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Based on the conventional shell-model Hamiltonian with pairing, quadrupole, and octupole eA'ective

forces, the quadrupole-octupole collective anharmonicities are studied by the boson-expansion method.
The Belyaev-Zelevinski expansion convergence is improved by supplementing it with a canonical
transformation of the random-phase-approximation phonons, determined from the minimum condition
for the ground-state energy. Calculations for the one level case show that the anharmonic terms
corresponding to the new representation are much smaller than the harmonic-like terms. Explicit
expressions for the first 2, 3, and quintuplet (1,2,3,4, 5 ) energies and wave functions as well as
for B(E2) (2+ 0+) and B(E3) (3 0+ and 3 ' 0+) are derived by a perturbation treatment. The
quintet ordering predicted by the previous calculation is reproduced by a rough estimation. Also,
expressions for the static quadrupole moments of the first 2+ and 3 states are given.

1. INTRODUCTION

In recent years it was shown that the convention-
al shell-model Hamiltonian with pairing, quadru-
pole, and octupole effective forces is quite suit-
able to describe, in the framework of the so-called
random-phase approximation (RPA), the experi-
mental systematics of even-even spherical nuclei
concerning the first-excited collective states 2', 3
and their corresponding E2 and E3 transition prob-
abilities to the ground state. ' ' According to RPA,
the low-lying collective levels are described in
terms of coherent-harmonic modes (phonons).

Due to the harmonic character of the phonon the
multiphonon states are degenerate. Other conse-
quences of the harmonic approximation are the van-
ishing values for the crossover transitions and for
the diagonal-phonon matrix elements. For exam-
ple, the two-quadrupole and the quadrupole-octu-
pole two-phonon states consist of a degenerate
triplet 0', 2', 4' and a degenerate quintuplet 1,2,
3,4, 5, respectively; the electric F2 and F3
crossover transitions (2"-0' and 3 '- 0'), as well
as the Ml transitions (2"- 2+ and 3 '-3 ) and the
quadrupole moments for the 2' and 3 states are
zero.

Real nuclei deviate appreciably from these sim-
ple regularities. ' " In order to describe these
deviations we have to improve the harmonic ap-
proximation by including higher effects, the so-
called anharmonic effects.

Extending the idealized description for even-
even nuclei given by RPA to the neighboring odd-
even nuclei, by considering the independent quasi-
particle-phonon model besides the discrepancies
due to the inadequate description of even-even nu-
clei, new types of contradictions appear. ' the odd-
even mass difference and the pushing-up effect of

quasiparticle states in the vicinity of phonon states
(for Tc isotopes). These facts call, for the neces-
sity of a self-consistent treatment of th. quasi-
particle and the phonon concepts. "

In the framework of the microscopic theory of
the anharmonic effects in even-even spherical nu-
clei two methods have been extensively developed.

A. Linearization Procedure

Replacing the particle-number operators by
their average on the ground state of the noninter-
acting system, the equations of motion, associated
for example with the particle-hole-like excitations,
become closed. Consequently, the eigenvalues of
the Hamiltonian are obtained directly by the diag-
onalization of the transposed matrix defining the
closed system-of-motion equations. "" This meth-
od was extended to the study of the anharmonic ef-
fects on collective RPA states in Ref. 18. There
the linearization is achieved by estimating the ma-
trix elements of the quadratic terms in the two
quasiparticle operators appearing in the motion
equations, with the help of the RPA collective
states as intermediate states (spectral decomposi-
tion procedure). From these expansions one keeps
the terms containing one nonvanishing RPA factor.
Using the proper equation of motion the other fac-
tors are factorized by the same technique relative
to a single term. In this way one obtains the dis-
persion equations for the energy levels which dif-
fer from the corresponding RPA dispersion equa-
tions by an additional term which reflects the an-
harmonic contribution.

B. Boson-Expansion Method

The idea underlying this method, initiated by Bel-
yaev and Zelevinsky (BZ),"is that a coupled pair
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of fermion operators can be expanded in a series
of boson operators with the coefficients chosen in
such a way that the commutators of the pair fer-
mion operators are consistently reproduced. The
expansion terms are distinguished by a parameter
which establishes the order of the approximation.
Consequently, the Hamiltonian can be written as
a series containing a convergence parameter.
Although we have a criterium for the selection
of the most important terms of the Hamiltonian,
any truncation yields the following kind of error:
every eigenstate of a truncated Hamiltonian has
"unphysical" components, i.e. , states which do
not have the right antisymmetry properties. The
convergence of BZ expansion in the sense of the
Pauli principle is very slow. This deficiency is
removed by the Marumori (M) expansion, which re-
moves at each step of approximation the "unphys-
ical" states. ""Consequently, the M expansion
satisfies the Pauli principle term by term. How-

ever, this expansion converges more slowly. The
M expansion can be directly obtained from the BZ
expansion supplemented with a canonical transfor-
mation of pure bosons, i.e. , with a deformation of
phonon amplitudes, determined in such a way that
the Pauli-principle constraints be fulfilled. " [De-
tails about the equivalence of the two expansions
(BZ and M) are given in Ref. 23.]

Another way to improve the RPA calculations
was suggested by Hara" and consists in changing
the "size" of phonons by including some of the
phonon-vacuum correlations. In this way the
quasiparticles composing the phonons are no long-
er pure quasibosons, their fermion character be-
ing to some extent restored. Alternatively, the
change of the phonon "size" can be achieved by
using a BZ expansion for the particle-hole pair
of operator commutators, containing a constant
term y

"which can be fixed either by the particle-
number conservation in a certain state or by a sta-
bility condition for the static quadrupole momen-
tum of the 2' state. For y g 0, the expansion has
better convergence properties than that correspond-
ing to y =0. The effect of such a parameter can be
simulated by a canonical transformation of the pho-
non operators followed by a normal ordering of the
BZ expansion written in terms of the "new" pho-
nons (see Sec. 3).

A very important problem in treating the collec-
tive states by a BZ expansion is how to choose the
canonical transformation from the pure boson rep-
resentation to the normal modes representation
in such a way that the collective branch of excita-
tions is more or less separated from the remain-
ing states. ""

Up to now, only the anharmonic effects of the
quadrupole collective branch have been explicitly

studied. This has been done in connection with the
description of the triplet 0', 2', 4' considered as a
two-quadrupole phonon state.

However, there are some experimental data
concerning low-lying collective spectra which
could not be explained by ignoring the octupole
anharmonicities. For example, the observed ex-
perimental levels 1,3, 5 in '"Cd and '"Sm and

1,3,5, 4 in "'Sm, as well as the correspond-
ing ratios B(E3;3 '-0)/B(E3;3 -0),"have been
interpreted in the frame of the phenomenological
model" as members of the quadrupole-octupole
quintuplet. The y decay, which follows the decay
of the 60-day and 15-min isomers of "'Sb, indi-

that the second 3 level of ~Te is a mem-
ber of a quintuplet. Also, it has been shown, by
using the coupled-channel theory, that the collec-
tive levels 1,3, 5 in '"Pd excited by inelastic
proton scattering might result from one-octupole-
one-quadrupole phonon vibrations. " Also, it is
worth mentioning that the coupling of the quadru-
pole and the octupole vibrations can induce a non-
vanishing static quadrupole moment for the octu-
pole vibrational state 3 ."

