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In this paper, a method for projecting the usual BCS states simultaneously onto the eigen-
states of particle number and angular momentum is suggested. Fomenko's method of pro-
jection in the occupation number space, which leads to rapidly converging series, seems to
be very suitable to a subsequent projection onto the eigenstates of angular momentum. For
simplicity, the deformation is restricted to be axially symmetric, and general double-pro-
jection formulas are established in this case. Simple numerical model calculations, using
the adiabatic assumption, show that it is important to project the BCS states onto the parti-
cle-number eigenstates before computing the rotational spectrum and the moment of inertia.

1. INTRODUCTION: NUMBER-CONSERVING PAIRING

A straightforward diagonalization of the residual
forces in many nuclear calculations becomes un-
manageable whenever the nucleus is away from a
closed shell, because of the numerous nearly de-
generate configurations that are possible for a
few nucleons moving in an unfilled major shell.

The BCS theory' ' allows for avoiding this diffi-
culty, but the trial function used in the variational
process is not an eigenfunction of the number of
particles. The dispersion in the number (which is
of the same order as the square root of the num-
ber of particles) is practically negligible in the
theory of superconductivity. In nuclear physics,
the errors connected with nonconservation of the
number of particles are considerable because of
the smaller relative density of the levels of the
average nuclear field. Thus, the BCS approxima-
tion yields relatively poor results both for the
ground-state and for the first-excited-state ener-
gies; this is undoubtedly due to the spurious com-
ponents contained in the BCS wave functions. Fur-
thermore, the presence of these unphysical com-
ponents seems to be the reason for the existence
of an unphysical critical value G, of the pairing
force strength, below which there is no solution
to the BCS equations, except for the trivial one
that gives no configuration mixing at all.

Several methods have been proposed, dealing
with the problem of number conservation in pair-
ing correlations:
(i) Bayman's steepest descent method"' "which
taken in its simplest formulation is the usual BCS
approximation, "and the improvements to this ap-
proach by Iwamoto and Onishi, with the large-fluc-
tuations approximation. "
(ii) Lipkin's method of the curvature of the separa-
tion energy as function of particle number. ~' '0

(iii) Methods of projection: the Kerman, Lawson,
and Macfarlane" exact diagonalization method

[projected BCS (PBCS)] and [fixed BCS (FBCS)]"
method where the variation is done after the pro-
jection of fixed particle components rather than
before. The PBCS and FBCS methods differ by
the order in which projection and variation are
performed. The methods of Refs. 9, 13, 22, and
23 can also be considered as projection methods.
Fomenko's approximation consists in the substi-
tution of integrals by summations, which in the
practical use, are rapidly converging.
(iv) The equations-of-motion methods have been
extensively discussed by Salusti, "Jean, " and
Klein and his co-workers. "' Mauger and Evans,
developing an idea by Covello and Salusti, "also
take into account the Pauli principle. "
(v) Algebraic methods, approximately conserving
the number of particles have been shown to be
powerful approaches to the study of pairing inter-
actions. ""
(vi) The spurious effects of the dispersion in the
number of particles can be approximately elim-
inated within the random-phase approximation
(RPA). '""3' We can quote also the broken-pair
approximation using the Tamm-Dancoff method. "
(vii) Boson expansions have been used by Sorensen
and Kleber. "
(viii) The second-order perturbation theory yields
good numerical results for low values of the pair-
ing-force parameter. "
(ix) Variational methods"" ""and

(x) generator-coordinate methods" "have been
used in the pairing correlation problem.
(xi) Let us mention too the method of the eigen
wave functions strictly conserving the number of
particles. " Finally, we note that the I ipkin-
Nogami method" "~recently reviewed" in its dif-
ferent applications with or without projection or
orthogonalization seems to be applicable for any
value of the coupling strength, although it is less
accurate than perturbation theory" for G ~ G,.

