = —e ""'(1+pr')
2

B. Second Born Amplitude and G(+ ~

The exact second Born amplitude is given for
the potential (3.1) by

1 d3 cf'
C,B 4 2

with the parameters chosen such that the diffrac-
tion maxima are produced at moderate angles, at
q=0 and q=1v5 in the appropriate units. That is,
we set

and thus

d'ue " ' " V v+-, u V v-;u
(3.7)

A. =0.2, p =0.3,

g= -0.4 (and also -0.2),
(3.2) The potential factor in (3.7) is

+ 1
)V(v

1u) e 2Avm Avm)2 E2 2

(3.8)

K=2.0 (=K( ——Kf).

Aside from its effectiveness in testing the various
approximate amplitudes, the form (3.1) turns out
to be extremely convenient in the evaluation of f, .
We will also study the Yukawa form for V(r) to
test procedures which may be applicable to situ-
ations where some of the simplifying features
discussed in Sec. II (related to the u v term) are
not present. We now list the approximate ampli-
tudes which are being studied.

A. Born and Glauber Amplitudes

The Born amplitude is given when we set 4, =1
in (2.2), as

v' 0
rdr e "" (1+pr') sin(qr)/q, (3.3)

which is real for the set of parameters (3.2). The
Glauber amplitude is obtained from (2.2) with

4; =4'GL ——exp -+ p g,' dz,', 3.4

where ~, and z,' are chosen along the K, direction.
Thus,

where

E =E0+E, ,

E, = 1+2p(v'+-,'u')+p'(v'+ ,'u'v'+~Lu—4)

E~ =-p'(u'v)'

(3.9)

dQ-„dQ-, e " ' ' v'"E(u, v; u v) =M(u, v;K„q)

and finally
00

e ad -2kv~
16m' v 0

Both the exponent and E, in (3.9) depend only on
the scalar variables u and v, so that the angular
dependence on u and 6 is entirely contained in the
factors e'q ' and e ' ' ". Therefore, the angular
integrations over dQ-„and dQ; in f, e can be car-
ried out immediately for the E, part. On the other
hand, the E, part in (3.9) involves the angle be-
tween u and v, and the angular integrations be-
come more tedious. The details are given in the
Appendix. Thus, using the result (A2) and (A7)
of the Appendix, we have

f« -zK bdb J,(qb)(e'"« —1), (3.5) udue'r" """M(u, v;K, , q). (3.10)

where

1X« = —— V(r, )dz, . (3.6)

Both fe and f«were extensively studied in Ref. 1
for the potential (3.1) and for the Yukawa form.

0

The double integral in f, e can now readily be done
numerically, and thus, for V(r) of the form (3.1),
the second Born amplitude fe, is as simple to
evaluate as f«. Note that this simplification is
brought about by the simple u dependence of G0"'
as well as the particular form (3.1) for V(r), and
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the only complication was the presence of the
(u v)' term, which nevertheless could be treated
exactly.

C. Semiclassical Green's Function

The Green's function in the semiclassical ap-
proximation, with the full interaction t/', was
given earlier4 by

G(+) iQ (V) t4

27TQ
P (3.11)

where

Q(v) =[K' —2V(v)]'" =real. (3.12)

It was shown there that the resulting amplitude

f ~fsc =f2 +fc, sc (3.13)

is extermely accurate at all angles up to q & K
considered there. Since Q(v) depends only on
the scalar variable v, the evaluation of f, „will
involve exactly the same angular integrations as
for f, s above, where Q(v) is replaced simply by
K in G,'". The complication with the (u v)' factor
also appears in f, „, but the final form of f, „
will again involve a double integral, as

The forms such as (3.15) and (3.16) will simplify
the f, integrals for any potentials to the same de-
gree f» and f„are .In particular, for (3.1), we
have with (3.16),

f.(~.) =fs+f. ..(~.),
where

(3.17)

f (te )= v'dve '"" J ed e'e'"'" ""'"
C23C q y6+2 0 0

x (M, —(2,2p2u'v2} .