In a first paper" we developed a semimicroscop-
ic theory for the description of the quintet obtained
from the combination of one quadrupole phonon and
one octupole phonon. In addition to the convention-
al shell-model Hamiltonian with pairing, quadru-
pole, and octupole forces we added a new term 8»
which represents a simple quadrupole-octupole
interaction similar to the term introduced in the
phenomenological treatment. "' The spectral-
decomposition procedure" has been used for the
treatment of the anharmonic terms produced by
H„. The theory showed limited agreement with
experiment and the phenomenological model.

In another paper, ' based on the same shell-
model Hamiltonian, we have given a complete
microscopic description of the quintet. We have
treated all Bnharmonic terms, appearing in the
equation of motion of the two-quasiparticle-quad-
rupole and two-quasiparticle- octupole operators,
by the spectral-decomposition procedure. Explicit
expressions for the quintet splitting and for the
relevant B(E3) values have been given.

In the present paper, based on the same Hamil-
tonian, we studied the quadrupole-octupole cou-
plings by the boson-expansion method. In Sec. 2,
the Hamiltonian is written in the quasiparticle rep-
resentation and then, in the usual way, we define
the RPA modes described by the phonon operators.

In Sec. 3 the two-quasiparticle operators of rank
2 and 3 are expanded in terms of quadrupole and
octupole phonon operators, following the Belyaev-
Zelevinsky method. Consequently, the Hamilto-
nian is written in terms of phonon operators. We
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truncate the expansion, neglecting the terms high-
er than the fourth order.

It is well known that the RPA base leads to a
slowly converging series and for large quadrupole
and octupole strength parameters the use of fourth-
order Hamiltonian becomes unreasonable. Gn the
other hand, the inclusion of the higher-order
terms gives much trouble when one wants to use
the model for practical purposes.

Thus, it is necessary to change the initial base
so as to improve the convergence of the expansion.
In order to do this, we make use of the remark
that the Bz expansion is determined up to a canon-
i.cal transformation. Indeed, suppose that the pho-
non operators are subjected to a linear and canon-
ical transformation and the two-quasipartiele op-
erators are correspondingly rewritten in terms
of the new bosons. Gne easily verifies that the
new series associated with the two-quasiparticle
operators still preserves the commutation rela-
tions. This arbitrariness can be removed by fix-
ing the parameters of the canonical transforma-
tion by one of the following alternatives:
(a) Writing the Hamiltonian in terms of the new

phonons, the ground-state energy is renormalized
due to the normal ordering with respect to the new

phonon vacuum. Fixing the linear transformation
by taking for its parameters the values which as-
sure a minimum value for the ground-state energy,
one expects that the corresponding anharmonic
terms become smaller than those appearing in the
usual BZ expansion.
(b) Cancelling the coefficients of the cross terms
responsible for the ground- state-two-phonon-
states correlations, one obtains two equations de-
fining the parameters of the canonical transforma-
tion. In this w'ay the old harmonic structure of
phonons is modified by accounting for an impor-
tant part of anharmonicity.
(c) Equations for the canonical-transformation
coefficients can be obtained by the minimum con-
ditions for the quadrupole moment of 2' states,
which is very sensitive to the change of the an-
harmoMelty.
(d) One can impose the constraint that the average
number of particles in the new correlated vacuum
of phonons be conserved and fix the 2' level energy.

Thus, fixing the canonical transformation by one
of the alternatives (a)-(d), the amplitudes of an-
harmonic terms become small and so, the new
harmonic states can be considered as unperturbed
states. In Sec. 4 the single-phonon states, 2', 3
as well as the two quadrupole-octupole phonon
states are obtained by a perturbation treatment.
Section 5 is devoted to the study of the electric
transition, probabilities 2' 0', 3 0', and 3 0'
and the static quadrupole moments of the first 2'

and 3 states. The last section summarizes the
results.

Jf =U+QZ, ata„——,
' Q X~@I.,Q~t, , (2.1)

where the Greek letters a, P, . . . stand for the
shell-model quantum numbers

l n, lajam „)= la, n&„)
—=

l n), while Z, expresses the energy of the quasi-
particle states

l c&). The term U is the Harnilto-
nian averaged with respect to the quasiparticle
vacuum state la}; a„(a„)is the creation (annihila-
tion) operator of one quasiparticle in the state

l &r);

and X~, X, are the strength parameters of the quad-
rupole and octupole forces, respectively. The oth-
er factors appearing in our model Hamiltonian are

Q~, =Pgi(«)[4 )&(«)A,",'(«) +@& )„,(«)B,",)(«)],
1/2

ga(n» =
5 +2'&i. lll'alii»&nl~'I»/&nl~'ln&. ,

(2.2)
1/8

);&a))=() ~)'&).ll);II))&uI~'I»ll r &~l~'I&)
&a~~O

where $«&, q«& depend only on Bogoliubov-Valatin
transformation parameters (U, V):

g, „(«)= ,'[U.v, +(--1)'U, v.],
q& „(ac)=-,'[U.U, +(-1)'V.V.],

(2.3)

and A~(,", B~,' are the two-quasiparticle tensor oper-
ators of rank I. defined by

A&~",(ac) =A~t, (ac) + (-1)'A~,(«),
B~",(«) = B~t, + (-1)'B~,(«),
A.t (ac) = Z C~' ~' ~afar

L& g mo my q f)f
hatt f)t y m')&

To find exactly the eigenstates of the Hamilto-
nian (2.1) is a very difficult task. All the formal-
isms proposed up to now are based on separating,
more or less explicitly, the Hamiltonian (2.1) into
two terms, one of them being negligible compared
with the other one considering their physical ef-
fects estimated in a representation induced by two
kinds of excitations: quasiparticles (particle-like
modes) and phonons (collective modes). One ob-
tains the dominant effects either by an iterative
procedure" or by an explicit series of progres-
sively decreasing" terms. The starting approach
of all techniques as well as that of the present pa-

(2.4}

2. HAMILTONIAN AND THE RPA PHONONS

The conventional shell-model Hamiltonian with
pairing, quadrupole, and octupole effective forces
in the quasiparticle representation is
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having a boson character

[c„,(i),c„'...(i')] = b„„.b„,b„, (2.6)

and describing harmonic oscillations of an ideal
O

system associated with H:

[e,ct, (i)] = &'o„(i)c„',(i). (2.7)

The relations (2.6) and (2.7) completely deter-
mine the phonons, i.e. , the harmonic energies

per is the RPA, whose basic points are sketched
below.