The projected wave functions, like the BCS func-
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tions, are not eigenfunctlons of the angular mo-
mentum. A few calculations" use generator-
coordinate methods to obtain the rotational spectra
of the ground state from the BCS wave functions.

In this work, we propose a double projection of
the BCS wave functions: First, we select, by pro-
jection, the components corresponding to an exact
number of particles; then, we select by projection
on the angular momentum, the rotational spectra
of even-even nuclei. To our knowledge, this pro-
gram does not appear to have been performed, so
it seems to us necessary to investigate the impor-
tance of the dispersion of the number of particles
in a wave function intended to be split up into com-
ponents with a fixed angular momentum.

In the following section, we present the method
of double projection of the usual BCS state. In
Sec. III, the practical calculation, with the approx-
imations used, is outlined. The results obtained
by model calculations are discussed in Sec. IV.

II. GENERAL METHOD OF DOUBLE PROJECTION

from the conditions of minimization of the energy
and average conservation of the number of parti-
cles in the

I g,& state, the chemical potential being
regarded as a Lagrange multiplier. The

I P,) ket
describes a mixing of states with number of pairs
of particles: /+1, P+2, . . . . The trial ket

I |j,& = (-I) g (u, —v„a, a„-) I 0) (3)

has the same physical properties as Ip,&, the com-
ponents corresponding to a given number of pairs
of particles being the same in both cases.

It is clear that the two (unnormalized) kets
I P, &

defined by

I@.) =
I 40&+ I4.&

describe states with a number of pairs differing
from P by an even or odd integer, respectively.

More generally, we consider the kets

n+1

(o„)=c gs, o;" II ( „+o, „a„a„-)+o.o. Ilo)
0=0 V

(5)

The BCS wave function is projected with respect
to the particle number by the method of Fomenko. "
A general method of angular momentum projection
of the obtained wave function is then outlined.

A. Projection in the Occupation-Number Space

with

t(kg)/n+ 1
ik

1 if 0=0 or n+1

if 0& 0& n+1,
The method of Ref. 22, which may be applied to

the description of all the excited states with non-
zero seniority, has the advantage of replacing the
Fowler-Darwin type integrals by discrete sums.
It seems very suitable in practical calculations.
A system of P pairs of particles (neutrons or pro-
tons}, interacting through the pairing effect, is
generally described by the Hamiltonian

H = g (E„—X&)(a„a„+a;a-,) —G g at.a; a;a, ,

(I)
where af and g, are the creation or annihilation
operators for a particle with an individual energy
E„ in the state

I v); Xz and G correspond to the
chemical potential and the pairing constants, re-
spectively; the I P) state is obtained from

I v) by
time reversal.

In the BCS theory, the trial wave function used
in the variational calculation is represented by

I&0&
= II (u„+v„a„a-„)I0).

V

IO) is the true particle vacuum and v„, u„are the
occupation and inoccupation amplitudes in the
state I v), respectively. They satisfy the normal-
ization condition (u„'+ v„=I} and are determined

and where n is a nonnegative integer and C, a nor-
malization constant. In Eq. (5), only the compo-
nents, corresponding to numbers of pairs P+ 2l
x (n+ I), differ from zero (I is an integer I ~ 0).
If 2(n+ I) & max(P, 0 —P) (0 represents the total
pairs degeneracy of the system") the

I g„& state
coincides with the component having I' pairs of
particles. In fact, the components, with a num-
ber of pairs very different from P, have very
small amplitudes;; it is possible to observe a con-
vergence for the

I t'ai„& set with n-3, 4.

