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The nature of the interaction between two identical nuclei having spins zero is studied based on a
microscopic theory of complex collisions. The "internucleus" potential is defined such that it appears
consistently in the equation of motion and the T matrix of the elastic scattering channel. It is shown
that by a suitable integral transformation a strongly nonlocal potential such as that of the
resonating-group method can be transformed into an /-dependent local potential with a weak nonlocal
residual interaction. An application of the theory is made to a two-a particle system. The theoretical
potential shows the similar t dependence to the phenomenological potential. The importance of the l
dependence of the real part of the potential is discussed in relation to the elastic scattering phenomena
of heavy-ion reactions.

1. INTRODUCTION

This paper is concerned with the interaction be-
tween two identical nuclei having spins zero, and
particularly the existence of the inner strong re-
pulsion from a theoretical point of view.

Experimentally the o.-a interaction is known to
have a strong repulsive potential for relative angu-
lar momentum / = 0 and 2 states. ' Also, the analy-
sis of the ' C+' C resonance by the molecular-
like-configuration model requires a strong repul-
sive potential in order to prevent low relative angu-
lar momentum states from strongly coupling with
compound states. ' However, in general, elastic
scattering experiments of heavier nuclei do not
provide sufficient data to confirm the existence of
such a repulsion. This situation can be under-
stood if one remembers the existence of the ab-
sorptive potential which is due to the coupling to
reactions and compound processes: The imagin-
ary potential located near the nuclear surface will
make the short-range bahavior of the real potential
insignificant, and the absorption inside the nu-
cleus acts effectively like a repulsive potential
by damping the wave function for small partial
waves.

In order to investigate the internucleus poten-
tial theoretically, there are two important points
to be made. Firstly, the definition of the poten-
tial has to be consistent. In other words, a theo-
retical potential should appear consistently in the
equation of motion and the T matrix. Unfortunate-
ly, most of the potentials, which have been cal-
culated by using the definition analogous to the
Heitler-London method, i.e.,

V(r) =E(r) —E(r=+ ),
where E(r) is the energy expectation value of the
system constrained to be separated by a distance
r, do not satisfy the consistency requirement un-

less giving the corresponding mass parameter
simultaneously.

Secondly„ if one wants to compare the theoreti-
cal potential to an experimental one, it is neces-
sary to choose an appropriate representation in
which the interaction can be expressed as local
as possible. The studies of the e-n system by
the resonating-group method have shown how the
strongly nonlocal interaction acts like a singular
local potential. ' The strong nonlocality of the in-
teraction has been understood as a consequence
of the Pauli principle, and interpreted as the ori-
gin of the effective repulsive core. ' '

Recently, a calculation of the "0+"0potential
based on the generator-coordinate-type method
has been made. ' The theoretical potential shows
a strong repulsion at a short separation distance.
The repulsive potential appearing in the calcula-
tion has a quite different nature from the repulsion
of the potential defined by Eq. (1.1)' ' which is a
consequence of the saturation property of nuclear
matter. The diverging potential has been under-
stood as a consequence of the breaking symmetry,
by which we mean that the symmetric total Hamil-
tonian is broken to a nonsymmetric cluster Hamil-
tonian. " In this paper, we study the origin of the
repulsive potential and its relation to the other
method by making use of integral transformations
between basis functions for various representa-
tions.

In the next section (Sec. 2) we review the theory
based on Refs. 6 and 10.We restrict ourselves to
the elastic channel by using the projection-opera-
tor formalism. " In Sec. 3 the resonating-group
method and the generator-coordinate method are
unified by an integral transformation. In Sec. 4
the nature of the interaction is studied, and the
importance of the l dependence of the singular po-
tential is discussed. In Sec. 5 the theory is ap-
plied to the o.-n potential assuming no internal
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excitation. The l-dependent potential obtained
gives qualitative agreement with the phonome-
nological potential. '' In the last section (Sec. 6)
three characteristic features of the theoretical
potential are discussed in relation to experimen-
tal facts:
(a) existence of the strong repulsive potentials for
certain partial waves,
(b) I dependence of the potential, and
(c) change of the behavior of the potential at a
certain l.