Ignoring the fermion character of the quasipar-
ticle operators, one can build, in the manner of

0 0
(2.4), the operators Az", ', and Bz&'&. ~ Approximating
the true operators A. , B involved in the Hamilto-
nian by the above operators (the result will be de-

0
~ ~ ~ ( )noted by H) one can define a superposition of A"',

called phonon operators

Czt, (i) =P[&&z, (i, ab)Az&+,'(ab)+&&z (i, ab)A&z &(ab)],
a, b

I.= 2, 3 (2.8)

I(loloJ)lo»)o =2 &&o-'&&o I lo o™)o11o&-M)o

I (1oloJ)1oki")o =No(kg)&2

I'v =1) = I(1,1,0)1,3&"),

I
v =3) = n, I (lolo2) lo3g) + a~ I (lo1o4)lo3I"),

(2.13)

l911 ' ' ]g&].

The normalization factor iV, (kJ) is given by

x+Cz»o&&~~ I 1oloJM) o e I 1,)" —M)o.

(2.12)

Concerning the states
I (1,1,J)1,k&') we should

note that the states having the same i|I& but differ-
ent J are not orthogonal. Two cases are to be dis-
tinguished: (a) ka3. Conventionally, we shall use
the smallest J able to couple with 3 to the final an-
gular momentum k; (b) k =3. We shall use the fol-
lowing two independent states of different seniority
(v)

4X ~ t'&»'(ab)gz'(ab)E(ab)
z 1~ o( } oo y

N, (kJ) =[2+4(2J+1)(-1) ' W(33k3' JJ)]
(2.14)

X, (i, ab) =(u (z)X (i, ab)/E(ab),

where

pz(z} =(8Xzuz(i)Q, (& &z (ab)gz (ab)

x[E'(ab} —('uz', .)] ') "'.

(2 8)

(2.10)

Here, the index i stands for ordering the roots
given by (2.8); i equal to zero corresponds to col-
lective phonons.

Defining the phonon vacuum as

E(ab) =E.+E, (2.8)

and the X~ amplitudes

&z (i, ab) =Xzpz(i)$& &z(ab)gz, (ab)E(ab)

x [E'(ab) —('oz'(i)] ',

It is easy to verify that, at this stage of approx-
imation, the values of the quintet splitting, the
reduced electromagnetic transition probability
3 '- O', and the static quadrupole moments of first
2' and 3 states vanish.

The amount by which the Hamiltonian H differs
from H, which we shall call "anharmonic part" of
H, will be responsible for the nonvanishing values
of the above mentioned observables. Of course,
the anharmonic part of H is determined by the dif-
ference between A, B and A, B, respectively. In
the next section using the boson expansion we shall
write explicitly the anharmonic part due to the
quadrupole and octupole branches. Thus, we as-
sume that this truncation yields the main effects
on the observables which we intend to describe.

c (i)I0) (2.11)

q)&& C (0)I0)&&, &z 2, 3

I11 JM) =~&gc &&
~~ct„(0)CJ.'(0)IO)

1loloJM)o =~~ZCo „'.'„C,„.(0)Co.(0}I o). ,
o

I ioloJbf)o =pc &&Co&&-,(0}co,(0) Io)o

the eigenstates of H can be simply generated by
0

acting successively with C~~ upon the vacuum state.
For example the collective states which will be
used in what follows are:

3. HAMILTONIAN EXPANSION: CANONICAL

TRANSFORMATION OF PHONONS

As usual, "we assume that the commutation rela-
tions of the operators A and B completely charac-
terize the physical aspect of the problem. Conse-
quently, we shall try to construct "equivalent" op-
erators, i.e. , which obey the same commutation

O

properties as A. and B, and which are series of A. ~
0

and A. operators. The entire infinite series should
be taken into account because only then is the Pauli
principle effect completely restored. ' In this
paper we shall evaluate only the effect of the first-
order anharmonic terms of the quadrupole and oc-
tupole type.
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Thus, we truncated the A. and 8 series so that the quadrupole and octupole terms appearing in the com-
mutators of A and B are reproduced in the first order of approximation. Reversing the relation (2.6), A
can be written as a superposition of BPA phonon operators and finally the expressions which we obtained
for A. and B are the following:

&"'(aa) = Z )("' " (~&) (( ))""{-]&''"'())&' ""(])]C' ""(a)]
P P'=&o 3

m, «f, r=1, 2
t, j, k

+( )) -{~"'-'." ,(s)"]i'l-" ())"c", ()")I'] ) '4Z~ (; )).-c' ((), „

8'„", (ab) = g X~~'"'(ab)[C~ '""(i)C' '"'(j)]„,C~" =C«t +(-1)'C«,
P, P'=2, 3
r, s=l, 2

(3.1)

(3.2)

JJ „«««(««b) =4+ (1 +p«) {](bb' )Z))]) ({«bb )Zp«) (««b b )}(])( )(i b b )})«t() (j ««b )}]y ( )(I«b b)

x'„';",'(ab) =4g[1+(-1)"P'.",']z„.(abb')e(ab')x„, „(i,ab')~, , „(j,bb')[5„,5„,+5„,(5„5,., +5,A.,)](-)"',

Z„„,(««bb') =nn'{](««b)W(nj. n'j„j,n"), n =(2n+1)"', n" =nb„.,+(5- n)5„„,
(3.3)

b'= ~p-p'~ +2, b" =b'5„, +(5 —1«')5„„e(««b)=( 1)'"'&-.

Here, we denote by p'"' the permutation operator

p".. ( b)=(-1)"" (.b) (.)
and by W(abed; ef) the Racah coefficient. For the tensorial product we have used the definition

O l«22

(3.4)

As for the independent quasiparticle Hamiltonian, it can be written

QE,ata„=g E,At„(ab)A„„(ab) + «{

ab
n, P

(3.5)

and then by means of (2.6) as a function of phonon operators. Here, «« is a constant generated by the zeroth
order of the BZ expansion a.ss-"..iated with the operators a„a . Its value will be fixed below.