B. Projection Description of the Rotational Bands

%bile the Hamiltonian of the system, given in
Eq. (I), has the axial symmetry, the projected
wave function of Eq. (5), like the trial wave func-
tion of Eq. {2), does not correspond to a given an-
gular momentum. Therefore, it is necessary to
take out the components with well determined val-
ues of the angular momentum J and of its projec-
tion K on the symmetry axis Oz. First of all, in
agreement with Ref. 37, we remark that the pro-
jected state can be written, without any approx-
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im ation:
n+1

l('„)=c P~n '(ll".)4=0 p&0

x exp pgp ~8g~g8 +c c. 0

ly the overlap integrals become

3I(n, e& =&q„lR(e) I y„& =2(.+ 1)c&q.IR(8) I C.&,

36(n, 8) =&&„IHR(8) I(t)„& =2(n+1)c&q„lHR(8) I q,& ~

Using the commutation relations

(10)

where f„e is the general form of the correlation
function

Vf 8 s 5 8'

The projected wave function, describing a sys-
tem of P pairs of particles with an angular momen-
tum J and its Oz component K, is given by the inte-

al44

'r 2%

(l)rI(n) = sinede d(j) dyD~o(pey)4, (fey)
0 0 0

(I)

where @„((())ey) is the (I)„ function rotated through
Euler angles (j), 8, y'.

n+1

(sex)) =.c g ~,q,
-' ll .)A=O V

g~y exp —~ P88ig8 g8I
88'

= I; ) „„a,exp —I; ) „.a, a, .)88'

and the identity

()~)) l))()=(ll . »)
2
g)".&~hot)l»,

1

(11)

we finally obtain
n+1 2

X(, 8)=2(m ~ ))C'g e,tl, (11 „N(k8) ~ L.c. ,,
j('. =0 p&0

(12a)
n+ 1 2

x(n, e}=2(n+1)c' g .„q,
-' IIs„H(u, e)

A=O u&0

"H(k, 8) +c.c.

xexp ~2~ I' $0y gag~8 +c.c. 0 H(k, 8) =exp(-,'tr[ln(1+)), M)]) (13a)

In the notation of Ref. 3V, we have

P.,(&ey) = P d...(yey&d». (yey&f. ,

and

d =&nle ' "e ""e '~"
IP&

(6)
H(a, 8) = g (E.—~,)p„„

(13b)

1+qpf '

—G Q (2p ep 8+K -„.Ks(-)).
e8

In E(ls. (13), p and K are matrices defined by

Because of the axial symmetry of the system with
P pairs of particles, we have K=O and the ener-
gies of the states with angular momentum J are

and

Ep(„) &4.(n& IHIP'(n)&
&4. (n& I P. (n&)

f, sinede&(l)„IHR(8) I p„&P, (cose)

f sinede&)j)„IR(8) I(I)&P~(cose)

where we note g='by (l)~(n), and the rotation oper-
ator through a 8 angle around the Oy axis, by R(8)
=e 'e~)'. The operators H and R(8) conserve the
number of particles and connect only the terms
of the number-projected wave function [E(I. (5)]
having the same number of particles; consequent-

(13c)

and M is a I9-dependent square matrix given by

M„s(8) = Q F„,( )f8„. (13d)

The calculation of the preceding expressions is
simplified by the use of the identity"

Tr[ln(I +qgf)] =In[det(1+ri~)] (14)

which reduces the calculation of E(I. (12) to that
of the determinant of (I+q~}. It is easy to dem-
onstrate that if L is the order of the M matrix,
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then the following relation holds:

P=O t 2 +f2 &$3 ' ' ' &tf))

det M, ,
e e ~

~ ~ e

e e ~

M 'j.&v

Mg g
— qqMp,

M;

where I)» represents the 1st power of I}» and M, is a summation over C~ determinants of order ~ (M =1;
Mi =Q; IMIIi ~ ~ ~ ) Equation (16) allows us to transform EI1. (12a) after eliminating the imaginary part:

n+ j. ff+ I
&

n+1 2

&(e &)=&(e'))&'g ~.(ll .) r, »BI,=(pe~, »sg) g~, (Qe„) r, »sI„
4=0 fI &0 A=O k=o V

where we set:
kmy„= 2u„ I„)5,=II„» - I)„', x» =, 1), ft» = (1-y„'sin'x»)"', ))t» = Q y„»+(0 —2P)x»,

2(pg + I

{16a)

V P (16b)

PM, sin[2(v —P)x»]
tan)t)„» = —5ptanx»,

~ Q» ~

~ »lI) 'Y» = QM„+2 Q MeM~cos[2(I) —))1)x»]) tang» =
[2, , ]' ~

P 1)I ve p

These equations constitute the solution of the problem of the double projection of the BCS wave function.
Some simplifying hypotheses may be made to yield more manageable expressions.