2. THEORY

Let us define the projection operator I', which
projects out the elastic channel of two identical
nuclei having spins zero, by

(E—Hpp) &Idp = 0, (2.6)

where the "effective" Hamiltonian is defined by

1
Hpp = HpJ. + Hgg (, ) HqJ.

QQ

with 4&=P4, HI»=PHP, etc. The T matrix for
this channel can be written as

Tf i ((+PP @)Xfr +P(i)) t (2.8)

where the scattering-state solution is given by

where Z(k, k') is a Hilbert-Schmidt-type kernel,
and the existence of the unique inverse I '(k, k')
is shown in Appendix II.

According to Ref. 11 the equation of motion for
the elastic channel is given by

I = dk QkI 'k k' Sk' dk', (2.1)
1

+P(i) Xi+ @(+) ff (ffpp @)Xi '(+)
PP

(2.9)

and its orthogonal complement by Q=—Q —I', where
8 is the antisymmetrization operator of the total
system. The representation basis

~ Ql(), which
corresponds to the state of two identical nuclei in
the c.m. frame with the relative momentum k and
the internal states Q, can be written explicitly as

Here, the asymptotic-state wave functions for the
initial (X;) and the final (Xf) states are assumed
to be described by normalized noninteracting wave
packets. "

From Eq. (2.1) the projected wave function can
be written either a,s

Qk I ' k, k' k' dkdk' (2.10)

(2.2)

(QkiQk')-5(k, k'), (2.3)

where g is the relative coordinate between the two

nuclei and $ ', $
' are sets of internal coordinates

of the two nuclei. The operator Q», which is a
sum of permutations of nucleons belonging to dif-
ferent nuclei, antisymmetrizes the total system
assuming each internal state is already anti-
symmetrized. The normalization constant c is
fixed so that the basis function is normalized,

or

Cz= Qk k dk,

where we have written

g(k) = (Qk I )I&),

(2.ii)

(2.i2)

(2.IS)

Let us call these "state functions. " From Eq.
(2.6) we can write the equations of motion as

in the asymptotic (large ~k~) region, where the
"symmetrized" 5 function 5(k, k') has been de-
fined by for the state function g(k), or

(2.14)

5(k, k') =-, [5(k- k')+5(k+k')] (2.4)

in order to satisfy the permutation symmetry of
bosons. The projection-operator condition I"= I'
requires that the function I '(k, k') should satisfy
the inverse relation

I ' k, k") Qk" Qk' dk" = Qk Qk" I ' k", k')dk"

h k, k' k' dk'=E k (2.15)

for f(k), where the Hamiltonian kernels are de-
fined by

k (k, )= f (k k) kl 'kk")I '((kk", k')dk", (2.)6)

= 5(k) k') . (2.5)

In Appendix I we show that the "overlap integral"
(Qk~ Qk') can be written as

(Qki Qk') = 5(k, k') —Z(k, k'),

Because of the non-orthogonality of the basis
functions, we have obtained two sets of the equa-
tions of motion for the state functions g(k) and
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f(k) which are not independent but related by Eq.
(2.13). It is also possible to represent Eq. (2.6)
by a set of orthonormalized basis functions

Using the fact that the asymptotic states y; and gf
are described by noninteracting wave packets, we
can write the T matrix as

(oi) = f Ioi'))-"*(i', i)di'. (2.18) T = f (o)(k)"~i(k k')g(')(k')d k d k (2.3o)

cp(k) =(«I @& (2.19)

Then, the equation of motion for the state function
defined by

where

f (o)(k) = 6(k, kg),"f
(2.31)

is given by

A k, k')y k' dk'=-Ey k, (2.2o)

(Qk I Hl 8k'& = c(kl Hl Qk' &, (2.21)

using the relationship, [8, H]=0. Furthermore,
we separate the original Hamiltonian into

H=t+h, +h, +vo, (2.22)

where t is the relative kinetic energy and hy A2

are the internal energy operators of two nuclei.
The interaction v, is the sum of nucleon-nucleon
interactions V;, , restricted to those which inter-
act between two nucleons belonging to different
nuclei,

v, = g P v, , (2.23)
iE nucleus I ip nucleus II

From Eqs. (2.19)-(2.21) we obtain

(«IHI «'&=3e(k)(«I(2k'&+c(k I~1&k'&, (2 24)

where we have written

X(k) =—h'+ 2e„ (2.25)

1
v =vo+IIQ [,)

-- QII.
QQ

Here we assume that the internal state (j)($(')) is
the ground-state eigenfunction of h& (/= 1 or 2)
with eigenvalue eo. From Eq. (2.16) we have

hi(k, k') =X(k)6(k, k') +'Oi(k, k')

