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Using Nilsson single-particle level schemes as input, we have calculated partial state densities for
excited proton-neutron configurations with specified particle-hole numbers. The recursion relation method

used is general and free of any mathematical approximations. Results are given for nuclides in the Sn
region and for several Pb isotopes. The strong shell effects in these nuclei are clearly reflected in their
state densities. The results are compared to densities obtained from the equidistant-spacing model. This
model not only fails completely at low excitation energies as expected, but it also disagrees in several

cases with the average behavior of the realistic densities at higher energies.

1. INTRODUCTION

The need for calculations of realistic state densi-
ties in connection with the preequilibrium decay
model' has been emphasized in a previous paper'
to which the reader is referred for further details.
While only one kind of fermions (protons) was con-
sidered in Ref. 2, we describe in this work state
density calculations for configurations with speci-
fied numbers of excited particles and holes for
both kinds of nucleons. This enables us to investi-
gate the dependence of the state density for parti-
cle-hole (p-h} configurations on both shell effects
and its composition in terms of proton and neutron
numbers.

The partial state densities are obtained from
realistic single-particle level schemes, using a
method which is mathematically exact. Its key
element is a recursion relation described ear-
lier'4 for the case of total state densities, i.e. ,
those summed over all p-h configurations. The
method has been applied to proton p-h states in
Ref. 2, but as some improvements have been in-
cluded we feel that a more detailed discussion
of the p-h recursion relation technique is in or-
der.

The realistic results mill then be compared with
densities obtained from the equidistant-spacing
model (ESM) for the single-particle levels. As the
ESM obviously contains no shell structure, it is
bound to fail for near-magic nuclei at low excita-
tion energies. For higher excitations, however,
the ESM total state density (i.e., Bethe's formula)
is found4 to approximate the realistic total density
reasonably well if an energy-shift parameter is
included. Since in this paper the total density is
broken down into partial contributions from each
p-h configuration, we can investigate the role of
the ESM in greater detail.

2. CLASSIFICATION OF EXCITED PARTICLES

AND HOLES

In order to define the notation used in this work
we first state what we mean by a particle-hole
configuration for one kind of fermion. Let
the single-particle states ~i) be numbered in as-
cending order of their energies ~, Thus in the
ground state of a system having N particles total,
all states with ~„..., c„will be occupied. Nom the
usual way to classify excited particles (see, e.g. ,
Ref. 5, Sec. 38-1) is to count the number of occu-
pied orbits with i & N. This number is, of course,
equal to the number of holes. This well-known
scheme is illustrated in the left column of Fig. 1.
Each state is represented by one level, although
in actual cases the levels will be degenerate.
Particles (holes) can then be visualized as occupied
(unoccupied) states "above" ("below" ) the Fermi
energy e ~. Such configurations defined with re-
spect to ~ ~ will be labeled OPOJI, IP1B, 2P2II,
etc.

The above scheme is, however, not appropriate
for classification of the series of p-h configura-
tions arising from incident particles captured
(temporarily) in a nucleus. Let us assume two
incident particles on a target having (N —2) parti-
cles (e.g. , the proton part of an o.-induced re-
action}. As shown in Fig. 1, the initial configura-
tion of the compound system is either 2P2H (with
two holes fixed just below e ~) or 1P1H (the hole
being in ez or e„,) or the ground state OPOH.

Thus the initial configuration belongs to subsets
of three different P-H classes, which is incon-
venient.

We therefore do not classify particles and holes
with respect to e ~, but use instead the target Fer-
mi energy e~ as our reference energy. Denoting
the new classes with small letters, the initial con-
figuration in Fig. 1 is now labeled simply 2p. The
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tion, we calculate u&(6', X„Q) and ru(5'„,X„Q) from
their level schemes. Folding once more, we final-
ly arrive at the density of states with 6'„protons,
X, proton holes, 6', neutrons, and X„neutron
holes at excitation E„:

tern'.

+ Q tP fp + gfp

8 +~ K+ P

The present results have been calculated with the
same input parameters as those in Ref. 2, except
that the excitation energy range is now 0-40 MeV,
Rt 0.I-MeV increments. The single-particle enex-
gies are again generated from Nilsson's 1955
Hamiltonian. ' This means that the same set of
levels is used fox' protons and neutrons, although
the computer code is arranged so that it can han-
dle different arbitxary sets. All x'esults presented
herein are for zero deformation, but arbitrary de-
formation may be specified as input to the code.

To simulate residual interactions and to smooth-
en the results, the densities (5) were averaged
with a Gaussian function of 0.3-MeV width. This
smoothing, of course, in no way accounts for the
pairing interaction, the effects of which depend
on the excitation energy as mell as on the number
of excitons. Unfoxtunately no method has yet been
found to include pairing in the recursion technique
while maintaining its exactness Rnd simp)icity.
Only under the assumption of purely diagonal
pairing (which is not justified in the present case}
has a suitable recursion relation been established. s

4. PARTIAL STATE DENSITIES FROM THE EQUIDISTANT-

SPACING MODEL

ii„=—,'(5', '+X,2) + —,'(N, —X,) ——,'X, . (9)

The analogous formula holds for the neutron shift
8~. IQ these equations, g„and g„are the s1ngle-
proton Rnd -neutron state densities, respectively.
It is seen that the effective density g is slightly
larger than the weighted geometric mean of g„and

n zasM is summed over all proton-neutron
compositions having a total of 6' particles and X
holes, the result is again Eq. (5) with g=g, +g„,
RB expected~ Rside from minor discrepancies 1Q

the 8 term, which is numerically small, however.
Though g and g„are, in principle, independent

parameters of the ESM„ they are usually express-
ed in terms of only one spacing parameter d as
g, = Z/d, g, =N/d. This form is suggested by the
Fermi-gas model, which yields R constant value
d~= Se~ ~ 25 MeV for all nuclei (see, e.g. , Ref. 5,
Sec. 2-I for details).