When many nucleons are moving in a highly de-
formed well, it is well known that the adiabatic
RssuIiiptloll »lnd the Pelerls-Yoccos projection
method approximately lead to the same results.
The overlap integrals X(n, 8) and X(n, 8) are then
very small except in the neighborhood of 8 =0 and
8=@. Furthermore, the symmetry of the wave
function

~ p„) through a II rotation around Oz and
the hermiticity of the Hamiltonian and of the angu-
lar momentum involve the symmetry properties

6f(n, v e) =X(—n, e), X{n,v —e) =X(n, e),

&(n, -e) =Z(n, e), X{n, -e) =X(n, 8)

which permit the integration from 0 to ag in Eq.
(9) {for even Z) and the expansion of X and X in
powers of sin'8 [IV(n, 0) =1].

and the rotational energy spectrum takes the same
form as for the pure BCS wave function~:

X»(Z, di)
Eg(n) ho +hi

( )
)

The expansion of Eil. (20R) to the first order in
[Z{J+1)]j4ai leads to the spectrum

(21)

where g = -28'(dl'/hl) stands for the moment of
inertia. The quantities ho, h„end d, are obtained
from a comparison between EIls. (10) and (18):

A. Overlap Integrals and Rotational Spectrum

X(n, 8) and X(n, 8) expand as:

'X(n, 8) = 1 —di sin 8+8» sin 8+ ~ ~ ~,

X(n 8) =h +D sin'8+D sin'8+. ~ ~ (18b)

When keeping out only the first-order term (in
8'), we obtain

P~(cos8) = 1 — '4 8',Z(J +1),
6l(n, 8) =1-d,e',
X(n, e) = (a, +II,e')(1-d, e'),
hi =D, +ho)fi,

where the notation ( )„means the average value
over (g„).

B. Matrix Elements for Even-Even Systems

The matrix elements of Ella. (22) are evaluated
in the quasiparticles representation obtained by
the canonical transformation of Bogoliubov-
V~~in' ' (t e vacuum Is t e SCS st~e

~ y,&). rn
this representation, the operators II and J,2 can
be written

a=g a„., (i q(=0, 2,-e
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&ez,'&„=2(n+ I)c&|l„lee, ' I y,&. (24c)

i, j=O

(23)

where H, &
and (Z,o)o stand for the sums of the com-

ponents of H and J,', respectively, with i creation
operators and j destruction operators of quasi-
particles.

The operators H, J,2, and HJ,' conserve the
number of particles and connect the only compo-
nents having the same number of particles in Eq.
(5), so that we have:

Because the kets Ig„& and le& describe only
pairs of quasiparticles, we introduce the follow-
ing pair operators:

Ap = Ap Qp and A„-= Qp ckp y (25)

nv~ =T~viT Av=TA T

where at and n, are the creation and destruction
operators of quasiparticles. Each of the operators
A„and 2-„ in Eq. (25) is its own time-reversal
transform:

N&. =2(&+I)C&tj'. III I 0 )

&z,'&„=2(n+ I)c&y„ lz, 'I 4),
(24a)

(24b)

np=TnpT Av =TA, T

Qv = -TQp T-1
(26)

Using these properties, we obtain a quasiparticle representation where the vacuum is still
I go& and

where the projected state
I p„) becomes:

n+1

ly)=c Q aq, II (u„'+qv„') (1+bi, —op, ' ",At
A=O v &0 v Ok p

y%2('go ) ~ Qo VqQoVo+
2 ~, , „. . .~A„A~+ )+c.c.

