Mass and Nuclear Charge Distributions from the Spontaneous Fission of ²⁵⁴Fm⁺

R. M. Harbour, K. W. MacMurdo, D. E. Troutner, * and M. V. Hoehn‡

Savannah River Laboratory, E. I. du Pont de Nemours and Company, Aiken, South Carolina 29801 (Received 7 July 1972: revised manuscript received 28 June 1973)

The relative fission yields of 20 mass chains from 254 Fm spontaneous fission were measured by direct high-resolution γ -ray spectroscopy of the gross fission products. Reflected yields were calculated based on a prompt-neutron fission yield of 3.94; the absolute yields were determined by requiring the sum of all yields to be 200%. A peak-to-valley ratio for the mass-yield curve of ≥ 18 was determined radiochemically by measuring the cumulative yields of 140 Ba and 127 Sb.

 254 Fm was produced by irradiating 253 Es in a high-flux reactor and then chemically separating the 3.24-h 254 Fm from its 39.3-h 254 Es^m parent. An aluminum "catcher" foil was used to collect the 254 Fm fission products. Nuclear charge distribution studies included measurements of the independent yields of 140 La, 135 Xe, 134 I, and 132 I relative to their cumulative yields from direct γ -ray-spectroscopy data.

INTRODUCTION

The fragment mass distributions for ²⁵⁷Fm spontaneous fission $(SF)^{1,2}$ and for ²⁵⁷Fm thermal-neutron-induced fission $(n_{th}, f)^2$ derived from kineticenergy measurements are markedly more symmetric than any previously reported mass distributions for low-energy fission of actinide nuclides. The radiochemical determination of the ²⁵⁶Fm(SF) mass-yield curve³ showed definite asymmetric fission, but with a peak-to-valley ratio of only 12. Previous kinetic-energy studies⁴ of the fragment mass distribution for ²⁵⁴Fm(SF) showed asymmetric fission. Flynn *et al.*³ are now investigating the mass distribution for ²⁵⁷Fm(n_{th} , f) by the radiochemical method.

Radiochemical measurements of fission-product mass distributions eliminate both the uncertainty in mass resolution and the need for a mass-dependent correction for neutrons emitted by the fragments that are inherent in mass distributions derived from kinetic-energy measurements on coincident fission fragments. In this work, the fissionproduct mass distribution for ²⁵⁴Fm(SF) was determined by direct high-resolution γ -ray spectroscopy of the gross fission products⁵⁻⁷ to continue the study of trends in mass-distribution parameters for fissionable fermium isotopes. The ratio of the mass yield of ¹⁴⁰Ba to ¹²⁷Sb was measured radiochemically to estimate the peak-to-valley ratio of the ²⁵⁴Fm(SF) mass-yield curve. Nuclear charge distribution studies included measurements of the independent yields of ¹⁴⁰La, ¹³⁵Xe, ¹³⁴I, and ¹³²I relative to their cumulative yields from direct γ -ray-spectroscopy data for the gross fission products as a function of time after fission.

EXPERIMENTAL AND CALCULATIONS

About 15 μ g of ²⁵³Es was irradiated in a quartz vial in the Savannah River Plant high flux reactor for 36 h. After the ²⁵⁴Fm had grown into equilibrium with its 39.3-h ²⁵⁴Es^m parent, fermium was separated from einsteinium by cation-exchange elution development chromatography with ammonium α hydroxyisobutyrate.⁸ The fermium fraction was collected on a platinum plate, dried, and flamed. An aluminum-catcher-foil technique⁹ was used to collect the fission fragments from the 3.24-h ²⁵⁴Fm source. Two catcher foils were exposed, the first for direct γ -ray analysis and the second for radiochemical analysis.