(3.18)

X, —g,' =R(v, )u, ,

where

(3.19)

E. Eikonal Approximation to G~i+)

Another method of evaluating f, without the com-
plications caused by the u v term is to adopt
f "of (2.30). The expression is fairly complicated
and in general involves fivefold integrations, in-
cluding the integral involved in the phase function
X, . We can introduce, however, a simplification
similar to that which appears in G,',"; i.e., in
(2.30), we let

fc, sc 16 2
«2%v

x f udue' '"'" """M(u, v;K, , q). (3.14)
0

and

u, =z, —z,' & 0)

v, = (r, '+u, '/4 —z, u.)"',
(e 2 +5 2)lf2

(3.20a)

Again, f„ is as simple to evaluate as fG„and f»
when V(2) is of the Gaussian form (3.1) or (2.23).

D. Angle-Averaging Procedure

We have seen above that both F2 and f„can be
simplified because of the way the factor (u v)
appears in the amplitude integrals. Obviously,
for V(r) other than the Gaussian form, f, will be
extremely hard to evaluate accurately even if G,'"
or G,'," is introduced in fc 2 Therefore, it is of
interest to consider possible ways of further sim-
plifying f,. One possibility is to take an average
of (u v)' over, the angles, sndependent of the (I v
factor in the exponents e'~ ', i.e.,

(u v)'- n2(uv)2, (2 = I/v 3 . (3.15)

[The symmetry of V(v+ 2u)V(v ——', u) allows only
terms of even powers in (u v).] In fact, for q=0
and with (3.1) for V(r), (3.15) is exact. This is of
course an accident, because E of (3.9) only in-
volves (u v)2 and not of higher powers. For q) 0,
however, we may try a q-dependent 0'- factor,
for example, of the form

(3.16)

R(v, ) = [K' —2V(1(,)]"2 -K = —V(2(, )/K. (3.20b)

We also write

(I; ~ r,' +(If ~ r, =(I.v+(K-K, )u, .
Since z, is orthogonal to q, we have

q v, =q. b =qb, cosy~

(3.21)

re =(2,2+u ' —22, u, )'f2

and 2'„u„1(, are given by (3.20). The form (3.22)
is much simpler than (2.30) and involves only tr1ple
integrals, which is one more integral than the
Glauber fG„and the semiclassical f„However, .
unlike with f„, fP in the form (3.22) for f, is now
applicable to all forms of potentials without the
u v compl. ication, and presumably f,", should be

and the y, integration in d'b, can be carried out.
Therefore, with (3.20) and (3.21), we can reduce
(2.30) into the form

f.„. fed». (ee( J de-.

x du, V(r, )V(~,')e """ ""' (3.22a)
0

where
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an improvement over foL at larger angles. This
will be tested in Sec. IV. Obviously, (3.22) corre
sponds to the semiclassical approximation in which

G,'," is replaced by

Geik S(5 Gq)S( + )
iK'u iviv-e&zz/i/

SC 2+~ 0 0 0 0

(3.23)

K as

f&'& =f (z -z)
This will be compared with f and f„.

G. Three-Particle Green's Functions in the

Semiclassical Approximation

(3.24)

f ""=f' [R-R' =R+ V(b)f&q//E'] (3.22b)

F. q Dependence of fsc Th«u@ &,

It is of some interest to study the q depen-
dence of f, coming from the wave vector K, in
the intermediate state. For q) 0, K, deviates
appreciably from K, where

(If2 & q2)l/z

We denote the amplitude f„with Z, replaced by

which should then be compared with (2.32). Inci-
dentally, f,', at q = 0 should be similar to fo„, the
difference is mainly in the phase Q(v, ) compared
with X,«. The two amplitudes are quite different
at large q. A slightly improved form is also ob-
tained as'

«2 «2

2m
(3.25)

where m andM are the reduced masses of the
particles 1 and 2, and (1+2) and 3, respectively,

Finally, we note that the approximations such
as (3.13) and (3.22) can also be developed for sys-
tems with more than two particles. The necessary
semiclassical Green's function 6,'," for the three-
particle system has been given recently, 4 and
possible generalizations to other many-particle
systems are fairly straightforward. However,
the number of variables which are involved in the
many-particle 6,'," is very large, and it is essen-
tial for their applications to simplify the f, inte-
grals along the line discussed in this section.
Thus, for example, we have for the three-particle
system described by the Hamiltonian

