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It is shown that the Kowalski formulation of the Sasakawa approach to potential scattering
can be used as the basis for a momentum-space formulation of the theory of the Jost func-
tion. Two examples are presented for which the Kowalski equations can be solved in closed
form. One example is a separable potential, and the other is the exponential potential. The
separable potential illustrates the fact that the series obtained by iterating Kowalski’s equa-
tions does not always converge. The exponential potential provides a verification of
Coester’s proof that the iteration series does converge for a certain class of local potentials
of arbitrary strength. The practicality of Kowalski’s equations are demonstrated by using
them to calculate the phase shifts and half-off-shell T matrix that are produced by the Reid
potential in some of the uncoupled states of the two-nucleon system.

I. INTRODUCTION

In the usual integral formulation of the Schro-
dinger equation, the inhomogeneous term is a
spherical Bessel function. Iteration of this inte-
gral equation leads to the well-known Born series
for the scattering amplitude. In general, this
series does not converge for arbitrary values of
the potential strength. Several years ago Sasa-
kawa! developed a new integral equation for de-
scribing nonrelativistic potential scattering. In
his integral equation, the inhomogeneous term
is the sum of a spherical Bessel function and a
term, which is the product of the scattering ampli-
tude and a spherical Hankel function. The Sasa-
kawa! equation is an integral equation of the Vol-
terra type. Coester? has shown that the iterative
solution of this equation converges for all local
potentials for which the function »V(r) is abselute-
ly integrable. Sasakawa’s' integral equation has
been generalized to nonlocal potentials and to a
broader class of inhomogeneous terms.>”3 Aus-
tern® has used the Sasakawa approach to develop
a theory of inelastic scattering and rearrange-
ment collisions. It has also been shown that this
approach can be applied to the Faddeev equations
for three-particle scattering.* Kowalski® has
shown that the Sasakawa! approach can be formu-
lated as a technique for removing the singulari-
ties in the kernels of the standard integral equa-
tions for the T matrix.

In this paper we shall show how Kowalski’s®
equations can be used as the basis for a momen-
tum-space formulation of the theory of the Jost®
function. As is well known, the Jost® function
provides a convenient framework for the develop-
ment of a rigorous treatment of potential scat-
tering.™ ® We shall also present two examples for
which the iterative solution of Kowalski’s® equa-
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tions can be obtained in closed form. The first
example is a separable potential, and illustrates
that the sequence of iterations does not converge
for a nonlocal potential of arbitrary strength.
The second example is provided by the exponen-
tial potential. For the exponential potential, it
is found that the terms in the series obtained by
iterating Kowalski’s® equations correspond to the
terms in the infinite-series representation of a
generalized hypergeometric function. We shall
demonstrate the practicality of Kowalski’s® equa-
tions by using them to calculate the phase shifts
and half-off-shell T matrix produced by the Reid®
potential in some of the uncoupled two-nucleon
partial waves.

In Sec. II we summarize Kowalski’s® equations
and show how they relate to the theory of the Jost
function. The analysis of the separable potential
and the exponential potential are presented in Sec.
III. The work on the Reid potential is given in
Sec. IV. Section V'is a brief discussion.

II. GENERAL METHOD

In general, the fully off-shell T matrix can be
obtained as the solution of either of the equations
given below,

T,(p, b’ 8)=Vi(b, ')

” g’dq '
+ J; Vl(p’ q) S-—qz Tl(q’p ,S)
(2.1a)
Vi, 20+ [ Tty )
0

2d
xS Vila, ),

(2.1b)
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where V;(p, p’) is the matrix element of the po-
tential taken with respect to the states whose
space representation is

(F|ptm) =V2 /1 jy(p7)Y;u?). (2.2)

The states (2.2) are normalized so that

(plm|p'U'm") =§(—%fil 81115y - 2.3)
When s =k*+ie (0<e<1), the Eqs. (2.1) are diffi-
cult to solve numerically, since the kernel has a
singularity adjacent to the path of integration. In
his treatment of the Sasakawa' method, Kowalski®
has shown how to remove the singularity. He has
shown that the half-off-shell 7' matrix can be ob-
tained from the relation

To(p, k; k%ie)z%ékf’—,’:)—’ k), (2.4)

where the on-shell T matrix T,(k) is obtained from

k, R
T, (k) = = iyt ’qz)dq (2.5)
1 —fo 7k, q) Fric—g 1D Fk)
Here v, is a function which has the property
vi(k, k) =1 (2.6)

and I, is the solution of the nonsingular integral
equation

r,(p,k>=v,<p,k>+f”A,(p, 4 ¥)q Ty(g, k),
(2.7)

whose kernel is given by
Ay (P, 4 k) =[Vi(b, 9) = Vi, R)vi (b, @)lg?/ (k2 = ).
(2.8)