The first catcher foil, exposed for 4.48 h, was analyzed for γ activities as a function of time after exposure by a 45-cm³ Canberra Ge(Li) detector with a resolution of 2.6 keV (full width at half maximum) at 1332.5 keV. With the sample in the same position, γ spectra were recorded from a few minutes to a few months after exposure over an energy range of 0 to 1.5 MeV. Areas of photopeaks were determined by visually subtracting the Compton background from the total counts. The photopeak-area data for each nuclide were consistent with each nuclide's appropriate half-life. For the ¹⁴⁴Ce and ¹⁰⁶Ru measurements, a Compton suppression spectrometer consisting of a 35-cm³ Ge(Li) detector and a $12.7 - \times 15.2$ -cm shield was used. The photopeak-to-Compton ratio was 190 for the 661.6-keV 137 Cs γ ray.

Because a standard fission system was not used as a reference, it was necessary to determine the detection efficiency of the Ge(Li) detector as a function of energy. The detector was calibrated

8

with the following standard sources: ²⁴¹Am, ¹³⁹Ce, ¹⁰⁹Cd, ²⁰³Hg, ²²Na, ⁸⁵Kr, ¹³⁷Cs, ⁵⁴Mn, ⁸⁸Y, and ⁹⁴Nb. Relative yields could then be calculated because the abundances of the γ rays analyzed were known (see Table I).¹⁰

Consider a fission-product decay chain

 $F \rightarrow 1 \rightarrow 2$,

_

where F is the ²⁵⁴Fm spontaneous fission source, 1 is the effective first member of the chain and includes all precursors of 2, and 2 is the member of the chain whose γ radioactivity is measured. For the chains considered here, half-lives of precursors of 1 are very short so that atoms of 1 are formed at the time of fission. Under these conditions

$$N_1^T = f \lambda_{F1} N_F^{\circ} (e^{-\lambda_F T} - e^{-\lambda_1 T}) / (\lambda_1 - \lambda_F)$$
⁽²⁾

and

$$N_{2}^{T} = f\lambda_{F1}\lambda_{1}N_{F}^{\circ} \left\{ e^{-\lambda_{F}T} / \left[(\lambda_{1} - \lambda_{F})(\lambda_{2} - \lambda_{F}) \right] + e^{-\lambda_{1}T} / \left[(\lambda_{F} - \lambda_{1})(\lambda_{2} - \lambda_{1}) \right] + e^{-\lambda_{2}T} / \left[\lambda_{F} - \lambda_{2})(\lambda_{1} - \lambda_{2}) \right] \right\} + f\lambda_{F2}N_{F}^{\circ} \left(e^{-\lambda_{F}T} - e^{-\lambda_{2}T} / (\lambda_{2} - \lambda_{F}) \right),$$

TABLE I. γ rays analyzed.