TABLE I. The real and imaginary parts of the various amplitudes and the cross sections
are given for the Gaussian potential (3e1) with the parameters (3.2) and g=-0.4, K =2.0. f,„
= the exact amplitude; fz is the first Born amplitude; f&2 is the second Born amplitode; f
is the semiclassical amplitude; f~' is the same asf~, but with%, replaced by E;fm» is the
improved amplitude obtained in Ref. 1 which includes the T4; correction.

fex fsc fmsi

Bef 0.0
0.4
0.8
1.2
1.4
1.6
1.8
2.0

lm f 0.0
0.4
0.8
1.2
1.4
1,6
1.8
2.0

lfl' o.o
0.4
0.8
1.2
1,4
1.6
1.8
2.0

6.305
4.634
1.664
0.0653

-0.1484
-0.1629
-0.1052
-0.0464

1.319
1.106
0.628
0.1976
0.0650

-0.0092
-0.0378
-0.0380

41.49
22.70
3.163
0.0434
0.0262
0.0266
0.0125
0.0036

6.440
4.786
1.825
0.1802

-0.0727
-0.1252
-0.0975
-0.0567

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000

41,48
22.91
3,332
0.0325
0.0053
O.0157
0.0095
0.0032

6.535
4.837
l.798
0.1247

-0.1186
-0.1539
-0.1086
-0.0551

1.338
1.131
0.663
0.2318
0.0932
0.0106

-0.0270
-0.0351

44.49
24.67
3.671
0.0693
0.0228
0.0238
0.0125
0.0043

6,213
4.586
1.691
0.116

-0.143

-0.055

1.305
1.096
0.631
0.218

0.013

-0.031

40,30
22.23
3.259
0.0610
0.0200
0.0205
0.0109
0.0040

6.293
4.625
1.660
0.0662

-0,1471
-0.1619
-0,1056
-0.0485

1.299
1.088
0.615
0.1927
0.0638

-0,0076
-0.0347
-0.0349

41.29
22,58
3.135
0.0415
0.0257
0.0263
0,0124
0.0036

6,293
4.650
I.718
0.1132

-0.1198
-0.1552
-0.1141
-0.0641

1.299
1.090
0.628
0.2173
0.0891
0,0134

-0.0215
—0.0304

41.29
22.81
3.346
0,0600
0.0223
0.0243
0.0135
0.0050

6.312
4.637
1.657
0.059

-0.152

-0.035

1.320
1.113
0.638
0.199

-0.010

-0.026

41.59
22.74
3.153
0.0431

0,0233

0.0019
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we have

G(+) ( / ) 0 'If (()(q } (3.26)

where

Q=(2[E —W(v, V)j)'" =real,

p„=(mu'+M IP)"',

IV. RESULT OF THE CALCULATION

%e now test the various approximate amplitudes
derived in Sec. III by numerically evaluating them
and comparing them with the Glauber amplitude
f«and the exact amplitude f,„, and also with

some of the "improved" results obtained earlier.
Table I contains the exact amplitude obtained by

the partial wave analysis' for the potential (3.1)
with the parameter values specified in (3.2) and
g=-0.4. The second Born amplitiide f», the
Glauber amplitude f«, and the semiclassical
amplitudes f„are listed, both their real and imag-
inary components and the differential cross sec-
tions. Often, compensating errors in Ref, and

Im f, give misleading results, where the subscript
t denotes any one of the approximate amplitudes.
Evidently, f„ is extremely accurate for all values
of q&E, both for Hef„and Imf„. For compari-
son, we have also included the amplitude f „ from
Ref. 1, which was the best of all the approxima-
tions studied there and contains the correction
term (T4;).

u=r —r', v=(r+r')/2

U=H —R', V=(R+H')/2.

Details of the study of G,'," given by (3.26) will
be presented elsewhere with specific applications.
We only note that the amplitude with G,',"of (3.26)
will contain integrations over 12 variables, and,
even with the Gaussian form of the potential for
W, some further drastic approximations are re-
(Iuired for the evaluation of f,.