Now, using (3.1), (3.2). ;.:.~ (3.5) in (2.1), the resulting Hamiltonian H depends only on quadrupole and

octupole phonon operate. rs. Neglecting the terms higher than the quartic terms, one obtains:

H —U +H2+II3+H~, (3.6)

0

U'=L{+g ' 1-8g X,
' (i, b)««+g ' 1- +8X', (i, a, b),

a, b ab

(3.7)

a, = p (d, (i)ct,(i)c„(i)+ p ~,(i)ct, (i)c„(i),
to «2 C, q

(3.8)

a = Pb{"("''"')(«I[C' }""(i)C{.}"'(j)]„C„"(0)),+h.a.), (3.9)

ff, =Pb{'} ~,',":.([c{-}""(i)c{-,}"'(j)]„[C{-}""'(b)c{;}'"'(i)]„$,
l 1

iglt)

+ g @{4}(PP')))sr) (( 1) a([C){+}m '(~)C+{-«}-s «( )]+C{ }r (b)]+«-
+( )) (c'' (a)-[c''"()c"''' "()]"])i"()) a } (3.1O)
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Here, we denote

b'"(~„",,"; ) = Q(-I)""—"n p„(k)g„(ab)q( )„„(ab)X~~;;"'(a, b), (3.11}

P P'r's' = ~ n gn a~ gn ~ 0( )n+1 a~ 0( )n+1 a ~ Xn ij
ii Al

h~'& (~~'~'") = g (-1)""—"n p„(l) g„(ab)$& ~„(ab) Y„;P„'"(ab),

(3.12)

(3.13)

In the following, we shall assume that the main
effect on the quintet splitting, the 2'-0' and

—0'electromagnetic transition probabilities, as
well as on the 2' and 3 quadrupole moments,
comes from the collective part of H which we
shall denote by H, . To simplify the notations, we
shall omit the indices zero which stand for the
lowest roots of Eq. (2.8).

We should like to remark that H, (written in
terms of collective variables) is of the same form
as the phenomenologieal Bamiltonian used by Li-
pas." The advantage of the Hamiltonian (3.6) con-
sists in the fact that the fitting parameters used
in the phenomenological treatment have now an
explicit microscopic structure. Also, it is to be
noticed that in Ref. 31, the quintet splitting was
produced by a term like [(C, ""C, "')C2~' ],
contained by H, .

It is well known that the BZ expansion is slow-
ly converging especially for nuclei lying in the
transition region, where the coupling strength
parameters are large. In this case the RPA base
is not proper for a perturbation treatment since
the anharmonic terms are large. Redefining the

RPA base in a certain way, we expect the anhar-
monicities to become smaller than the diagonal
terms and so a perturbation treatment is justified.
It is easily seen that the vacuum state Io), is cor-
related with the two-, four-, and three-phonon
states by means of quartic and cubic terms, re-
spectively.

We try to include some correlations into the
ground state by means of a canonical transforma-
tion

C„,= a„,c„,+ (-I)'a„,c t „ n=2 3
(3.14)

which defines a new boson representation pro-
vided we have

(3.15)

Inserting (3.14) in H, and writing the resulting
terms in a normal order, according to Wick theo-
rem applied with respect to the new vacuum I 0)
defined as

c„,I o&=o,

one obtains the following expression for H;.

x (-1)'[C„",C„,+C„,C„,]++h„" (pp'rs)N[[(C~ "+ 'C], "')„C„' }0+h.a.]
b"'("'"' )x[((c' '""c' &'+'} (c' '""'c' '"') ] ]1 1

Pb4 ( P ) ((( )
+

[(
-m+ - +

) -) +
]

+ ( I )
m+

1[c
(-,)~+ &(c(-)~+ ~c ~-, ) ~+

) ]

(3.17)

a„' =an, +an, , n=2, 3.(~) (3.18)

Bere the factors h„", h,'„,and h, '„are obtained
from the corresponding h„"), h, '„, and h, '„, multi-

(-)r+ 1 (-)s+ I (+) (-)r+ 1 (-)s+ 1 (-)r'+ 1plied by aP aP an, aP aP a»
&& a( )"" and a( ) "a( )"'a( '""a(') respective-P1' pl P n p

ly, where

product in the square brackets. The explicit ex-
pressions of S„coefficients as well as of the shift-
ed zero-point vibration energy U and of the cor-
related harmonic-vibration energies &„are given
in Appendix A. The constant K introduced in Sec.
2 is fixed so that

The symbol P indicates the normal order of the w + 5+,a„'+Vv, a»' = 0 . (3.19)
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In order to determine the parameters a„„
a„, (n =2, 3), one can use one of the alternatives
(a)-(d) described in Sec. 1. A consequence of
fixing the canonical transformation in the above-
mentioned ways is the modification of the "size"
of phonons as well as the change of the zero-point
oscillation energy. In these two effects a very
important part of the anharmonicities is already
included and so it is to be expected that the an-
harmonicities are small in the new representation.
This fact is explicitly proved in the case of the
one-level model in Sec. 6.

The correlated RPA states i ) are defined in the
0 gsame manner as in (2.12), using instead of C

phonons, the C phonons and replacing the old
vacuum i 0), by the new vacuum i 0). These states
constitute the base for the perturbation treatment,
which will be considered in the next sections.

4. ANHARMONIC CORRECTIONS TO THE 2', 3, AND

1,2, 3 ', 4, 5 CORRELATED STATES

The aim of this section is to study the first- and
second-order corrections to the energies and the
wave functions of the RPA correlated states i l,q),
i l,q), i 1,1,JM), determined by the cubic and
quartic terms involved in II,.

It is easy to see that, because of the normal
ordering of the anharmonic Hamiltonian the first
phonon states

i l,q) and
i l,q) are not perturbed in

the first order, but they are related to the two-
phonon states i 1,1,2q), i lsls2q), and i l, lsSq),
respectively, in the second order.

By a straightforward calculation one finds the
following expressions for the corrected energies
of the first quadrupole (Z,) and octupole (Z,) cor-

related phonon states:

E2 = (d2+E2,II

IfE3 = ~3+&.

(4 1)

(4.2)

where

Z,'= — [Sh',"(22, ll) —h',"(22, 22)]'8

2

2+2 2+2
Ph''(33 11)+h"'(33 22)+(-)i [-h''(32 ll)+h''(32 22)]}s—:—

"/(2~ (g } (4.3)

D2
Z, = — ([-hse'(33, ll) +use'(33, 22)](-') ' +h' '(32, 11)}—= ——.

2 2
(4.4)

As can be seen from (4.2) and (4.3) the effect of the anharmonicities on 2' and 3 RPA correlated states is
to lower their energies.

Concerning the quintet states, their energies are affected both within the first order and the second or-
der of perturbation. In the second order of perturbation we estimated, as in the 2' and 3 states case,
only the contribution which comes from the cubic terms of our Hamiltonian.

The final result is:

gJ (sg2 + (jg3 +gJ' +gJ', cJ = 1, 2, 3, 4, 5

with

Zs =5ssK, +W(32J2; 32)K, + (-1) "W(33JS;22)Ks,

(4.5)

(4 6)

D2
Zg =—5~, —— Q [5~ sB+3J"W(22J3;J"3)D]'

+2 (d2 J"=0 2, 4

5qs ssNs(30)+{ Q Ns(SJ")n~«[5~„s+22J"W(3333;J"2)]})2(d3 —C02 J"=2,4

where

+N, (JJ')(1 —5~s)[(-1) ''5~,s+{1+(-1) }2J'W(SSJ3;J'2)] C (4 'f)

ff, = (li~q) f4 +[(-1)'+(-1) '""][-h~a"s(23, m sr) +h~s 's(32, m sr) +h~s@s(2, 3, m sr) +h~s@s(32, m sr)]
+g[( 1)m+s+( 1)m'+s']h(4l (32ms )} (4.8)
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K2 = (1/M5)(20+ [1+ (-1) "][(-1)"—1] [h2 2(33,msr) +h2 3(22, msr)]

+g[( 1)m+1+ ( 1)s+1][( 1)
m' + ( 1)s'] [5h(4) (33ms ) +h(4 (22ms )]]

K, =v 7(4+[1+(-1)"+ "+'][(-1)""h' (23, msr) +(-1)"h',",(32, msr)

+ ( 1)m+ s+ rhW (23 msr) h(4 (32 msr)] ++ [( 1)m'+s + ( 1)m+ s']h(4 (32ms )].