Nuclide	Energy (keV)	Abundance
2.8-h ⁸⁸ Kr	196.1	$0.35 \pm 0.04^{a, b}$
65-day ⁹⁵ Zr-35-day ⁹⁵ Nb	765 8 (⁹⁵ Nb)	0.99 ± 0.03 ^a
$17-h^{97}Zr-72-min^{97}Nb$	743.4; 658.1	$0.94 \pm 0.05; 0.99 \pm 0.03^{a,c}$
$67-h^{99}Mo-6-h^{99}Tc^{m}$	140.3 (⁹⁹ Tc ^m)	$0.90 \pm 0.05^{a,d}$
39.6-day ¹⁰³ Ru	497.1	0.90 ± 0.05^{a} , e
4.44-h ¹⁰⁵ Ru	724.2	0.48 ± 0.05^{f} , g
367-day ¹⁰⁶ Ru	621.8	0.098 ± 0.006^{a} , f
3.2-h ¹¹² Ag	617.4	0.41 ± 0.02^{a} , h
8.05-day ¹³¹ I	364.5	0.82 ± 0.05^{a} , f
78-h ¹³² Te-2.3-h ¹³² I	228.2 (¹³² Te)	0.88 ± 0.09^{f}
21-h ¹³³ I	529.9	0.90 ± 0.05^{f} , i
6.7-h ¹³⁵ I-9.2-h ¹³⁵ Xe	1260.5 (¹³⁵ I)	0.35 ± 0.02^{a} , f
9.5-min ¹³⁹ Cs-82.9-min ¹³⁹ Ba 12.8-day ¹⁴⁰ Ba-40.2-h ¹⁴⁰ La 33-day ¹⁴¹ Ce 11-min ¹⁴² Ba-92.4-min ¹⁴² La	165.8 (¹³⁹ Ba) 487.1 (¹⁴⁰ La) 145.4 641.2 (¹⁴² La)	$\begin{array}{c} 0.22 \pm 0.02 \ {\rm f} \\ 0.465 \pm 0.014 \ {\rm f}, {\rm j} \\ 0.48 \pm 0.03 \ {\rm a}, {\rm f}, {\rm k} \\ 0.48 \pm 0.04 \ {\rm f}, 1 \end{array}$
33-h ¹⁴³ Ce	293.2	0.46 ± 0.04 f, k, m
284-day ¹⁴⁴ Ce	133.5	0.11 ± 0.01 a, f, k, n, o
11.1-day ¹⁴⁷ Nd	91.0	0.28 ± 0.02 a, f, k
1.8-h ¹⁴⁹ Nd	211.3	0.27 ± 0.03 a, k

^a M. A. Wakat, Nucl. Data A8, 445 (1971).

^b H. Lycklama, N. Archer, and T. Kennett, Can. J. Phys. <u>47</u>, 393 (1969).

^c B. Arad, W. Prestwick, A. Lopez, and K. Fritze, Can. J. Phys. <u>48</u>, 1378 (1970).

^dT. Jones and H. Griffin, Radiochem. Radioanal. Lett. 4, 381 (1970).

^e H. Pettersson, S. Antman, and Y. Gruditz, Z. Phys. 233, 260 (1970).

^f R. Gunnink, J. Niday, R. Anderson, and R. Meyer, University of California Radiation Laboratory Report No. UCID-15439, 1969 (unpublished).

^gB. Saraf, P. Harihar, and R. Jambunathan, Phys. Rev. <u>118</u>, 1289 (1960).

^h J. MacDonald and H. Sharma, Nucl. Phys. A156, 321 (1970).

ⁱ R. Saxena and H. Sharma, Nucl. Phys. <u>A171</u>, 593 (1971).

^j G. Ardisson and C. Marsol, C. R. Acad. Sci. B 270, 1249 (1970).

^kZ. G. Gritchenko, T. P. Makarova, Yu Ts. Oganesyan, Yu E. Penionzhkevich, and A. V.

Stepanov, Yad. Fiz. 10, 929 (1969) [Transl.: Sov. J. Nucl. Phys. 10, 536 (1970)].

¹ J. Larson, W. Talbert, and J. McConnell, Phys. Rev. C 3, 1372 (1971).

^mM. A. Ludington, D. E. Raeside, J. J. Reidy, and M. L. Wiedenbeck, Phys. Rev. C <u>4</u>, 647 (1971).

ⁿ V. R. Potnis, G. P. Agin, and C. E. Mandeville, J. Phys. Soc. Jap. <u>29</u>, 539 (1970).

^o A. Antilla and M. Piiparinen, Z. Phys. <u>237</u>, 126 (1970).

(1)

(3)

where N_F° is the number of atoms of *F* at the beginning of exposure; N_1^T , N_2^T are the atoms of 1 and 2 at the end of exposure; *T* is the duration of exposure; λ_F , λ_1 , and λ_2 are decay constants of nuclides *F*, 1, and 2; λ_{F1} and λ_{F2} are partial decay constants for fission of *F* leading to nuclide 1 and 2; *f* is the fraction of fission products collected in the catcher foil.