1
n, =0, ~, and 1.0 (4.1a)

and also

(4.lb)

The second Born amplitude fsa in Table I shows
that the double hard collision -alone is not suffi-
cient to improve the amplitude fs, although if» i'
at large angles is quite reasonable and consistent-
ly better than if«i' for q) 1.4. Comparison be-
tween if» i and if„ i indicates the importance
of the distortion effect in G,'," which is not pres-
ent in G,'". f» is not reliable for q& 1.2, as
expected, again because of the effect of many
soft collisions. The apparent agreement of ifs i'
with If,„ i' at small values of q is fortuitous as
f, s immediately destroys the agreement at small
q. (The f» quoted in Hef. 1 was obtained by eikonal
approximation on G,"', and thus differs from f»
given here. )

One of the conspicuous changes in f„when com-
pared with the Glauber form fc„and f,' of (2.30),
is the appearance of K, defined in (2.21). The in-
clusion of this factor may improve the large-angle
behavior, as K, deviates appreciably from K as q
increases. Therefore, we have evaluated f (o' of
(3.24) by modifying the program for f„. The com-
parison between if„i(' and if (," i' indicates that
the changes brought about by the replacement K,
-K seem to oscillate as q is varied, and even to
go in the wrong direction, insofar as the corre-
sponding change in f« is concerned. This result
may be model-dependent, however.

For potentials other than the Gaussian form
(3.1), the second part of the amplitude, f, „, is
difficult to evaluate because of the presence of the
terms (u v)", with n an even integer. To extend
the usefulness of G„"' to other potentials, we have
introduced the angle-averaging procedure in Sec.
III, which replaces u v by n, uv, so that the re-
sulting integrals for f, become two dimensional
((fudv). We have thus evaluated f, „(n,) of (3.18)
for different choices of a„ i.e.,

TABLE II, The potential and energy parameters are
the same as in Table I; the angle-averaged forms are
used. n =1/v 3 (1-q/2X). The values are for if &i

2.

0.0 41,49
0,4 22.70
0.8 3,163
1.2 0,0434
1.4 0.0262
1.6 0,0266
1.8 0.0125
2.0 0.0036

41.57
22.82
3.221
0.0445
0.0265
0.0293
0.0153
0.0052

41.29
22.61
3.167
0.0516
0.0306
0.0287
0.0134
0.0039

41.29
22.53
3,150
0,0562
0,0328
0.0285
0.0126
0.0034

41.29
22, 59
3.160
0.0539
0.0319
0,0286
0.0128
0.0035

41.58
22.80
3.206
0.0477
0.0292
0.0288
0.0135
0.0037

f f (&, = 1) f .(&, = 1/'~3) f. (Gf, = 0) f .(&,' ) f.(0',")

(4.1c)

The result is given in Table II. Of course, n,
= I/v 3 is exact at q = 0 because of the particular
forms for V given by (3.1), and we have f, „(n, )
='. f, „in that case. For q) 0, f, „(n, ) seems to
favor the smaller n, , and n, = n,' of (4. lb) seems
to fit f, „better for the whole range 0 (q (K. The
q dependence of n,' and n," is completely arbi-
trary and adjusted to roughly fit the trend. Note
that for q ~ 1.2, the improvement over f« is (Iuite
significant.
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TABLE III. The notations are the same as in Table I. The Gaussian: potential is used with
g=-0.2, aud K = 2.0. The values are for

~fJ 2.

fex fsc fGL fsc( =1/~3) fsc(+ )

0.0
0.4
0.8
1.2
1.4
1.6
1.8
2.0

10.44
5.74
0.812
0.007 63
0.003 07
0.005 08
0.002 71
0.000 82

10.43
5.735
0.814
0.007 54
0.003 09
0.005 06
0.002 69
0,000 82

10.64
5.867
0.848
0.009 17
0.002 83
0.004 88
0.002 70
0.000 86

10.30

0.867
0.009 93
0.002 25
0.004 22
0.002 46
0.000 84

10.43
5, 739
0.818
0.008 35
0.003 40
0.005 23
0.002 81
0,000 87

10.43
5.737
0.817
0.008 43
0..003 50
0.005 22
0.002 74
0.000 82

Table III contains the result for the Gaussian
potential (3.1) with the same parameter values
(3.2), except that g= -0.2. This corresponds in
effect to higher-energy scattering, and the for-
ward peak is more pronounced than the case with
g=-0.4. Again, f„igv sean excellent representa-
tion of f,„ for all q &K =2.0, while f„(n,') gives
a much improved amplitude compared with fG, .