(2.26)

(2.27)

with

'u*(k, k')=f (k(lk(l(kk )2 '(2", k')dk". (2.28")

Therefore, we obtain the reduced equation of mo-
tion for the state function g(k):

X(k)d(k). t~'(k, k')d(k )dk =kd(k). (2.29)

where h(k, k') —= (Qkl Hl Qk'). While this representa-
tion provides a symmetric expression for the ker-
nel, we find that the reduction for the kernel h~ or

is much simpler than for h.
In order to reduce the Hamiltonian kernel h,

we write the Hamiltonian integral as

g' )(k) = &(2k I

e(' )&

= 6(k, k;) +(outgoing wave). (2.32)

Since the appearance of the function%) (k, k') in
the equation of motion (2.29) and the T matrix
(2.30) with boundary conditions (2.31) and (2.32)
is consistent with a "potential" in the quantum
theory of scattering, we will call this function
the "potential" between two nuclei.

Equation (2.30} shows that as far as the scatter-
ing state is concerned we need only the knowledge
of g(')(k), because the normalization of scattering
states is performed at the asymptotic region
while the normalization of bound states requires
the knowledge of two solutions, g(k) and f(k), in
order to satisfy the condition

1= *k k dk.

It is also possible to write the T matrix in terms
of f(')(k) using Eq. (2.13). However, in general
the solution f(k) is not unique because of the non-
linear independence of the set of basis functions
(see Appendix II). Besides, we will find the in-
convenience of the formula using f (k) in the later
section.

3. INTEGRAL TRANSFORMATION

In the last section, the equation of motion has
been represented in the relative momentum space
of two nuclei. (We will refer to this representa-
tion as "k rep. ") Since the parameter k in k rep
corresponds to the relative momentum of two nu-
clei, we can expect that by a Fourier transforma-
tion the equations will be transformed into those
in the conjugate coordinate space ("x rep"}:

(3.1}

or explicitly

(~ t'" t"'I&x&=«,.[5(x-n)4($'")0(('"}] (3 2)

Since the redundant coordinate x is not affected
by the operator 8» and is conjugate to k, it seems
to have more physical meaning as the relative
coordinate than the coordinate g, which is a super-
position of nucleon coordinates and is affected by
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()), $ i 4 ) = f (x) (q, $ i Qx)dx

where

=«,.[f(n)y(&'")0(&'")], (3.3)

the antisymmetrization.
We note that the Fourier transform of f(k) in

k rep coincides with the solution of the resonating-
group method,

cannot be proved generally, "unless f (k) con-
verges faster than e ' /" for large ski. We note
that the solution g(r) always exists and is unique
as far as 4 exists.

Above all, we expect that the transformation
can localize strongly nonlocal interaction in x rep.
In general, any nonlocal interaction can be re-
written by a momentum-dependent local potential,

1 8
v(x, x') = Q Q —, v„...„(x) ~ ~ 5(x-x'),

, )„,"" "f(k). (3.4)

The state function f(x) is the solution of the
integrodifferential equation, see Appendix III),

);=(~,X, e).
Qn the other hand, a potential which is local in
r rep,

(3.9)

2
——v'f(x)+ g (x, x') f(x')dx'=ef(x), (3.5)

2p,

where the transformed interaction kernel %) (x, x')
should coincide with that of the resonating-group
method. The kernel V" has been calculated within
the framework of the resonating-group method for
a two-~-particle system. " It is shown that
'U (x, x') is strongly nonlocal due to the anti-
symmetrization.

Instead of making the Fourier transformation,
we can make the following integral transformation
for the set of representation basis ("r rep")":

-jk r

(ter)= J.(— e ' e'
r „, it))r)e)e, (&.6)

or explicitly
3/4

~(x) ~(2)
i ar) cft e-(1/4))) (r —)) )2

&& 0(('")0(5"), (3 't)

where v is an additional parameter which we will,

fix later in order to obtain a "maximal local" po-
tential. This transformation has several important
properties: The basis function (3.6) has a finite
norm while the overlap integrals of k and x rep
contain both 6 functions and bounded functions.
This finiteness of the norm of basis functions
makes it easier to evaluate the order of magni-
tude of various kernels when we need to make
approximations to them. Furthermore, the basis
function ()), ) i8r) can be given by the harmonic-
oscillator shell-model wave function when the
parameter v is appropriately chosen. In spite of
these advantages of r rep, it also has a disadvan-
tage: Because of the nonunitarity of the trans-
formation, the inverse transformation is not a.