(4.9)

(4.10)

According to the convention made in Sec. 2 concerning the three-phonon states, the index J appearing in
the last square bracket of (4.7) has to take on the smallest value able to couple the angular momentum 3 to
the angular momentum J.

To see clearly the mixing of the phonon states determined by switching on the anharmonic part of the
Hamiltonian it is worthwhile to write the perturbed wave functions of the states of interest. Here we con-
sidered the most important effect, namely, the first-order correction given by the cubic terms.

I 1+5&
' =

I 1'& +C2, I 1212J= 2, M) + C', 3 I 1313J = 2, M),

I13M&' =
I 1.M&+C2(3 I 121,J=3,M),

I
1213&M&' =

I 1213~M&+43~3(I 13M&+ 2 &22'3'l(1212&')1.&M)
J =0, 2, 4

+ 5~3 P O', „I(1,lsd'")1, 3M) + (1 —5„)Z,',, I (1,lsd'')13ZM&.
J"=0,2, 4

Here we adopted the following notations:

as 2, -Cv 2, , D
22 ~ 0 33 2~ ~ & 23 3

2 3 2 2

-1~ 2
&223 = l25z 2&+3~'W(22~3i~'3)D]

~

CtJ2

(4.11)

(4.12)

(4.13)

Ds( = CN, (30), D2( = (22[1 +10W(3333;22)] CN, (32),
7 2(d3 —(d2 2(ds —(d2

Ds = asW(3333; 42)CN, (34),
&2W5

2 (d3 —QJ2

(4.14)

Z( ..=2 ((-1)"'5,., +[1+(-1)']2J'W(33J3;J'2)j CN, (JZ') .
2(d3 —602

These wave functions will be used in the next section to obtain the explicit expressions of the transition
probabilities and the static quadrupole moments.

5. ELECTROMAGNETIC TRANSITION
PROBABILITIES AND THE STATIC

QUADRUPOLE MOMENTS

In this section we shall work out the anharmonic
corrections to the 2'-0', 3 -0' transition proba-
bilities as well as the 3 '-0' transition rate and
the quadrupole moments of 2' and 3 states. The
latter have nonvanishing values, which we have
already seen in the body of Sec. 2 are exclusively
of anharmonic nature.

We should like to mention that the present for-
malism is worked out for the single-closed-shell
nuclei, but it can be extended without any difficulty
to the nuclei having both shells open.

As usual, we assume that the core contribution
to the E2 and F3 transitions can be taken into con-
sideration by means of the effective charges e ff
and e,ff, respectively. Within the quasiparticle

l

representation, the multipole operators responsi-
ble for the E2 and E3 transitions can be written
as follows:

(r.)Ml. q
= e.-ff VI.QI. L= 2, 3, (5.1)

where

~, =-' g &~lr'lh&/~4v,

(5.2)

and Q~, is given by (2.2).
The reduced EL transition probability from the

state Inhi1& to the state I32'h'p, '& is the following:

D(EI, h.- h.' ) = s'.((" 2 I &
~'h'u 'I Qi, 122h&l'.

(5.3)

To write explicitly the relation (5.3) we need the
expansion of Q~ operator in terms of phonon opera-
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tors. Using (3.1) and (3.2) one finds

Q =p a"'C"'+Q Q"(pp' msr)f(-)""[(C' ' C' ' )„C' ' ] +(—) ''[C' ' (C' ' C' ' ) ] j
(5.4)

where

QJ.(pp', msr) =Q gz, (ab)$
&

&&(
ab)'JJ~~ ~, '"(ab)a&, & a& & a„' '

Q~(pp', rs) =Q g~(ab)&i& &r+,(ab) X~,";(a b) a~' a', '

h = Ip p'i-+2, h"=h'5„+(5 h')6„.

(5.5)

(5.6)

B(E2 2+ ()+) —5e (2& v 2p 2a(h& (1 + p )2 (5.7)

Similarly, employing (5.4) for L=3 and the wave
function (4.12), the B(E3) expression of the 3 -0'
transition can be written

Using the expansion (5.4) for L=2 and the wave
function (4.11) one obtains the following expression
for the B(E2), corresponding to the 2'-0' transi-
tion:

where 9, and 8, are listed in Appendix B. From
their expressions (B.4) and (B.5) it can be seen
that in addition to the terms linear in the two-pho-
non amplitudes and the anharmonic components of
the A. and B operators, quadratic terms appear in
the two-phonon amplitudes. This is due to the fact
that the anharmonic components of B operators
relate the two-phonon mixing states.

B(E3,3 -0') =7e"' v 'p 'a'+' (1+P )' (5.8) 6. QUADRUPOLE VIBRATION: ONE-LEVEL
CALCULATION

B(E3, 3 '- 0') = 7e",„"v, 'T'. (5.9)

The explicit expression of T is given in Appendix B.
Another observable which cannot be explained in

the harmonic approximation is the quadrupole mo-
ment of the first 2' state. Recently, a nonvanish-
ing quadrupole moment for the first 3 state has
been pointed out in some spherical nuclei. " This
latter fact, as well as the 3 ' transition probability
and the quintuplet splitting are a real stimulus for
our theoretical investigation of quadrupole-octu-
pole anharmonic correlation.

Making use of the standard definition for the
quadrupole-moment operator

(5.10)

one finds by a straightforward calculation the
quadrupole moment of the states

~
l,q) (F,) and

I1 e) (F.)
16/ 1&'2 16@

( li LI I'2014 L) = v2&i, ~i t'ai

Here, P, and P, are determined by the anharmon-
ic components of the wave functions and the multi-
pole operators; their explicit expressions are giv-
en in Appendix B.

In Sec. 2 it was shown that the 3 '-0' transition
is forbidden within the RPA treatment, because of
phonon-number conservation rule. Now, the an-
harmonic structure of Q„and 3 wave function de-
termines a nonvanishing value for the 3 '-0' tran-
sition x, = SS„Z', y = 16Z' X' a = a &+&

1 22 -~ 2 7

&5, &5.
h, =—X,'(g&lx, )', h, =X, —P, (6.1)

one obtains the following expressions for the
ground-state and 2' level energies and the cross-
term amplitude S,:

0 0 2
V=U'+2&5 (hh, —h, &a' —h —'h, h'+h( —' h,

(6.2)

(6.3)

S2= —a' ——
2 (i&, + (4h2-h, )a —2h, a'1 2 1 p 4 4 co

a

(6.4)

In this section we shall apply the previous con-
siderations to the one-level case where the gener-
al formulas which have been written above are
very much simplified.