To further test the effectiveness of the angle-
averaging procedure with a, =a,', we have applied
the same procedure with the parameter n, to the
Yukawa potential case

(4.2)

where

(~2 + ca)1/2

The parameters are chosen as before'

g' = -0.4, B =0.5,

c =10 3=0, and K=1.0. (4.3)

The result is given in Table IV. This is a fairly
low-energy scattering, so that fo„ is not expected
to be very effective. Of course, the exact evalua-
tion of f, „using G,'," in this case is not easy,
and we can only infer its effectiveness through
the prediction with n, = 1/WS and n, =n,' = 1/&3
x(1-q/2K). Note that f„(n, ) is remarkably ac-
curate at q& 1.0, with K=1.0. We emphasize
that the calculation of f„(n, ) is as easy in this
case as the Gaussian case and also the Glauber
amplitude. Note that f„(n) and f„(n,') turn out

TABLE IV. The Yukawa potential (4.2) is used, with
the parameters specified in (4.3). X =1.0.

to be approximately the same.
Now, we turn to the second method of simplify-

ing the f, „integral using 6"" in the place of 6,',".
Explicitly, we have evaluated (3.22) for f,"„in

the case of the potential (3.21). The result is
summarized in Table V. The result with G,'~

shows that for small q & 0.4, where the Glauber
amplitude is expected to be reliable, f;,'" is very
similar to foz, as is clear from (3.22). On the
other hand, (f;,' (' falls below (f,„(', with a con-
sistently better fit, in the region 0.4~ q~ 1.6. For
q~ 1.6, however, f,"," seems to be less reliable.
In spite of the physically attractive nature of the
approximations introduced for f;, , the improve-
ment is only marginal for large q regions, and the
result further suggests that the straight-line propa-

~ gation of the waves along the K, direction during
the interval between the two hard collisions may
be too stringent a condition. Such a restriction
is not present in G,',". A slightly more general
form of the amplitude than (3.22), in which q; and

q& are not predetermined, can be given, ' but in-
volves additional integrations. Incidentally, the
extra phase factor exp[i (K-K,)u, ] in f,;a appears
as a part of the momentum transfer at the points
r and r', and has a nonnegligible effect on the
amplitude (and improves it). A slightly improved

~f ""~' of (3.22b) is also given.

V. CONCLUSION

We have shown' earlier that f„of (3.13) with the
semiclassical G,'," is very effective for large-

TABLE V. The eikonal approximation to G~s+ is used
to calculate the amplitude for the Gaussian potential
(3.1) with (3.2), and g=-0.4, E =2.0.

fex fGL fsc(o', ') = f~(& =1/~3) q Qefs+c $1Tif,+c

(fate)2

/f (&')j /f

0.0
0.2
0.4
0.6
0.8
1,0

2.618
1.953
0.994
0.457
0.218
0.113

2,392
1.771
0.877
0.396
0.188
0.098

2.602
1.964
0.989
0.452
0.214
0.109

2.530
1.903
0.951
0.430
0.202
0.102

0.0
0.4
0.8
1.2
1,4
1.6
1.8
2.0

6.206
4.558
1.634
0.074

-0.132
-0.147
-0.094
-0.041

1,292
1.077
0.601
0.187
0.064

-0.001
-0.025
-0.025

40.27
21.94
3.03
0.0403
0.0216
0,0215
0.0094
0.0024

41,29
22.59
3.160
0.0539
0.0319
0.0286
0.0128
0.0035

41.29
22.70
3.163
0.0434
0.0262
0,0266
0.0125
0.0036

40.27
22.16
3.182
0.0428
0.0243
0.0262
0.0135
0.0050
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angular and -energy ranges, when the integrals
in f, „can readily be carried out. For most of
the nuclear collisions, the form factors are usual-
ly given in Gaussian forms, (2.23), so that f„ is
simply integrable. Incidentally, note that the po-
tential in the Q(v) factor in G,'," need not be a
Gaussian; only the V(r)V(r') factor in f, „has
to be of the form (2.23) to simplify the integrals.