definite integral, and the existence of the state
function (Appendix III)

(3.8)

u(r, r') =Jr)5(r, r'), (3.10)

rr(, r')=() r ~—rj()(x, '). (3.11)

While the momentum dependence of the potential
(3.11) is more restricted than Eq. (3.9), we ex-
pect that by choosing an appropriate value for
the parameter v we will be able to include the
nonlocality of the interaction due to the antisym-
metrization. In the next section, we show that
the transformation (3.6) leads to a maximal local
potential for a certain v.

We note that the mathematical details of the
properties of transformations between k, x, and
r rep are summarized in Appendix III.

4. NATURE OF THE INTERACTION

In this section, we will consider the equation
of motion for g(r) in r rep:

h2

r
r e(r)+ J rt(" "')e(r')d"'=)ee(")

and especially the nature of the interaction

(4 1)

V(r, r')= fr(r, r )) '(r", r')dr", "

u(r, r ') = c ( r i v i er ' ) .

(4.2)

(4.3)

Let us first examine the overlap integral. From
the Schwartz inequality, we have

N(r)N(r'-) ( (Sri Qr') & N(r)N(r'), (4 4)

where we have. written

N(r) = [(Sri Qr )]"'. (4 6)

In order to avoid the singular behavior of the in-
verse I '(r, r') in case that N(r)N(r') -0 for all
r or r', we employ a set of "normalized basis

is transformed to a momentum-dependent potential
in x rep (Appendix III),
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functions"

(4.6)

will see, the term (4.14) can be a diverging func-
tion when

~ r~ -0.
Now, let us consider Eq. (4.14) which we can

write

1
I(r, r') =

( )
(Qr~Qr'&N(,

)
. (4.8)

It is also feasible to express the interaction in-
tegral in terms of the normalized basis functions,

Then, we have

-1 & I(r, r') & I, I(r, r) = 1, (4.7)

where we have written the "normalized overlap
integral" as

nT(r, r') =—,, V„'(Qr~ Qr'), , +e„,I(r, r'},
2p, N(zj Nir'

using the properties that t~ r& = -(iI'/2t), ) V„'~r&

(Appendix III). From Eq. (4.14), it is obvious
that &T(r, r') vanishes at the asymptotic region

In order to consider the short, -range
behavior of 4T, we expand the overlap integral
in partial waves

ii(r, ')= J V(r, r")r(r", i')dr",

where those kernels have been defined by

'0(r, r') = — '0(r, r')N(r') .Nr

(4.9)

(4.11)

I(r, r') =g f, (r, r')P, ( cos8),

which is possible because of the rotational invari-
ance of (Qr~ Qr'& in case of spin-zero particles.
The tth partial-wave component of Eq. (4.15) is
then given by

Since the overlap integral I(r, r') is expected to
be a peaked function at r = r' (also r =-r' for a
two-identical-particle system), and normalized
as I(r, r) = 1, the function 0(r, r') can be con-
sidered to have a similar behavior as u(r, r') un-
less it is singular, by which we mean a quickly
varying or diverging function of r and r'. In fact
u(r, r') can be a diverging function of r as we will
see later. We now wish to show that u(r, r') can
be separated into a regular and a diverging part,
and the diverging term can be expressed by a
local potential while the regular part gives a'

weakly nonlocal potential.
From Eq. (4.3) with Eq. (2.22), the direct part

of the interaction integral Qp can be written as

u, (r, r') =c(r~ v, ~
Qr'&

N'
+2 —+—f,'(r, r') +f,"(r, r') + e„,f, (r, r')

(4.1V)

where N'= dN(r)/dr, —f,'—= sf, (r, r')/sr, etc. By
expanding the explicit form of (Qr~ Qr'& into par-
tial waves, we can obtain the lth partial-wave
component of I(r, r') as

(4.18)

where

(4.19)

Also we can write

= AE(r, r ') + AT(r, r'),
where the first term of the right-hand side of
Eq. (4.12),

(4.12) [N(r)]'= Q a, r",

where

(4.20)