I ig
KQP + Iyvv j(QP + Igvjjp~u&O

(27)

When H and J,' directly act on
I tjo) as in Eqs. (24), only the components without quasiparticle destruction

operators give nonzero contributions. In Eqs. (24b) and (24c), the only nonzero contributions come from
J'tp) (g 2) g(o) Q J'oo/ t j(o) p goo~t~&

kl

z", =g l&&l&, lm&l'(r 5 -r 5) (28)

&, =(l&&l&, II&l'+ I&+I&,I-I&l')(s»~i-~i~o)'

with the definitions of Eqs. (15b).
With the help of Eqs. (23), Eqs. (24a) and (24b) reduce to

I

&». =Ifoo+&Hoo&.

&~,'&. =~oo'+ &~ oo'&. + &~'o'&.

&Hoo+Hoo&. = 0

(29a)

(29b)

2p 3p

9

10
ll
12

13
14
15
16

TABLE I. Specification of the quantum numbers cor-
responding to the energy levels v= 1-16 in the model
with equidistant levels. The angular momenta jv and
their projections mv are arbitrarily chosen.

(H) ft Ho{) 0~123 1i383 1i410 1e410 1o410
(MeV)
(J )„ 0.075 0.066 0.066 0.066 0.066
(@')

(HJ 2) -0.050 —0,065 -0.067 —0.067 -0.067
(Mev K')

J
(MeV )

19.86 15.30 14.92 14.92 14.92

TABLE II. Convergence versus n of several physical
quantities (first column). The important discrepancies
between n =0 and n =2 (especially for the energy and the
moment of inertia) clearly show the imperative require-
ment of the projection in the occupation number space.
For n ~ 2, the fluctuations of the particle number may
be considered as negligible. In this case I' =4, 6 =0.8
MeV, and Ev = v MeV.
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Using Wick's theorem, and the expansion of
~ P„}given in Eq. (2'I), Eqs. (29) give:

Hoo = Q [2(E~—Xy) —Gv„—2y„h],
V&0

(H ) =G QA""u 'v ' '

V&@ &0 V P&0

(g{P)} ~vg20 ~ (g(P]} —2 g ~v]]g401

V&0 V+P &0

The A.„functions are defined as follows:
n+1 s ~ s+1

A„""''""=A '+ex, sin'x, (il "', )Qcoa]], +s-,'w+(s —a)x]
%=0 3=1 & v=1~V k

& = Q ~J4 cos]a(.

Similarly, using in Eq. (24c) the results of Eqs. (27) and (291), we find:

(HZ, ')„=E+Q&„'B,(v)++A.„'"B,(v, p)+ Q A„"""B,(v, p, , X).+ Q A„"" 'B,(v, V, , X, p),
V VA P VAJA V&P&X &P

where the first term

(32)

V&V

(33a)

comes from the component of
~ P„}corresponding to zero pairs of quasiparticles, and so on until the last

term which comes from the components of ( P„}corresponding to four pairs of quasiparticles:

B,(v) =2(X„a,-y„~ --,'Gy„')Z'„'- G P (u„'v,„,'+~„'v, ,')g'„o+G3„+y„,Z",,„
V

Ba(v, p) =2G6„yvZq (4+E,5„—4y, 4 —Gy„—2Gy„yq)Jpq —2G Q'(u„up +vq vp )Z„p,
P AV

B~(v, p, , X) =2Gu, vq Jg +2G5„ypZgp,

B,(v, ]u, ]]., p) = Gu„'vq'Z'„'p,

F =E —X -Qt)

&=G Pu, v„.

(33c)

(33d)

TABLE III. The fluctuations in the number of particles
are less important in this case (P =8, 6 =0.475 MeV,
E„=v) than in the case presented in Table II, the number
of pairs being multiplied by two. Again the convergence
is physically satisfactory for I =-2.