The number of counts of 2, A_2 , observed (corrected for dead time) during some counting period after the removal of the catcher foil from the source is

$$A_{2}/\epsilon a = N_{1}^{T} \left[\lambda_{2} (e^{-\lambda_{1}\tau - \lambda_{1}t} - e^{-\lambda_{1}\tau}) - \lambda_{1} (e^{-\lambda_{2}\tau - \lambda_{2}t} - e^{-\lambda_{2}\tau}) \right] / (\lambda_{1} - \lambda_{2}) - N_{2}^{T} (e^{-\lambda_{2}\tau - \lambda_{2}t} - e^{-\lambda_{2}\tau}),$$
(4)

where ϵ is the counting efficiency, *a* is the fraction of decays leading to the observed γ ray, τ is the time interval between the end of exposure and the beginning of the count, and *t* is the duration of the count. Expressions for N_1^T and N_2^T from Eqs. (2) and (3) can be substituted into Eq. (4) so that A_2 is a function of $(f\lambda_{F1}N_F^\circ)$ and $(f\lambda_{F2}N_F^\circ)$.

For some β -decay mass chains (A = 132, 134, 135, and 140), counts were taken while there were still significant amounts of both 1 and 2 present. The ratio N_2^T/N_1^T for a given chain was calculated from Eq. (4) using results from several γ counts. This ratio was then used with Eqs. (2) and (3) to calculate the value of $\lambda_{F_2}/\lambda_{F_1}$ as in Ref. 11. Because λ_{F_1} is proportional to the rate of formation of all precursors of and including 1, and λ_{F_2} is proportional to the independent rate of formation of 2, the fractional independent yield of 2 is $\lambda_{F_2}/(\lambda_{F_1} + \lambda_{F_2})$. For A = 132, 134, and 135, a correction has also been made based on estimates of the independent yields for the third member of the chain (see Results and Discussion).

For other chains, values of τ were such that decay of 1 was essentially complete or 2 was in transient equilibrium with 1. For those cases, the ratio $\lambda_{F1}/\lambda_{F2}$ was estimated (see Results and Discussion), and the value $f(\lambda_{F1} + \lambda_{F2})N_F^\circ$ was calculated for each chain. Because f and N_F° were not measured, results are expressed as the total number of atoms collected during the exposure.

A second catcher foil was exposed for the next 4.25 h and dissolved in 6 M HNO₃. Barium, with standard carrier present, was purified, isolated as BaCrO₄,¹² and β counted with a stilbene counter to determine ¹⁴⁰Ba. Antimony, with standard carrier present, was purified,¹³ isolated as Sb₂S₃, and

TABLE II. Fractional independent yields of 132 I, 134 I, 135 Xe, and 140 La relative to their cumulative yields.

Nuclide	N_2^T/N_1^T	$\lambda_{F2}/\lambda_{F1}$	Independent yield $\lambda_{F2}/(\lambda_{F1} + \lambda_{F2})$
132I	0.14 ± 0.01	0.25 ± 0.02	0.20 ± 0.02
^{134}I	3.14 ± 0.25	$\textbf{1.38} \pm \textbf{0.20}$	$0.58^{+0.03}_{-0.04}$
¹³⁵ Xe	0.68 ± 0.01	0.39 ± 0.01	0.28 ± 0.01
¹⁴⁰ La	0.028 ± 0.009	0.023 ± 0.009	0.023 ± 0.009

 β counted with a low-background scintillation counter to determine ¹²⁷Sb. An identical procedure was followed for a ²³⁵U($n_{\rm th}$, f) standard reference system for which cumulative yields of ¹⁴⁰Ba and ¹²⁷Sb are known.¹⁴ The ratio of ¹⁴⁰Ba to ¹²⁷Sb mass yields for ²⁵⁴Fm(SF) was calculated from

$$\frac{{}^{140}Y_{\rm Fm}}{{}^{127}Y_{\rm Fm}} = \frac{{}^{140}A_{\rm Fm}}{{}^{127}A_{\rm L}} \frac{{}^{140}Y_{\rm U}}{{}^{127}A_{\rm Em}},$$
(5)

where Y represents cumulative yield, and A represents specific activity in counts per minute per milligram of sample.