%hen the potential is not Gaussian, we have
shown here that further simplification of f, „is
possible, either by the angular averaging and
obtain f„(n,) of (3.17), or by the eikonalization
of G,'," and obtain G,"," and f "." of (3.22). Equation
(3.17) involves a, double integral, just as with fG„,
while (3.22) requires triple integrations. In both
cases, the result is not as accurate as the exact
f„, but (3.17) still shows improvements over foe.
We did not attempt to actually evaluate f„dir ectly
for non-Gaussian potentials, but, since f„has al-
ready been shown to be quite effective, additional
works to further simplify the procedure, such as
that explored here, would be useful for many ap-
plications.
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APPENDIX. ANGULAR INTEGRALS FOR f AND f„
We explicitly carry out the angular integrals which are involved in the amplitudes (3.6) and (3.16) for the

Gaussian potential (3.1). The method can be applied to cases in which more complicated polynomials are
involved, as in most of the nuclear form factors. The various vectors are conveniently defined in Fig. 1.
The integral of concern here is

I 2'F 1 2%'

M=- dcos8„dg„dcos8„dqtq„e"""' " e ' '""' "[F,(u, v; p) —p'u'v'cos'8]
-1 0 -1 0

where

=M0+M, , (A1)

1

.iq, =ssp, (s, v;p) Svvsq, s""' ')
-1

sinqv sinK, s)
Q'8 Kg 8

J
1

0 4Kgg COS eg

-1

(A2)

with

E, = 1 + 2p(v'+ —,'u') + p'(v'+-,'u'v'+ i~ u') .
The evaluation of M, is more involved. First we set, from Fig. 1,

cos8 = cos 8„cosa„—sin8„sin&d„cos(qjq„—qtq„)

= cos8„cosa„—sin8„sin&a„cos(qtq„— iraq„) .
On the other hand, using the fact that K, q=0, we have

cos~„=cos8„cos(K,, q) —sin8„sin(K„q) cosqti„

= -sine„cos(t)„

(A3a)

(A3b)

(A4a)



SCATTERING AMPLITUDES AT HIGH ENERGIES. III. . . 1681

cosset„= -sin6 cosQ„.
Therefore, cosa becomes

cosO = -cos 8„sinO„cosg„—sinO„cos(P„—P„)(1—sin'O„cos'P„)'" .
Now, using the integrals

(A5)

J
27T

cosP„dQ„=0 and
0

cos Qs dQu

we have, after the dQ„ integration,

r dP„cos'8 = v[2 cos'O„sin'O„cos'Q„+sin'8„(1 —sin'O„cos'P„)]
0

and, finally with the dQ„ integration,

f 27T 2'

J
dQ„dP„cos'8 = v'[1+cos'8„+cos'8„—3 cos'O„cosO„] .

0 0

Now, the 4coso„and d cosa„ integrations in Ml can be carried out to give

(A6)

sinK, u sinqv cosqv sinqv
K, u qv (qv)2 (qv)'

sinK, u cosK, u sinK, u sinqv cosqv sinqv
K, u (K, u)' (K, u)' qv (qv)' (qv)' (A7)

The sum of (A2) and (A7) gives M. Obviously, we can carry out the angular part of the integrals in f, for a
more general potential of the form (2.23) so that f, in this case can again be reduced to a double integral
involving du and dv. Such a reduction does not seem possible for non-Gaussian potentials and we have to
resort either to the angle-averaging procedure of (3.16) or to an eikonal approximation such as (3.22).
Extensions of the angular integrations given here to cases with more general Gaussian potentials of the
form (2.23) are now straightforward.
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