It is easy to show that T,(k) as given by (2.5) satis-
fies the unitarity relation

T, ()= =" |7,(8)? (2.9)

for any real I',. In particular the iteration solu-
tion of (2.7) to any order, will yield an on-shell

T matrix that satisfies (2.9). It follows from (2.9)
that our on-shell T matrix has the normalization

7,(k) = -;% B sing (%), (2.10)
where §,(k) is the phase shift for the /th partial

wave.
In this paper, we shall consider the following

iteration scheme for solving (2.7):

T (p,k)=Vi(p, k), (2:11a)

FIUHU (prk)= Vt(p,k)

+ [ Ap, G #)aT (g, ).
)
(2.11b)

The nth order approximation for the on-shell T
matrix is given by

™)
T (k) = _ " (%, k)

9*aqT"” (g, k) °
1"']; )/l(kyq) k2+l-€_qz

(2.12)

It is easy to show from Coester’s? work on the
Sasakawa' method that this iteration scheme al-
ways converges if the potential is local and v, is
taken to be

vi(k, @) =(q/k) . (2.13)
We shall now show that if y, is taken to be
vk, q)=T,(k, q; k* +i€)/T,(k), (2.14)

then each order of iteration gives the exact value
for the on-shell T matrix. From (2.1), (2.8), and
(2.11b), it follows that

[ty 0t o (-1 - T
(2.15)
Putting (2.15) into (2.12), we find
T (k) =Ty (k). (2.16)

This result can be used as an aid in determining

some of the properties that ¥, should have so that

the iteration scheme (2.11a)-(2.12) converges as

rapidly as possible. In particular, it follows from

the results of Ref. 10 and (2.14) that
vk, q) — (a/k) .

kR, a0

(2.17)

The choice (2.13) satisfied this relation.

The choice (2.13) leads to a connection between
the approach to the T matrix being considered
here and the Jost® function. The Jost® function is a
function which plays an essential role in the rigor-
ous treatment of potential scattering.” ® The phase
of the Jost function is the negative of the phase
shift, i.e.,

filk)=1fi(R)[e™ 1,

and the zeroes of the Jost function in the upper
half of the & plane fall on the imaginary axis and
correspond to the energies of the bound states.?

It is well known that the Schrédinger wave function
labeled by the wave number k2, and the angular

(2.18)



8 STUDY OF THE SASAKAWA APPROACH... 1667

momentum quantum numbers ! and m, can be
written in the form

[ Wpim) = |RUm) +(R% +ie =H ) 'T(k? +i€) | kim) ,
(2.19)

where H , is the kinetic energy operator and T is
the transition operator whose matrix elements
taken with respect to the states (2.2) are the solu-
tions of (2.1). It is not hard to show from (2.2),
(2.10), and (2.19) that

(FlWuim) =V2/T (R, 7)Y, (7), (2.20)
where ¢, is the solution of the radial Schrodinger
equation with the normalization

bk, 7) ~ (kr) ' 1® sin(kr -5 17 +9,).
r o>
(2.21)

It follows from (2.21) and Eqs. (11.5) and (12.145)
of Ref. 8 that

bk, 7) = _Koyk,r)

ALE@EL+Dy ° (2.22)

Here ¢, is a regular solution of the Schrddinger
equation with the normalization

lim "¢, (k,7)=1. (2.23)
r =0

It is shown in Ref. 5 that
T,(p, k; k2 +i€) =T, (p, k)1 +1,(R)], (2.24)

where

L(k)= f 71 (R, Q)E—z——-—*—-*—gT,(q,k;k2+ie).
(2.25)

+2€
It follows from (2.2), (2.3), (2.6), (2.19), (2.20),
and (2.25) that
2 > ,
e =7 [ i) [ ddan e, i),
o] 0

(2.26)

The completeness relation for the spherical Bessel
functions is given by

(1’ V)

/) j ¢dq j (@) iar’) = (2.27)

Using this, (2.22), (2.23), (2.26), and making the
choice (2.13), it is not hard to see that

1+5,(R)=f\(R).

It now follows from (2.5), (2.24), and (2.28) that
if v,(k, ¢)=(q/k) then

Fl(p) k) =fl(k)T1(p; k; k? +i€)

(2.28)

(2.29)

and

£E6=1= [ %, @) g 10, B).