RESULTS AND DISCUSSION

The nuclear charge distribution results are presented in Table II. Errors shown for values of N_2^T/N_1^T are standard deviations for measurements for ¹³²I, ¹³⁵Xe, and ¹⁴⁰La. The calculation for ¹³⁴I is sensitive to the values of the half-lives of ¹³⁴I and ¹³⁴Te because they differ by only 10 min.¹¹ The additional uncertainty introduced in the value of N_2^T/N_1^T by an uncertainty of ± 1 min in each of the half-lives is ± 0.15 . The total uncertainty is taken to be the square root of the sum of the squares of these uncertainties and the standard deviation, ± 0.12 , of the measurement. The uncertainties in the values of $\lambda_{F2}/\lambda_{F1}$ and $\lambda_{F2}/(\lambda_{F1}+\lambda_{F2})$ are calculated from those shown for N_2^T/N_1^T . For all of these measurements, identification of the nuclides is based entirely on the energy of the λ ray measured. Neither half-lives nor chemical separations could be used to identify the γ peaks.

The large values of the ratio $\lambda_{F2}/(\lambda_{F1}+\lambda_{F2})$ for ¹³²I, ¹³⁴I, and ¹³⁵Xe suggest that there may be significant independent yields of the next members of the chains, ¹³²Xe, ¹³⁴Xe, and ¹³⁵Cs. Assuming the Gaussian width parameter σ for fission of ²⁵⁴Fm is 0.56 charge unit, as given by Wahl *et al.*¹⁴ for ²³⁵U fission, the fractional independent yields of ¹³²Xe, ¹³⁴Xe, and ¹³⁵Cs estimated from the results of this work are ~0.005, ~0.06, and ~0.01, respectively. If the odd-even effect proposed by those workers applies to these chains, the yields of ¹³²Xe and ¹³⁴Xe may be higher and the yield of ¹³⁵Cs lower. The existence of independent yields of these nuclides would also lower the calculated fractional cumulative yields of 132 Te, 134 Te, and 135 I. Using the results of this work given in the last column of Table II, and the estimated independent yields above, the fractional cumulative yields of 132 Te, 134 Te, 135 I, and 140 Ba are found to be 0.80 ± 0.02 , 0.40 ± 0.04 , 0.71 ± 0.01 , and 0.977 ± 0.009 , respectively.

Values of Z_{p} , the most probable charge for a fission product for a given mass chain, were calculated using the method of Wahl et al.14 and the fractional cumulative yields given above. The value of σ was taken as 0.56 charge unit. The values of Z_{b} for A = 132, 134, 135, and 140 are 1.0, 0.85, 0.70, and 1.0, respectively, greater than the values for the same chains calculated from yields of the same nuclides from ²³⁵U fission.¹⁴ (The fractional cumulative yield of ¹⁴⁰Xe from ²³⁵U was used as a reference rather than that of ¹⁴⁰Ba because the latter appears to be inconsistent with yields of other isotopes of barium.) The average difference is 0.9 charge unit. About 0.5 unit of this difference is due to the difference in charge-to-mass ratios, Z_f/A_f , of the fissioning nuclei. The rest may be due to a greater number of neutrons emitted per fragment for 254 Fm fission, or Z, may fall closer to unchanged charge distribution (UCD) for ²⁵⁴Fm-(SF). The value of 0.9 was used with reported

FIG. 1. Probability plot of fractional cumulative yields of 134 Te, 136 Xe, 138 Xe, and 140 Ba as a function of $(Z-Z_{UCD})$.

TABLE III.	Summary	of	mass	yields	requiring	inde-
pendent-yield	correction	1.				