AE(r, r') = (Qr~ II~ Qr &
—(2e, +e..()I(r, r'), (4.13)

corresponds to the difference of the total energy
expectation value of an interacting and a separated
state. Here &„& is the kinetic energy of the relative
motion of basis function ) Qr& which is described
by a Gaussian function. The quantity (4.13) (main-
ly the diagonal component) has been calculated as
a so-called "static" potential assuming implicitly
that

l, nt, n

By writing

where

(4.21)

(4.22)

t)T(r, r') = -c(r~ t~ Qr'&+@«)I(r, r') (4.14)
N(r'), (4.23)

is small at the static limit. ' ' However, as we
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Eq. (4.17) is expressed by
2

m

(4.24)

for small r. On the other hand the other terms
converge to the order of constant. Therefore,
it is possible to express the interaction corres-
ponding to the singular part by a local l-dependent
potential

f, (r, r') -g,'(r)f,'(r'), (4.25)

n.T, (r,r')-, g'(r)f'(r').g2 2(2I+3)
p & t r ~

Since g,'(r) =r "'/N(r) and N(r) Q 0, when r -0,
d, T,(r, r') is a regular function for small r Nex.t,
we consider case II assuming

(4.26)

Now, we consider two cases in order to evaluate
the behavior of Eq. (4.24) for small r:
case I: N(r)+0 when r-0 (or a, a0);
ca,se II: N(r)-0 when r 0 (or (2, =0) .
First, we consider case I. For the limit x-0,
leading terms of f, (r, r') and AT, (r, r') are

(4.34)

Since the nature of the function N(r) depends on
the choice of a transformation parameter v as
well as wave functions of identical nuclei, we
can conclude that the n. T(r, r') term of the inter-
action, which is consequence of breaking of the
symmetry of the total Hamiltonian into the clus-
ter Hamiltonian [Eq. (2.22)j, will be transformed
to a manifestly local potential by choosing an
appropriate transformation constant.

By now, we have shown that the interaction in-
tegral (4.12) may be divided into a singular and
a regular part:

a„=0 for n &2M,

and a»c0. For the small x, we can write

N(r) g f2r + 1+ ++~r2» (4.27)

u()(r, r') =u2(r, r')+u„(r, r'),
where the singular term converges to

u, (r, r')- Q U', (r)f (r(, r')P, ( csoe)

(4.35)

(4.36)

f (r, r )
' „, g «-f,"(r')). (4.28)

f,(r, r')- „,f, ' '(r'),
~sN

k' 2M (2M+ 1) —I(l + 1)
r2

&( fM-i /2(rr)1

2N

(4.29)

(4.30)

Since f, (r, r') should be finite at r 0, f(-(r') should
vanish for m & I- & / in the case that l —2M & 0.
Then the leading terms of f, (r, r') and &T, (r, r')
are

for small r. Now, let us consider the regular
part which we write

2If((r, r') = U„(r, r')I (r, r'), (4.37)

U~(r„r2) = U&(r„r,),
Us(-r„-r2) = Uf((r„r, ) . (4.38)

where U&(r, r') =uz(r, r')/I(r, r'). From the ex-
change symmetry of two identical nuclei, we find
that it is convenient to introduce a set of new co-
ordinates r, —= r —r'/)) 2 and r, =r+r'/I2. Then,
we have the following relationships for U„(r„r,):

for i&2M, and

r).T, (r, r') -—,g,'(r)f,'(r')}I'2(2l+3)
(4.31}

(4.32)

Now, we assume that Uf((r„r2) is a smooth func-
tion of r, and r, Then w. e can expand U„(r„r,)
near r, =0:

U„(r„r,) = Uz(0, r, )

for I & 2M. Equation (4.30) shows that nT, (r, r')
is a singular function of r when i&2M, while it
is regular for the case l & 2M. The divergence
of n.T, (r, r') comes from the first term of Eq.
(4.17), because from Eqs. (4.27) and (4.29) the
first term converges as

(4.39)

The first term U(0, r, ) = U(r, r) corresponds to
the local potential

2M(2M+1) —l(1+1) 1 2f, g2, r}2
S22f

(4.33)

= Uf((r, r}6(r, r'), (4.40)

and the other terms contribute to the nonlocal
interaction. When U(r„r, ) is smooth fi.e.,
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[s, 9, U&(r„r,)];,is small} and the overlap
integral 1(r, r') is sharply peaked [i.e., r, r,
x I(r, r') is small], we can neglect these nonlocal
terms. Since there is no trivial choice of the
transformation parameter v in order to satisfy
these conditions, the parameter we will choose
in the next section is quite empirical, and we can
show our choice, which gives case II [i.e., N(r)
-0, when r-0], is fairly good after all.