0o

(2.30)

These relations provide the basis for a momentum-
space formulation of the Jost function, which, as
far as we know, has not been given before.

We shall illustrate the results of this section
in the next section by considering some exactly
solvable examples.

III. EXACTLY SOLVABLE EXAMPLES
A. Separable Potential

As our first example, we shall consider a poten-
tial of the form

Vi(p, Q) =g (PINgi1(q), (3.1)

where g; is a real function and A; determines the
strength of the potential. Inserting (3.1) into
(2.11a) and (2.11b) and using (2.8), we find that

L™ (p, k) =g (PINF (R), (3.2)

where F\™ is the solution of the system of equa-
tions

F2 (k) =g, (F),
F{MD (k) =g, (k) +J,(k)F,(") ().

Here

(3.3a)
(3.3b)

Jy(k) =, j £(a) £:(a) - & kY, @)] qd‘ff.

(3.4)
It is easy to verify that the solution of (3.3a) and
(3.3b) is

1-J;"(k)

FI(")(k)':gl(k) l—Jt(k) )

n=0, 1,2,.
(3.5)

Obviously this sequence converges if
[ (R)[<1. (3.6)

The parameter J, is the eigenvalue. of the equa-
tion

[ Aip, 6 MaT (@, )= IT (B 3)

thus the condition (3.6) is an example of the well-
known result that the eigenvalues of the kernel of
an integral equation must be less than one in mag-
nitude if the Neumann or Born series is to con-
verge.!!

The sequence (3.5) converges immediately if v,
is taken to be

vk, q)=g1(q)/g (k). (3.8)
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This follows from (3.4) and can be shown to be
equivalent to the choice (2.14). From (2.4) and
(2.10), we have

__2
7Ty (k, k)

x[Pj;w

where P stands for the Cauchy principal value.
The exact value of 2cotd, arising from the poten-
tial (3.1) can be obtained by substituting (3.8) into
(3.9), and by replacing I', with the potential V,
[see (2.11a)]. Using (2.12), (3.2), (3.5), and (3.9)
it is not hard to show that

k cotd, (k) =

v, (k, 9)g°daT (g, k)
B~

_1},

(3.9)

2 IR =gy (R)]
T V(R 1 =d7 (k)]

(3.10)

kcotd{™ (k) =k cotd, (k) -

This relation shows that one can get false con-
vergence if |J;(k)|>1, since for values of |J,(k)|
in this range, the second term on the right-hand
side of (3.10) approaches a well-defined limit,
which is different from zero. It is not hard to
detect this false convergence, since under these

and (3.12a), it can be shown that
1
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circumstances it follows from (3.2) and (3.5) that
/" approaches infinity as » does.

B. Exponential Potential

An example for which Coester’s® convergence
proof holds is provided by the potential
Vir)==Ve . (3.11)
The s-wave Jost function for this potential is
known,® and is given by

Solk) = (Voa?)* T(1 = 2ika)d _y 30 (2V,2a)

(3.12a)
_(=Ve)y
Z = zika) ol - (3.12b)
Here I'(z) is the y function and (z), is the Poch-
hammer symbol, which is defined by
(2), =T(z +n)/T(2). (3.13)

The series (3.12b) converges for all values of the
potential strength V.

The exact s-wave T matrix for the potential
(8.11) has been worked out previously.'? Using
the expressions given in Ref. 12, as well as (2.29)

(3.14)

Te 0 =win) "2 |

—i pa +ika), (1 —i pa —ika),

1 n
" (1+ipa—~ika),(1+ipa +ika)"} (=Vea®)" .

TABLE I. Phase shifts (in rad) for the 150 state. These calculations were done with the 32-
point Gauss-Legnedre quadrature rule with ¢=5.0 [see (4.8)].