For the sake of simplicity we shall make the con-
vention of omitting the level indices.

Using the notations

L, =2) 3, (5.11)

One can easily verify that the function U has
three extremum points against the a variation.
Two minima a, are symmetrically distributed
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with respect to a maximum point a,:

2 2

2
(6.5)

The maximum point a, is unphysical since the bo-
son-like commutators for the new phonons are not
satisfied.

It is worth mentioning that the co, value is the
same for the two extremum points a,. Also, the
even-order terms of the expanded HamiltoniM
have the same value for the two values a,; the
odd-orde1 terms correspond1ng to the two mlnl-
ma differ by their sign. Since the odd-order
terms do not correct the energies in the first or-
der of perturbation treatment, we can say that in
the first two orders of perturbation, the energies

are not sensitive to the change of the "a"parame-
ter sign. We shall fix the canonical transformation
by choosing for the "a"parameter the value a,.

The expressions for U, +„S,contain terms due
to both the contraction of the anharmonic terms in
the Hamiltonian and the nonunitarity of the canoni-
cal transformation. In the case of U, the latter
contribution was compensated by a suitable choice
of {& (3.19).

We would like to mention the behavior of the
terms in (6.3) and {6.4) coming from the contrac-
tion of the anharmonicities, which will be denoted
by w2"" and 9,'"", respectively. The 5,"'""term van-
ishes in the extremum points of U. This is simi-
lar to the BCS approximation ease. As for the

w,
'""variation, it has two minima a, and one

maximum a, .

Qq = (1/&2)&&~, Qo = &&o . (6.6)

These relations show the fact that the effects of the anharmonicities on the energies of the two states are
different.

It is now useful to write the quadrupole part of the Hamiltonian (3.17) in the following way:

a = IT+ ~,g C,', C„+S, Q (-1)'[C,', C,', + h. a..]+[A„(C,'C,'C,'), +A„(C,'C,'C, ).+ h.a.]

+(A„[(ctCt),(ctC, ),],+A„[(ctC, ),(C~ C,),j, + h.a.] +A'„[(Ct C, ),(C,C,),],+A2, j [C~(C, C,),j,c,},,
(6.7)

A. =2+h ""(22,rs), A = Q [1+(-1)""j[1+(-1)""+(-1)'"]h&"(22,rs),
r, s= Q2

g h {4) (22 rs ) + 2g [( I)v+3+ ( I )m+ 1]h {4)(22~~)
A„=RE(-I)""+(-I)'"+(-I)""+(-I)"")h„"'("")+2&E(-I)""+(-I) "][1+(-)'"+(-)'"+(-)"]

xh 2&, &,(22msr), (6.6)

A' =+[(-I)""+(-I)""]h' {"")+2+[{-I)"'+l][(-1)"'+ I)h"'(22msr)
A' =+[(-I)"+ (-I)'l [(-I)" + (-I)' )h {,"(,","*, )+2+[1+ (-I) '"""][2(-1)"'+(-I)'"+Ilh,",',(22ms&)

In the one-level case, the above expressions become:

co 1 QP 1
A =2h&'& a'+ —' — A =2h&'& 3a' — —a — h&'&=h&'&(22 11)30 2E a & 31

0 0

A~ = (4h, -h, )«' —4h, ~2 a' —(4h, +eh, )

~„=4{4m,-a,)"-sa,(;—*) *,

0

A'„= 2(4h, -h, )a'+ (4h, + Bh,)

(6 9)

In the above relation we have neglected the terms containing powers of ({d,/2E) greater than 2.
Now, let us consider «[see Zq. (3.5)] as a pure constant. Then the ground-state energy becomes:

U = U'+ {&+ 4 &{{2(&&—I/a) 2+ F5[(4h 2
-h, )« —4(&u2/2E) h, a'+ 2(e~/2E)'h, ] . (6.10)



BOSON- EXPANSION METHOD. . .

One can easily check that

a dU——=S (a) .
10 da

(6.11)

The relation (6.11) shows the fact that the extre-
mum points of U are the same as the zero points
of S,.

In order to see the influence of the canonical
transformation on the anharmonic terms we com-
pared (Table I), in the case j = 15/2, N = 6, 6, 12
(particle number), the coefficients (6.9) corre-
sponding to the following three values of a: (i) a
equal to 1, which leaves the usual Belyaev-Zele-
vinsky expansion unchanged, (ii) a equal to a, giv-
en by Eq. (6.5), and (iii) a equal to one positive
root of the equation

$,(a) =0. (6.12)

To stress the effect of the canonical transforma-
tion we have used a large value for the quadrupole
strength parameter. In the cases considered here,
the Eq. (6.12) has only, one positive root, a'. For
a given N, the data of the second row correspond
to a= a„while those of the third row correspond
to a=a'. The pairing (G =0.23) and quadrupole
strength parameters as well as the &, and co, val-
ues are given in units of single-particle energy,
~Xsi2

The a =1 case indicates clearly that the RPA is
not a good starting approach. In spite of the fact
that the fourth-order terms increase the energy
of phonon, the higher-order terms are of the
same order of magnitude (sometimes larger) with
the diagonal terms. On the other hand, both the
a=a, and a=a' values enable the transfer of the
anharmonicities to the second-order terms. Con-

cerning the a = a, expansion, it is to be noted that
though the smallness of the third- and fourth-order
terms justifies the truncation of the Hamiltonian
at the fourth-order terms, the magnitude of S,
makes necessary the use of a large diagonaliza-
tion space. This trouble is eliminated in the case
of a=a' expansion where S,=O. The magnitude of
S, term in the former case is determined by the
arbitrary way we canceled the phonon-vacuum am-
plitude [see Eq. (3.19)]. Choosing the x term from
the condition that the averaged particle number be
conserved and inserting its expression depending
on "a" in (6.10) one expects that the ground-state
minima do not drastically differ from the solutions
predicted by the Hartree condition (6.12).

7. DISCUSSION

In the framework of the conventional shell-mod-
el Hamiltonian with pairing, quadrupole, and oc-
tupole forces, we attempted to describe some
properties of the low-lying quadrupole-octupole
spectra, namely the level energies, the electro-
magnetic transition probabilities, and the quadru-
pole moments of 2+ and 3 states. The formalism
we adopted is the boson-expansion procedure.
The expansion is performed with respect to the

0 + 0
quasiboson-two-quasipa. rticle operators (A~'l, Ai «)

of rank 2 and 3. In Ref. 33 we truncated the self-
commutators of the quadrupole and octupole-two-
quasiparticle operators by keeping in their ex-
pression only the operators of rank 2 (and positive
parity) and 3 (and negative parity). In this way the
equations of motion of the quadrupole and octupole-
like operators become closed.