5. APPLICATION TO THE O.w SYSTEM

(Qr~ Qr') = h(r, r') —L(r, r'),
where we have written

(5.1)

b(r, r') = 2(exp[-vv(r —r')']+exp[-~v(r+ r')']),
(5.2)

Now we wish to apply our method of calculating
a potential for a simple system. To study the
short-range behavior of nucleus-nucleus interac-
tion, the n-particle system is ideal. Since the
reaction channels of the system open at the rela-
tive kinetic energy around 35 MeV, we can expect
that in the low-energy elastic scattering the "di-
rect" v, term is dominant. Actually the experi-
mental data are well analyzed without an imaginary
potential for the partial waves 1=0, 2, and 4.'

To proceed with a practical calculation, we need
to give a nucleon-nucleon potential and an internal
wave function for the n particle. We employ the
Volkov II potential" and for the internal wave
function a single Slater determinant filled with
four nucleons in the (IS) harmonic-oscillator orbit
as has been employed in Ref. 16. Then, the over-
lap integral in r rep with the transformation pa-
rameter v [Eq. (3.6)] is given by

U, (~) = u, (r, r)/I, (r, r), (5.6)

which is feasible to include the l dependence of
the singular part of the interaction integral [Eq.
(4.33)]. In Fig. 2, we compare the exact [u, (r, r')]
and the approximate [U, (r)I, (r, r')] interaction
integrals for I= 2 [Fig. 2(a)] and I =4 [Fig. 2(b)].
For l = 0 and l = 6, 8, the behavior of these func-
tions is similar to that of /= 2 and l =4, respec-
tively. The over-all features of the exact and
approximate functions are quite similar, especial-

N(r) as a function of r for o.'=0.4, 1.0, and 1.6.
o. = 1.0 corresponds to case II of the last section
and we can expect the maximal local potential for
the AT(r, r') term [Eq. (4.14)] in this case.

In our model wave function, the choice of the
parameter n = 1 corresponds to a single-Slater-
determinant basis function. As we have men-
tioned in the last section, it is not necessary that
this choice also gives the maximal local potential
for the AE(r, r') term A. t least we can tell from
our model basis function that:
(i) the overlap integral (Qr ~

Qr ') is a peaked func-
tion at r, =0 and r, =0,
(ii) the quantity c(r

~ H~ Qr')/I(r, r') is a smooth
function of r, and r„
while the limit n-~, in which case the equation
of motion converges to the resonating-group
method, gives a sharper overlap integral but
nonsmooth value c(r~ H~ Qr')/I(r, r'). Although
there is no a priori reason to choose 0. = 1, we
have calculated the l-dependent local potential by
taking o!=1. According to Eq. (4.39), we make
the following ansatz:

(5.5)

as the zeroth approximation, where

~p 2 ~p

L(r, r')=2p exp -vv (1, )
exp -xv

(I 3 )

with"

I 3 ~ ~l 2
—3yexp -~v

)
exp -vv (+"

(5.3)

v 16o.
vs, ' (3 + )(oI3+n)

0.6—

—0.4—

0.2—

1+a ' (5.4)
2.0

r(fm)
6.0 8.0

I

IO.O

The harmonic-oscillator constant for the a parti-
cle is taken as vH, = 0.535 fm '. In Fig. 1, we plot

FIG. 1. Square root of the diagonal overlap integral
[Eq. (4,5)] as a function of the separation distance, tak-
ing the parameter G. =0.4, 1.0, and 1.6.
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which we cannot separate the intrinsic and rela-
tive energy in an a priori way. This is the essen-
tial difference between the many-nucleus system
and the many-atom system in which we can fac-
torize the nucleonic wave function from the elec-
tronic (or intrinsic) wave function. ' This com-
plexity also leads to a misunderstanding of the
r T(r, r') term, which looks unphysical from our
knowledge of the molecular system. " Of course,
no one can deny the importance of the coupling
with other channels for a system like heavy-ion
scattering. Therefore, it is important to investi-
gate the condition of adiabaticity in the framework
of the microscopic theory.