c.m. Energy
Iteration (MeV) 12 24

48 72 104 152 176
0 -0.040 —0.065 —0.106 —0.141 ~—0.180 —0.227 -0.247
1 -0,016 -0.050 -0.114 -0.170 -0.236 -0.318 —0.353
2 0.055 0.018 -0.064 —0.140 -0.229 -0.339 -0.387
3 0.173 0.130 0.025 —0.072 -0,183 -0,320 -0.379
4 0.335 0.273 0.136 0.016 ~-0.117 -—0.278 -0.346
5 0.515 0.421 0.246 0,105 —0.048 ~-0.229 -0.305
6 0.672 0.542 0.335 0.176 0.009 -0,187 -0.268
7 0.777 0.621 0.393 0.223 0.047 —0.157 -0.241
8 0.833 0.663 0.424 0.249 0.068 —0.140 -0.226
9 0.855 0.580 0.436 0.260 0.077 -0.132 -0.219
10 0.861 0.685 0.440 0.263 0.080 —0.130 -0.217
11 0.861 0.685 0.441 0.081 —0.129 -—0.216
12 0.861 0.685 0.440 0.080 —0.130
13 0.860 0.684
14 0.860 0.684
15 0.860 0,684
16 0.861 0.685
Reid’s values 0.862 0.696 0.454 0.277 0.093 -—0.118 -0,205
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This I’y arises from the choice (2.18) for y,; i.e.,
Yo=1. The series in (3.14) also converges for all
values of V,. Each term in the series corresponds
to an iteration of (2.7). The relations (2.5), (2.30),
(3.12b), and (3.14) can be combined to give an ex-
pression for the on-shell T matrix, which is the
ratio of two convergent power series in the poten-
tial strength. The convergence of these power
series confirms Coester’s® result that the Sasa-
kawa iteration scheme always converges if the
potential is local and the choice (2.13) is made
for y,.

In the next section, we shall consider a realistic
example for which the results cannot be obtained
analytically.

IV. REID POTENTIAL

In this section, we shall use the relations given
in Sec. II to calculate the on-shell, as well as the
half-off-shell T matrix for the Reid® potential in
some of the uncoupled two-nucleon states. The
choice (2.13) will be used for all of the calcula-
tions. The states we shall treat are the 'S, 'D,,
and the P,. The S, and 'D, potentials are simply
superpositions of Yukawa potentials. For a single
term of the form

e M
V(r)==V, o (4.1)
the matrix element taken with respect to the states
given by (2.2) turns out to be

(plm |V|qim) =V, (b, q),

__Y [pz+qz+u2}
- TI'IJ.PQ Ql qu > (4-2)

where @, is the Legendre function, whose integral
representation is

1 -1
Q;(z)=5f_1 1—;’—(?7@ : (4.3)

P, is a Legendre polynomial. The 3P, potential
contains a sum of Yukawa shapes plus a term of
the form

Ur)=h[(2/x +2/8%)e™ = (8/x+2/x2)e % | /x,
(4.4)
xX=ur.

The matrix element of this potential can be ob-
tained by integrating the relation (4.2) with re-
spect to the parameter ., and by using (4.3) and
the identity

@)=~ -1 [ Qeaz. (4.5)

The result is

(plm | U|qim) =U(p, q)

- Bl -1ere)

-(@-1)"2Q" (@), (4.6)
where

P
2pqg
PP +¢® +16p?
2pq ’

In order to carry out numerically the iteration
scheme given by (2.11a) and (2.11b), we have re-
placed the integral in (2.11b) with a sum by using
a quadrature rule which was obtained by mapping
the Gauss-Legendre points and weights from the
interval (-1, 1) to the interval (0, «) by means of
the transformation

b (4.7)

~c1+x
9=C1 %"

(4.8)

The phase shifts were obtained from (3.9) by
carrying out the integral using the same points

TABLE II. Phase shifts (in rad) for the P, state. These calculations were done with the
32-point Gauss-Lengendre quadrature rule with ¢=2.5 [see (4.8)].

c.m, Energy
Iteration (MeV) 12 24

48 72 104 152 176

0 —0.026 —0.049
1 -0.048 —0.088
2 -0,064 —0,115
3 -0.073 —0.130
4 -0.076 —0.135
5 -0.077 =-0.137
6 -0.078

7

Reid’s values -0.074 —0,133

-0.088 —0.120 -0.154 -0.195 =0.211
-0.15¢ —-0.208 —0.267 -0.334 -0.362
-0,198 —0.265 -0.337 ~—0.421 -0.455
-0.221 -0.294 -0.372 -0.463 -0.500
-0.230 -0.305 —0.385 —0.478 =—0.516
-0.232 -0.308 -—0.389 -0.482 -0.520
—0.232 -0.390 —0.483 =0.521
—0.233

-0.228 -0.304 -—-0.386 -0.479 -0.518
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TABLE III. Phase shifts (in rad) for the 1D, state. These calculations were done with the
32-point Gauss-Legendre quadrature rule with » =0.5 [see (4.8)].