Nuclide	Fractional independent yield	Relative yield Uncorrected for independent yield	, 10 ⁷ atoms ^a Corrected for independent yield	Normalized yield ^b
⁹⁷ Nb ¹¹² Ag ¹³² Te ¹³⁵ Xe ¹³⁵ Xe ¹³⁹ Ba ¹⁴⁰ La	$\begin{array}{c} 0.01 \ c \\ 0.10 \ c \\ 0.79 \ d, e \\ 0.28 \ d \\ 0.25 \ c \\ 0.023 \ d \end{array}$	1.99 ± 0.07 9.75 ± 0.21 3.95 ± 0.07 5.20 ± 0.09 6.47 ± 0.06 8.24 ± 0.65	2.01 ± 0.07 10.82 ± 0.23 4.94 ± 0.09 7.25 ± 0.08 8.64 ± 0.10 8.43 ± 0.65	$1.19 \pm 0.066.42 \pm 0.362.93 \pm 0.324.30 \pm 0.265.13 \pm 0.495.00 \pm 0.42$

^a Total number of atoms collected during exposure.

^b Uncertainty represents the square root of the sum of the squares of γ -ray abundance, efficiency, and counting uncertainties.

^c Estimated value.

^d Measured value.

^e Fractional cumulative yield.

fractional yields from ²³⁵U fission to predict those fractional yields which were necessary for chain yield calculations for A = 139 and 142. The small correction for A = 97 was made by assuming that Z_p for complementary mass A = 153 was 60.8, a value 0.9 charge unit higher than the one given by

TABLE IV. Summary of mass yields requiring no independent-yield corrections.

Nuclide	Number of determinations	Relative yield (10 ⁷ atoms) ^a	Normalized yield (%) ^b
⁸⁸ Kr	3	0.12 ± 0.01	0.08 ± 0.08
⁹⁵ Nb	2	0.87 ± 0.03	0.52 ± 0.02
$^{99}\mathrm{Te}^{m}$	7	2.60 ± 0.05	1.54 ± 0.11
¹⁰³ Ru	5	5.41 ± 0.20	3.21 ± 0.22
¹⁰⁵ Ru	7	8.27 ± 0.17	4.91 ± 0.53
¹⁰⁶ Ru	1	7.89	4.68 ± 0.56
^{127}Sb	1	0.45	0.27 ± 0.06 ^c
¹³¹ I d	3	3.92 ± 0.13	2.33 ± 0.17
¹³³ I e	3	8.00 ± 0.26	4.74 ± 0.32
¹⁴¹ Ce	7	8.20 ± 0.20	4.87 ± 0.38
143 Ce	11	7.75 ± 0.16	4.60 ± 0.46
¹⁴⁴ Ce	1	7.21	4.28 ± 0.60
¹⁴⁷ Nd	2	6.00 ± 0.33	3.56 ± 0.35
¹⁴⁹ Nd	5	5.03 ± 0.43	2.98 ± 0.43

^a Total number of atoms collected during exposure.

 $^{\rm b}$ Uncertainty represents the square root of the sum of the squares of $\gamma\text{-ray}$ abundance, efficiency, and counting uncertainties.

 $^{\rm c}$ Uncertainty estimated on basis of radiochemical analysis of $^{127}{\rm Sb}$ (see text).

^d Fraction of chain passing through 131 Te^m estimated to be 0.35.

^e Fraction of chain passing through 133 Te^{*m*} estimated to be 0.35.