TABLE IV. Evolution of the rotational spectrum with
the degree of' extraction n of the unphysical components.
The origin of the energies is set at Ez-—0, P =8, G
= 0.475 MeV (see Table III and the text).

W&n
(MeV)

(I')
(H J
(MeV n')

(MeV ~)

0.139 0..120 0.120 0,120 0.120

-0.099 —0.099 -0.100 —0.100 -0.100

10.07 10.06 9.97 9.97

-0.144 -1.340 -1.395 -1.395 -1.395

10

0.297 0.298 0.301 0.301 0.301 0.301

0,991 0.992 1.004 1.004 1.004 1.004

2.082 2.083 2 ' 108 2.108 2.108 2.108

3.570 3.571 3.614 3.614 3.614 3.614

5.454 5,456 5.M2 5.522 5.522 5.522
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-20—

22
x
LIJ

-24—

-26—

0.5 O.T

0
I

0.9
G(Mev)

I I I
I

0.2
I

0.6
G (Mev)

I

I.O l.4

FIG. 1. Variation of the rotational spectrum versus
the pairing force in the P =-4 case; all the levels corre-
spond to a complete projection in the occupation space
(n = 6).

FIG. 2. Variations of the energy (H)„-6 versus the
pairing force strength G (MeV), in the P =4 case and
after convergence (n=6) of the particle-number projec-'
tion procedure.

IV. APPLICATION TO MODEL CALCULATIONS:

DISCUSSION

We performed two numerical calculations with
Richardson's model with equidistant levels, ' us-
ing the parameter values: P=4, G =0.8 and P =8,
G =0.475.

This model assumes doubly degenerate levels
which are equally separated by the unit energy.
The number of particles equals the number of lev-
els. Corresponding to each v level of the model
there are an angular momentum j, and its projec-
tion m, (see Table I). The average values over

~ g„) for the operators H, 4,', HJ, ', and for the
moment of inertia are given in Tables II and III.
The results mainly show a very quick convergence
with g for the calculated quantities. In fact, as
soon as n ~ 2, the projected state

~ p„) coincides
with the exact wave function. The values of (H)„
—(Hoo) for P =4 and G =0.8 are the same as in
Ref. 22.

The energy spectrum, calculated with Eq. (21)
is tabulated versus n (n = 0, 5) in Table IV (P = 8,
G =0.4V5). Here too, we observe a very speedy
convergence of the set F~B(n).

In Fig. 1 we studied the evolution of the rotation-
al spectrum versus G for n o yg [n, being the low-
est integer such as 2(no +I) ~ max(P, L —P)], i.e. ,
for an exact projection. The levels present a max-
ima for 0.6 ~ G &0,7,

Figure 2 shows that (H)„, decreases rapidly
versus the parameter of the pairing force.

In summary, we performed a double projection
of the BCS wave function: Fomenko's method of
projection in the occupation number space gives
the number-projected wave function as a quickly
converging series and thus seems very suitable
to a further projection onto the eigenstates of the
angular momentum. General formulas for this
double projection have been established. We
showed that numerical calculations may easily be
performed if the adiabatic assumption is used.
Only a calculation in the case of true nuclei can
show if the strong dispersion (between n =0 and
n =2) observed for the difference (H)„H„and for-
the moment of inertia8, is fortuitous or, on the
contrary, a characteristic of the model. Never-
theless, the errors due to the fluctuations of the
particle number can be important and it seems to
us necessary to project out that part of the BCS
wave function corresponding to the correct num-
ber of particles, before projecting onto the eigen-
states of angular momentum. An application of
this method to nuclei in the rare earth region is
actually in progress.

It is a pleasure to thank Dr. G. Do Dang for a
critical reading of the manuscript and for enlight-
ening remarks. The authors would also like to
thank P. Desgrolard and W. L. McCuistion for
help in translating the manuscript.
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