After all, we ask ourselves how our potential
can have any physical significance in spite of the
neglect of many important effects. We do not have

any answer but hope; since the l dependence of
the n-n potential justifies our calculation, within
the lowest order we can expect the similar l de-
pendence for any internucleus potential, and it
may or may not be a good approximation of the
full potential.
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APPENDIX I. OVERLAP INTEGRAL IN k rep

The overlap integral in k rep has been defined by

(ski Ok') = C *,-k(x) C,-k.(x)dx, (AI. 1)

where the basis function C ~k(x) has been given by Eq. (2.2). The integration in Eq. (AI.1) should be taken
over all the nucleon coordinates including sums over spin —r-spin degrees of freedom Fro.m Eqs. (AI. 1)
and (2.2), we write the integral explicitly:

+ik
(ak~gkl) —c L ' '] g g i)&+($~ &)y+($& &) y((~ &)it&((~ &)d&)d(& &@& &

I'
(AI.2)

where 8» is replaced by its explicit form

[(Aj2)!]'
At

in which the summation P ' should be taken over those permutations which permute nucleons belonging to
different nuclei. The permuted coordinates f&)J, $&&, $&"]—= P{&),$~", $~'&] are linear functions of the origi-
nal set of coordinates f &), $~'&, $~'&), because &I, $~'&, and $~'& are the linear functions of nucleon coordinates
x„.. . , x„. Then we can write

eik ' 17/ ei npk ' I) pig/(g ~, g }
y

it&(~(i&) y(i&(&) ~(i& ~(2&) (Al. s)

where aJ is a scalar number and gi ($'", $'3&) is a linear function of $~" and ( ' . From Eqs. (AI.2) and
(AI.3), we obtain

[(Q/2)&]2 ~ e-i k q ein~k'
(Bk ~

Sk') =c' ' g e&, „, „, Iir(g) if&),

where we have integrated over ( ' and ( ' first:

(A1.4)

(AI.5)

In general hi (») is a bounded function of », be-
cause the internal-state wave function Q"
x(», $~', g" ) is bounded. There are two excep-

tions, i.e., when P= 1 (identity) or the one which
interchanges all the nucleons of each identical nu-
cleus mutually (we write P= -1}. In these cases
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and + y
+1. Therefore, we can write

A 2 t"'(8k~8k')=c', ' [5(k —k')+5(k+k'}

by

(8k I Qk') =c'(k
I 8 I

k'&. (AII.10)

—2Z(k, k') ], (AI.6)

where Z(k, k') is a bounded function of k and k'.
Taking the normalization constant as

1 Af
2 [(A/2)!]' '

Therefore, we obtain

Qk Sk' g~ k' dk'=A. c'g~~ k . (AII. 11)

According to Eq. (AI.7), Eq. (AII.11) can be
written as

we obtain
Z k, k'

p
k' dk'= 1 —A. c'

gp k (AII.12)

(Qk i
Qk') = 6(k, k ') —Z(k, k '),

where

5(k, k') =-,'[6(k-k')+6(k+k')].

(Ar. 7)

(Ar. 8)

assuming g~(k) is symmetric [g(k) = P(-k)]. Since
Z(k, k') is of the Hilbert-Schmidt type, the exis-
tence of solutions g~(k) is assured and the kernel
Z(k, k') can be given by

APPENDIX II. EFFECTS OF THE
ANTIS YMMETRIZATION

In order to study the effect of the antisymmetriza-
tion, let us define the projection operator P, which
projects out the nonsymmetrized elastic channel,
by

Z(k, k') = g (I —A. c')g~(k)g~*(k') .

It is straightforward to obtain the inverse:

X&0

(MI. I3)

P= dk k k

where
~ k) is related to

~
Qk) by

I Qk) =c8 I K),

with the normalization condition

(AII. 1)

(M1.2)

(All. 14)
To be precise, I '(k, k') is not the inverse of
(8k~8k'), but the inverse of

I(k, k')= 6(k, k') —Q (1 —A c') g~ (k) tjIp"*(k') .

(k i k ') = 6(k —k') . (Mr. s)

We also define the orthogonal complement of P by
q—= 1 —p. Using these projection operators, the
relationship 8'=8 can be written as a set of
coupled equations:

(Mr.4)8,»8,»+8~,8,, =8,» etc.