Wahl *et al.*¹⁴ for ²³⁵U($n_{\rm th}$, f). The corresponding Z_p for A = 97 is 39.2. The correction for A = 112 was estimated from the previously measured fractional yield of ¹¹²Ag from ²⁵²Cf(SF).⁹

Figure 1 is a probability plot of fractional cumulative yields as a function of $(Z - Z_{UCD})$. Selected data^{11, 15, 16} were available for ¹³⁴Te, ¹³⁶Xe, ¹³⁸Xe, and ¹⁴⁰Ba from thermal-neutron-induced fission of 233 U, 235 U, 245 Cm, and 249 Cf, and from spontaneous fission of ^{252}Cf and ^{254}Fm . Values of A', the average mass number of the fragments which decay by prompt-neutron emission to the product of mass number A, were estimated for published values of A' as a function of $A^{17, 18}$ for 235 U and 252 Cf and $\overline{\nu}_p$, the average number of prompt neutrons emitted per fragment.¹⁹⁻²¹ The increase in $\overline{\nu}_{p}$ compared to ²⁵²Cf(SF) was equally divided between light and heavy fragments. The line shown was proposed by Wahl et al.,¹⁴ for which $Z_p = A'(Z_f / A_f)$ -0.45 for heavy peak products and for which the width parameter, σ , of the curve is 0.56 charge unit. The points for ²⁵⁴Fm and ²⁵²Cf fission appear to be in closer agreement with those from ²⁴⁵Cm and ²⁴⁹Cf fission than with those from ²³³U and ²³⁵U fission.

The mass distribution results are listed in Tables III and IV. Uncertainties in the relative yields are standard deviations of multiple determinations and reflect the precision of the γ -ray spectroscopy. If uncertainties in γ -ray detection efficiencies and γ -ray abundances are included, the errors range from ±5 to ±15%. The ratio $^{140} Y_{\rm Fm} / ^{127} Y_{\rm Fm}$ [see Eq. (5)] was found to be 18. Reflected yields were calculated based on $\overline{\nu}_{\rho}$ for $^{254} \rm Fm(SF)$ of 3.94.²⁰

The relative numbers of atoms in Tables III and IV were converted to absolute yields by requiring the sum of all yields to be 200%. Unmeasured yields were determined by interpolation on a smooth curve through the measured points. The radiochemical results of Flynn *et al.*³ for ²⁵⁶Fm-(SF) are plotted for comparison with this work in Fig. 2. The shapes of the heavy-mass peaks are nearly identical. The light-mass peak for ²⁵⁶Fm is shifted towards heavier masses to conserve mass.

Values of ν_p for any given chain may differ from $\overline{\nu}_p$. Bowman *et al.*¹⁸ have shown that ν_p near the wings of the mass distribution curve may be as

†The information contained in this article was developed

during the course of work under contract AT(07-2)-1

*Atomic Energy Commission Faculty Research Partici-

pant. Permanent address: University of Missouri,

with the U.S. Atomic Energy Commission.

Columbia, Missouri 65201.

[‡]Undergraduate Research Trainee. Present address: Auburn University, Auburn, Alabama 36830.

- ¹J. P. Balagna, G. P. Ford, D. C. Hoffman, and J. D. Knight, Phys. Rev. Lett. <u>26</u>, 145 (1971).
- ²W. John, E. K. Hulet, R. W. Lougheed, and J. J. Wesolowski, Phys. Rev. Lett. <u>27</u>, 45 (1971).

8

(tubill) segu (1.0 (1.0 (1.0) (1.

FIG. 2. $^{254}{\rm Fm}({\rm SF})$ and $^{256}{\rm Fm}({\rm SF})$ radiochemical mass-yield curves.

much as one neutron higher than the average. If this is also true for ²⁵⁴Fm, the heavy-mass points reflected from yields for A = 88, 95, 97, and 99 would be shifted to the left accordingly. This would have little effect on the shape of the curve or the normalization to 200% because these yields are small compared to those in the peaks. The upper limit for the peak-to-valley ratio for ²⁵⁴Fm-(SF) (~18) is greater than that for 256 Fm(SF) (~12) but is low compared to that for $^{252}Cf(SF)$ (~750). 22 These results support the evidence for lower peakto-valley ratios as the mass of the fissionable fermium isotopes increases. However, for ²⁵⁴Fm(SF) and ²⁵⁶Fm(SF), the fission-product mass distribution is definitely asymmetric, and the lowering of the peak-to-valley ratio appears to be the result of the light-mass peak of about constant width shifting towards heavier masses rather than the onset of a symmetric mode of fission.