Here, we determined the expansion coefficients
so that these truncated commutators be satisfied

TABLE I. The values of the coefficients involved in the Hamiltonian (6.7) are listed for
the case j =~~~. N stands for the number of particles we consider. The values of a different
from 1 correspond to a+ (second row) and the positive solution of Eq. (6.12) (third row).
Here the pairing constant is G =0.23; X2, G, co2 are given in units of the single-particle
enerQ7 (E(512 —A.).

N X& cg2 Sg A2g A40 A22
2

2.714 1.766 0.564 1.361 0.409
6 3 1.11 2.732 -1.235 0.226 -0.035 -0.101

1.702 0 0.299 0.443 0.020

3.394 2.701 0 0 0.716
8 3 0.978 2.805 -1.315 0 0 -0.080

1.667 0 0 0 0.060

2.183
0.089
0.597

3.294
0.106
0.691

1.337
0.265
0.529

1.860
0.266
0.559

2.274
0.130
0.658

3,290
0.106
0.691

1
0.463
0.728

1
0.424
0.677

2.031 0.582
12 3 1.415 2.461 —0.948

1.804 0

—0.729
-0.403
-0.540

-1.505 -0.038
-0.024 —0.168
-0.813 -0.117

0.678
0.032
0.308

0.648
0.261
0.436

0.977
0.203
0.552

1
0.582
0.846

4.375 3.967
12 4 0.699 2.315 -1.037

1.582 0

-2.302
-0.538
-0.761

—6.264
-0.031
-1.241

0.713
-0.224
—0.141

4.226
0.043
0.486

2.657
0.348
0.626

4.888
0.270
0.825

1
0.405
0.616
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in the first order of approximation. This aim is
touched by neglecting the recoupling terms which
are regularly much smaller than the direct ones,
and on the other hand do not affect too much the
fourth-order Hamiltonian.

Reversing the RPA transformation and inserting
the results in the expanded Hamiltonian, one ob-
tains the expression of the fourth-order Hamil-
tonian in terms of phonon operators C2 C2 Q3 'Q3

of collective and noncollective type. The expan-
sion associated with the quasiparticle term
(Q E,ata ) contains a constant term z account-
ing for the presence of the quasiparticles in the
RPA ground state.

Since the quintuplet levels lie in the same ener-
getic region as the two-quasiparticle states, the
terms containing noncollective photons should be
included. This part of the Hamiltonian, H" "", can
be made equivalent to a collective effective Hamil-
tonian' renormalizing the zeroth-, second-, and
third-order terms of II-H""". Thus, we have fi-
nally to study a Hamiltonian of the same structure
as II, which includes only the collective phonons.

As the RPA leads to a slowly converging series,
the following difficulties necessarily appear: (a)
We have to include more higher terms to make
the truncation justifiable. This fact would very
much complicate the problem if we aimed to use
the model for pra. ctica, l purposes. (b) The solu-
tions given by the diagonalization procedure con-
verge very slowly with respect to the dimension
of the diagonalization space. On the other hand,
the dimension of the diagonalization space asso-
ciated with the quadrupole and octupole phonons

is rapidly increasing when the total number of
phonons is enhanced.

We tried to avoid such a difficulty by changing
the expansion base by a linear and canonical trans-
formation. Ordering the Hamiltonian with respect
to the vacuum of the new phonons, the ground-
state energy as well as the second-order terms
will be renormalized; that is to say, the zero-point
oscillation energy and the "size" of phonon are
changed.

Fixing the canonical transformation either by a
minimum condition for the ground-state energy or
by the Hartree condition, the above-mentioned ef-
fects are both directed to depressing the values of
the anharmonic terms. Ignoring the presence of
the quasiparticles in the ground state (a'= ct) the
two ways of fixing the transformation coincide,
but they should be slightly different if the condi-
tion for the particle-number conservation is im-
posed.

Another way to fix the canonical transformation
is to force the quadrupole moment of the 2' state,
which is very sensitive to the change of the an-

harmonicity strength, to be stable. It is then ex-
pected that the anharmonic terms, at least those
of quadrupole nature which are essentially deter-
mined by the correlations implying the quadrupole-
moment operator, are consequently lowered.

Keeping in mind the fact that the anharmonic
terms associated with the new representation are
small in comparison with the energy of the "cor-
related" phonons we treated (for a first orienta-
tion) perturbatively, the quintuplet level energies,
the transition probabilities (E2, 2' -0'), (E3, 3
-0'), (E3, 3 '-0') as well as the static quadru-
pole moments of the first vibrational states.

The concrete results of Ref. 33 indicate that the
quadrupole-like anharmonicities are dominant in
determining the quintuplet levels ordering and
their relative spacing. Starting from this remark
let us do a rough estimation of the E~~ value [Eq.
(4.6)] keeping in the expressions of K„K„K,
only the quadrupole-type terms and considering
them of the same order of magnitude. Denoting by
h, ', their common value one obtains

E' =-3m ', [v 5 W(32~2;32)

+ ~7(-1)~+'W(3343; 32)] . ('I. ].)

Since the fourth-order term is expected to be pos-
itive, the order predicted by ('l. 1) is 1,2, 5, 3,
4 which is the same as that given by the similar
terms in a linearization-procedure formalism. "
This order is also predicted by the phenomenolog-
ical model. "

In Sec. 6 we tested the behavior of the anhar-
monic terms at a canonical transformation by a
"single j"calculation. The estimation has been
done for a large quadrupole strength parameter
and different values for the particle number. We
listed the coefficients of the anharmonic terms
for the following three values of the independent
parameter characterizing the canonical transfor-
mation of the quadrupole-phonon operators a:
(i) a equals 1 which corresponds to the usual
Belyaev-Zelevinsky expansion in a RPA base.
(ii) a equal to the a, value, which minimizes the
anharmonic correction of the ground-state energy.
That situation corresponds to the restriction (3.19)
for the constant K generated by the expansion of
the quasiparticle term.
(iii) a equal to the a' value, which minimizes the
ground-state energy. Here the a term was con-
sidered as a pure constant. The latter two cases
provide anharmonic terms much smaller than the
harmonic terms. The case (iii) is more favorable
than the (ii) case, because of dangerous graphs
cancellation.

A computational program containing the H, di-
agonalization, the static-quadrupole-moment cal-
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culation (for 2' and 3 ) as well as the transition
probabilities (E2; 2'-0'), (ES; 3 0'), (ES; 3 '
-0') is in progress

One of the authors (A.A.H. ) wishes to thank Dr.
T. Kishimoto for interesting discussion concern-
ing this subject.