Assuming the existence of P~, which satisfies

(Ail. 5)

we have

or

A.'g& + Q 8,& g& ——A.g&, (Ail. 6)

(M1.7)

0 & A. ~ 1 (equality when 8+(~ =0}.
From Eqs. (AII.1) and (AII. 5), we obtain

(AII.8)

k 8 k' tt)p k' dk'= & p k, (Mr.9)

where we have defined g~ (k) =—(k ~ P~). Also, the
kernel (k ~8( k') is related to the overlap integral

(&- &')
ll q,'ll'= ll 8.,@o'll'.

Therefore the eigenvalue of Eq. (AII.5) is bounded

by

(atlas'&= I r(i, k")z(i", k )die",

where the kernel, defined by

(AII. 16)

J(k, k') = 6(k, k') — Q Pp'(k)gp'*(k'), (AII. 17)

projects nonzero eigenstates of the integral Eq.
(AII.9). Since the zero-eigenvalue solution gP(k)
comes from the linear dependence of the set of
basis functions, the operator J acts as the pro-
jector of the space spanned by ~ 8k) onto a sub-
space of linear independent basis functions.

APPENDIX III. TRANSFORMATIONS OF THE
REPRESENTATION SPACES

In this Appendix, we summarize the transfor-
mations between three representations,

ik

(9, )18k)=cQ»
2 )», p($

' }Q($ ') (k rep),

(Mii. l)

(AII.15)

The "redundancy-free" overlap integral I(k, k')
is related to the original overlap integral by
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(q, t~ 8x) =e8„[&(x-q)y(h'")p(&"')] (x rep),

(Alii. 2)

3/4
(» ]~ 8 ) e8 ~ e-( t!&8)( t 8)-

Also, from the definition of g(s) and g(t), we
obtain

(Aiu. 15)

&& 4 (5'")0($")) (»ep) .

(Aur. s)

(Alii. 4)

(Alii. 5)

and between k and r rep is given by

The transformation between k and x rep is the
Fourier transformation:

-ik x

(8x)= dk (», i8k),

ik ~ x

~8k)= dx
(

af, ~8x);

g(t) = f r "(s, t)g(s)d s.

A kernel defined by

8'( ')= f 8( ")& '( " s'les"

is transformed as

)& T*(s', t ')d s d s',
and its inverse transformation is

(AIII. 16)

(Aiu. 17)

(AIII. 18)

3/4 -i k ~ r

lae&=( —' e "'*' '(8,„lait&dit;

(Alu. 6)

8 (s, s')= f r'(s t)8 (t, t )r '(s t')'dtdt''. ,

(Am. 29)
1k ~ I

e' ~'"
( )„,~ 8r) dr. (AIII.7)

lai&=( —") e '"'*" *t*)lait)dx,

18x)= — e '"e '"' ' " ~8r)drdk,
4m

(AIII.8)

(AIII.9)

where the integration over k should be carried
out after the integration over r.

We list the transformations of state functions
and various kernels below, when the basis func-
tions are transformed as

las&= f r(s, t)lai&dt (AIII.10)

Combining these two sets of transformations, we

obtain the transformation between x and r rep:

As a special case of those transformations, we
consider the case when an operator is a "one-
body" operator:

8 (s, s') =O(s)5(s, s') . (Am. 20)

6'(t, t ') = 0(t )5(t, t '),

where O(t) is defined by

o(t)T-'*(s, t}=o(s)T-'*(s,t).

(Aui. 21)

(Am. 22)

For example, the kinetic-energy operator, which
is given by

+—k'5(k, k')
2p,

ink rep, is givenby

(Arri. 28)

The transformed operator is also given by a "one-
body" operator

lai&= f r (si)las&de. ',
From

(AIII.11)

and

——V„'5(x, x') in x rep (Am. 24)

I
8&= f f(sll ag&dit

t Qt dt, (AIII. 12)

2
——&„'5(r, r') in r rep.

2p,

When a potential is local in r rep

U~(r, r') = U(r) 5(r, r');

(AIII.25)

(ArII. 26)

the state function is transformed as" then the potential in x rep is momentum-dependent,

f(e)= ff(t)r '(g, t)«, (AIII. 13) '8 (x, it' )=(&(x+—gt)s(x, it' ), (Am. 27)

f(t 1 = ff(g )r(g, i)d e. (Aur. 14) assuming the function U(r) is.a regular function
of r.
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