ACKNOWLEDGMENT

The authors wish to thank A. L. Boni for his assistance in counting the ¹⁴⁴Ce and ¹⁰⁶Ru γ activities.

- ³K. F. Flynn, E. P. Horwitz, C. A. Bloomquist, R. F. Barnes, R. K. Sjoblom, P. R. Fields, and L. E. Glendenin, Phys. Rev. C <u>5</u>, 1725 (1972).
- ⁴R. Brandt, S. G. Thompson, R. C. Gatti, and L. Phillips, Phys. Rev. <u>131</u>, 2617 (1963).
- ⁵G. E. Gordon, J. W. Harvey, and H. Nakahara, Nucleonics <u>24</u>, 62 (1966).
- ⁶R. M. Harbour, M. Eichor, and D. E. Troutner, Radiochim. Acta <u>15</u>, 146 (1971).
- ⁷R. M. Harbour and K. W. MacMurdo, J. Inorg. Nucl. Chem. 34, 2109 (1972).
- ⁸G. R. Choppin, B. G. Harvey, and S. G. Thompson, J. Inorg. Nucl. Chem. 2, 66 (1956).
- ⁹D. E. Troutner, M. E. Eichor, and C. H. Pace, Phys. Rev. C 1, 1044 (1970).
- ¹⁰M. W. Wakat, Nucl. Data <u>A8</u>, 445 (1971).
- ¹¹D. E. Troutner and R. M. Harbour, J. Inorg. Nucl. Chem. 34, 801 (1972).
- ¹²B. Warren, quoted by J. Kleinberg, USAEC Report No. LA-1721, Los Alamos Scientific Laboratory, 1963 2nd ed.
- ¹³C. W. Stanley and L. E. Glendenin, in *Radiochemical Studies: The Fission Products*, edited by C. D. Coryell and N. Sugarman (McGraw-Hill, New York, 1951) Book 3, paper 271, p. 1592.
- ¹⁴A. C. Wahl, A. E. Norris, R. A. Rouse, and J. C.

Williams, in Proceedings of the Second International Atomic Energy Symposium on Physics and Chemistry of Fission, Vienna, Austria, 1969 (International Atomic Energy Agency, Vienna, Austria, 1969), p. 813.

- ¹⁵D. E. Troutner and R. M. Harbour, Phys. Rev. C <u>4</u>, 505 (1971).
- ¹⁶R. M. Harbour, D. E. Troutner, and K. W. MacMurdo, presented at the 161st Meeting of the American Chemical Society, Los Angeles, California, 1971 (unpublished).
- ¹⁷V. F. Apalin, Yu. N. Gritsyuk, I. E. Kutikov, V. I. Lebedev, and L. A. Mikaelian, Nucl. Phys. <u>71</u>, 553 (1965).
- ¹⁸H. R. Bowman, J. C. D. Milton, S. G. Thompson, and W. J. Swiatecki, Phys. Rev. 129, 2133 (1963).
- ¹⁹A. H. Jaffey and J. L. Lerner, Nucl. Phys. <u>A145</u>, 1 (1970).
- ²⁰Y. S. Zamyatnin, N. I. Kroshkin, A. K. Melnikov, and V. N. Nefedov, in *Proceedings of the Conference on Nuclear Data, Miscroscopic Cross Sections and Other Data Basic for Reactors, Paris, October 17-21, 1966* (International Atomic Energy Agency, Vienna, Austria, 1970), Vol. II, p. 183.
- ²¹G. R. Choppin, B. G. Harvey, D. A. Hicks, J. Ise, Jr., and R. V. Pyle, Phys. Rev. <u>102</u>, 766 (1956).
- ²²W. E. Nervik, Phys. Rev. <u>119</u>, 1685 (1960).