APPENDIX A

In this Appendix we give the explicit expressions for the shifted zero-point energy U, the correlated
RPA energies +2, us, and for the coefficients Sz, '.

f7= U'+2v 5+(-1)""[2(-l)"+(-1)'"+(-1)"][A[,'2&(22msr)+h[ &2(33msr)]

+ 4 0 V g ((-1) '""[h[;](23m lr)+h [,'&(32mlr)]+ (-1)"[h '„"(32lmr) —h [,'] (23lmr)] j
+ g (-1)""(2WS[h [;&(;;.„;„)+h [;&{;;:;„)]+WVh &;&(;;.";,,))+s+5g, &, + Vg, ~„ {Al)

ar =-'( ' +a' ) + g (2/v 5 ([1+(-1)"][(-1)'+»+(-1)""3]+[1+(-1)"'][1+3(-l)"'"j)h&'&,(22msr)

+ (4~V'~)(-1)"[1+(-1)""][ h,",',(32msr) + (-1)'"h &'&,(23smr)]

+(»~&»)[(-))" '+(H[(-()'-)]»[.'(»»ms')+[(-()"'+(-))" ]»[&(»» )])
+ Q (~/5) ([(-1)"+(-1)'][(-1)"'+(-»"]+4{-1)"'jh".'{':"'")

fftam'S'

"(~/»)(-()"[(-()'+(-) )"]» [l'(l.*:l.)), (A2)

(u, = —,
' (a'„+a,', ) ~, + Q ((2)] V/V)[(-1)" + (-1)'][(-1) "+1]h "& (32m )

+ (2»]V/V) [(-1)'-1][1+(-1)"'"]h [24](23msr)+(2)]5/V) [3(-1) '"'"'+1][2(-1)"'+(-1)""+1]h,"&,(33msr)

+ (4&V/V) [1+(-1)""](-1)""h['] (23msr)+(2»[V/V)(-1)" "[(-1)'-1] h ~l(32m«)j

+] Z(~&[[(-)) +(-))'][(-»)"'+(-()"]+»(-() "]»l",.(ll.":.)
+ W) (-()' [(-1)"+ (-( ) '] » [» (]] )..)), (AS)

8,(Pu„&u„X„X„a,, a, , a, , a, )(+) (") (+) (-)

=am»a„(o, +Q ([4(-1)"' + 3(-1)""+3(-1)"""+2(-l) "+(-1) "+2(-1)""+l]()]5/5) h,", (22msr)

+ (wV/10)(-l) "[1+(-1)'"]h [;,',(,".„l, )+(~5/5)(-l) '"'[{-1)+(-1)'+(-1)" + (-1)"jhp(:2"', )

i [- ""+ — "'1[- ""+— "'1 "' » ( ~/ — "[ — ™+»+j "'»
+ (2~//5) {-1)"'""[1+{-1)"']h[24& (23msr) +()]V/5) [(-1)"+ (-1) ] [(-1)"'+1]h[4~ (32msr)],

(A4)
p p (0 (-) (+) (-)~

»Ss((»)2»c»)3» X2» Xy a2» ag» ay» as )

=a a ~ +g ((~V/14X-1)"'[1+(-1)"' ']h '"(""'.)+[(-1)" (-1)*+(-1)"'~(-1)"](-1)""(~5/V)h'"(""f )j

g((2'/V)(-1) "[1+(-1)""]h,",&(23msr)+(~V/V)[(-)""+1] f(-1) -1]h~4~&(32msr)

+(~/ )[(-1)""+][(- )"+(- )"] '"( )+( ~/ )(-1)"'""[1+(-1)'"]'"( 2 ~ )

+()I5/V)[3(-1)"' ""+3(-1)""+4(-l)™+'+2(-l)"+2(-l)""+(-1)"+1]h[2'],(33msr)).

(A5)

APPENDIX 8

This Appendix contains the anharmonic factors which characterize the 2+ 0" ( p, ), 3 0+ (p, ),
3 0 (T) transition probabilities and the 2 ( 82) and 3 (Sg) Quadrupole llloments:

p =p -' q" 22 ms' -j. '+ -1 +2-1 "+'+' -1'+"+'

+(WV/5) [(-1)"'"'+(-1) '""]Q,"(23, msr) +(v V/vY) [(-1)"+ (-1)"'""]Q,"(32, msr))
+MR r[c,', (), (»2, rs)+ o,', (», (8», rs)]),

P pP I ] t'+1 j + ] fw+l qA 23 ~g~ + t'+m+ f'+g+nt+3 QA 32

+ [{-1)"+2(-1)"'""+(-1)"'""]b»~V)e."(33 )] +&4.e'(32 )), (a2)
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V' = Q qs(32, ms)+E,'(p, + Q ((-1)""[1+(-1) "]q,"{23,msr)

+(V5/v'T)[(-1)" +2(-1)"+ "+(-1)""' ] q,"(33,msr)j}
+ ~a g 3Z'W(2233 J'3)g[»"'g[(-1)""+(-1) "][q "(23.msr)+ q"(32 msr)j

+&a a"&"g[(-1) "+(-1)-"]q"{22 msr)

+2~,(33) g D,',[5„,+vY at'W(3333; J'2)] g[(-1)""+(-1)""]q,"(», msr), (B3)
gs =O, 2, 4

e, = g [(-1)™+1+(-1)"']q,'(22, ms)

s (:,',&2(2 [)+ +2 [(-()"'+(-()""""s(-()"'+8(-()""+8[(-1)"" 1] [1+(-1)"'])8(2222; 28)]

x q,"(22, msr)+ (2)[v/2(5 ) [{-1)""-(-1)"'"]q,"(as,msr)+(2)] V/8(5 )[(-1)"' "+(-1)"]q,"(sa,msr))

+ 8,', Q (88 (-1)"'[1+(-1)" '"'] 18,"(88, mss) ~ 28 28 )S(2828; 82)

&&{[(-1)""+(-1)""]q,"(23, msr) + [1+(-1) '"""]q,"(32, msr) j
+(C,',)'10 W(2222; 22)Q[(-1) "+(-1)'"]qs(22, ms)

+ (C' )'10 W(2323 32)Q f(-1)"+ (-1)']q '(33 ms)

[2, =(rSlrV )Z[(-1)".(-1)']q.'(», m. )

+ 2 (:.'. P ([2(-1) "+(-1)""""+(-1)'"] (2."(22, mss) + [1 + (-1)""][(-1)"""—1]

x 5 W(S322, 23)q,"(33,msr)+ {1/~36 (35W(3333, 22)[(-1)"'""—1] +12(-1) '""
+ 5(-1)'+V(-l) +"+')q"(23, msr)+ (lv 35)(35W(3333, 22)[(-1)"+ (-1) ""]
+12( ))"'"'+l(-l)' +l(-I)']8)"(82 mss))

+ (C,', )' g (2S W(22SS, 2S)[(-1) "+(-1)"']q,'(22, ms)

+VW(2332, 33)[(-l) +(-1)'j q2s(33, ms)j .
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