c.m. Energy

Iteration (MeV) 12 24 48 72 104 152 176
0 0.002 0.004 0.008 0.011 0.016 0.020 0.021
1 0.004  0.008 0.018 0.026 0.036 0.045  0.047
2 0.006 0.014 0.029 0.043 0.059 0.074  0.078
3 0,008 0.018 0.039 0.058 0.080 0,100  0.105
4 0.009  0.022 0.046 0.070 0.095 0.120  0.126
5 0.010 0.024 0.052 0.078 0.106 0.134 0.141
6 0.011 0.026 0.055 0.083 0.114 0.144 0.151
7 0.011 0.027 0.058 0.087 0.119 0.150  0.158
8 0.012 0.027 0.059 0.089 0.122 0.154  0.163
9 0.028 0.060 0.090 0.124 0.156  0.165
10 0.091 0.125 0.158 0.166
11 0.091 0.125 0.158 0.166
12 0.091 0.125 0.158  0.166
13 0.091 0.125 0.157 0.166
14 0.091 0.125 0.157  0.166
15 0.091 0.124 0.157  0.165

16 0.090 0.157

17 0.156
Reid’s values 0.011 0.027 0.059 0.089 0.123 0.156 0.165

and weights as were used for the iterations. The principal value integral was replaced by an integral with

a well-behaved integrand by using the identity

me n(k, 9)4°dqTy(g, k) _f” dqqz [v:(k, 9)4°Ts(q, &) = KTy (k, k)]

kz_qz - kB2

The results for the phase shifts for the 'S,, °P,,
and 'D, states are given in Tables I, II, and III,
respectively. The energies correspond to those
given in Reid’s paper.® Most of our converged
phase shifts are in reasonable agreement with
Reid’s.® We have also compared our phase shifts
with those calculated by Picker, Redish, and
Stephenson'® and found perfect agreement to the
number of places they give, which is three. The
convergence of the half-off-shell T matrix ele-
ments is illustrated in Figs. 1, 2, and 3, where
we have plotted the ratio of the half-off-shell T
matrix to the on-shell T matrix. This ratio was
calculated by using (2.4). The iterations converge
fast enough, and the matrices that we have to deal
with are small enough, that we conclude that this
approach is a practical one for solving the two-
nucleon problem with a realistic local potential.

V. SUMMARY AND DISCUSSION

We have shown how Kowalski’s® formulation of
the Sasakawa' approach to scattering theory can
be used as a basis for a momentum-space formu-
lation for the theory of the Jost function. This
formalism has the advantage that it treats all

(4.9)

3.5

3.0

2.5

) 7 k)
©
W

o

;k2+ic

)
(p.ki k
)
o

n.
L
o

~
3]

-2.0

FIG. 1. Convergence of the ratio of the half-off-shell
T matrix to the on-shell T matrix for the 24-MeV
(c.m.) 1S, state.
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4
p(fm')

FIG. 2. Convergence of the ratio of the half-off-shell
T matrix to the on-shell T matrix for the 12-MeV
(c.m.) °P; state.

types of potentials on the same footing. It applies
equally well to nonlocal potentials as to local po-
tentials. One can easily show using this formal-
ism that the Fredholm determinant for a separa-
ble potential is not identical to its Jost function.
Other applications of these equations, we are sure,
will arise.

The two exactly solvable examples we have pre-
sented illustrate an important feature of the Sasa-
kawa approach; namely, the iteration scheme
proposed by him does not converge for all poten-
tials, but it does converge for local potentials of
arbitrary strength for a particular choice of
v;(k, q). It would be useful if some results could
be obtained which would allow one to choose y; so

)
T

o
@
T

(n) . (n)
T"(p,k; k2+|s)/ T"(k)
>
3
o

o
v
T

o
[+2]
T

o
D
T
E}
"
[e]

-0.21

ok
o
o
o
o
s
<k
®
b

FIG. 3. Convergence of the ratio of the half-off-shell
T matrix to the on-shell T matrix for the 72-MeV
(c.m.) D, state.

as to insure convergence of the iteration scheme
for all potentials. The false convergence we found
in our separable-potential example is important

to keep in mind, since it suggests that one can be
misled in numerical work into believing that the
iterations are converging to the true result, where-
as in fact they are not. As was pointed out, the
false convergence can be detected by looking at

the function I';(p, k).

Our work on the Reid potential, we feel, demon-
strates the practicality of the iteration scheme
presented in Sec. II. It might be possible to make
the method even more practical by developing
quadrature rules that are tailored to the potential
being used in the calculation. We are looking into
this possibility. We also plan to test the method
by applying it to the coupled states of the two-
mucleon system. The general equations that one
needs to do this have already been given by Kowal-
ski.®
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