For later use we note that the density ratio for
two configurations differing only by the exchange
of one proton p-h pair into a neutron p-h pair is
given by

&o(6' + 1,X + 1, 6'„- 1, X„-1, E„)
e(lP, X„6'„,X„,E„)

Since the ESM leads (in good approximation) to
a simple analytical expression for the partial state
dens1ty, 1t hRS beeQ used 1Q all preequilibrium
calculations. It is therefore interesting to.com-
pRx'e the realistic densities with those derived
from the ESM. We use an expression for w

sM ob-
tained by Williams~ and rewrite it in the following
way:

E $)xl'-)= six'(5I 1)i

where 5'=6'„+ t„ is the total number of excited
particles and X=X„+K„the total number of holes.
Further, 3t = t+X is the total exciton number. The
proton-neutron partial state density is thus ex-
pressed as the density of an equivalent one-fer-
mion system having effective single-particle state
density g and effective shift 8. Only these quanti-
ties depend on the composition of the actual sys-

Here we have neglected the small 8 terms. More
generally, the ratio of any two +'s having the same
total g is independent of the excitation„except for
very small E . For given 4' and K the dominant
configuration (5) can be found from Eq. (10) by
solving for' those values of 6'„and X„which bring
its right-hand side closest to unity.

5. RESULTS AND DISCUSSION

In the following we shall label a proton-neutron
particle-hole configuration as p+&p ~et&m ". A
proton-induced reaction is assumed throughout this
paper. Thus we have the configurations p, nn ',

ourselves to a maximum of five excitons total.
The computer code can handle any arbitrary con-
figurations. The limited choice is to illustrate the
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effects result1ng from realist1c 81Qgle-particle
levels, and is not intended as an exhaustive set
of x'esults,

A, Tin Region

The first group of x'esults in Figs. 2 and 3 is for
the compound nuclei Z =46, 48, 50, 52 with A = 115,
f r which pux'e proton configuration state densi-

tties were given in Ref. 2. Comparing the presen
p2p ' and p'p '

x esults to those of the earlier paper
we are thus able to see the influence of the neglect-
ed correction term s given in Eq. (3) near a ma-
jor shell closure. AII curves are shifted appr('-
ciably to the left with respect to those in Ref. 2,
causing a smaller intercept with the E„axis. The
wiggle topology has also changed considerably in
some cases. The qualxtative behavior of the pure
proton dens1t168 18~ however~ slmxlar to the
earlier xesults. As the shell closure is approach-
ed (Z = 46, 48) the state density at low excitation
drops sharply and goes through its minimum at
Z =50. Above the closure ~ recovers x'apidly,
as many 81ngle-proton states become available.

The single-proton s'tate densrty cop =(d(1~ 0~

E,) is plotted in Fig. 2 for Z=46. For the other
lides + is obtained simply by shifting the

f 3.5energy scale. Due to the large shell gap o

/N
c~

p-1

MeV at Z = 50, &~ has a deep minimum at E„=0 .
The other minima at E„=8and 14 MeV are due to
the Z = 82 and 126 closures. The ~~ curve gives
also an impression of the effects of the smoothing
procedure applied to the realistic results.

Let us Qow consldel' conf lgux'at1ons 1nvolv1ng
neutrons as well as protons. The density for the
lowest neutron conf1gurat1on u„„ l 1s shown in Pig.
2 for M= 63. Around E .=0 this density is small,
due to the minor shell gap at %=64. It then quickly
rises to its average value, interrupted only by a
steep minimum caused by the X=82 gap at E„=4
MeV. Thus the excited neutron configurations es-
sentially start from a mid-shell situation, which
is clearly reflected in Figs. 2 and 3.

When in a pure proton configuration one pp
'

2pair 18 convex't6d 1nto an g'fl pa11 e.g. , p p
-pen ') the density in general becomes consider-
ably larger and smoother and the energy intercept
decreases. For ezcitations which are not too Iow,
this increase in magnitude is easily seen to re-
sult from two causes. The average single-neutron
density is higher than the average single-proton
density and the number of distinguishable con-
figurations rises when the other kind of fermion
18 fix'st introduced.

If the exciton number is large enough, a second
pair pp

' can be converted to nn ', such as for
p'p 'nn '-pn'n ' in Fig. 3. In this case, the ef-
fect of g„&g~ 18 countex'acted by the decl ea81Qg
number of distinguishable configurations (which
peaks, of course, at 6', =4'„=-,'O', X,=K„=—,

' .).
The net outcome is therefore less predictable,

nn

0

8

00

FIG. 2. Partial state densities co (in units of MeV ~)
' or 3.-» 2-» and 3-exclton conf lguratlons ln the Sn region
as function of the excitation energy. The smooth curves
are ESM results.
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FIG. 3. The same as Fig. 2 for 5-exciton configura-
tions,
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but it turns out (Fig. 3) that in our cases the two
effects cancel nearly exactly at higher excitations,
i.e., &~2~ &„„&= &~„2„,. The average difference
of log& at high excitations for two configurations
having the same X is reproduced surprisingly well

by the ESM formula (10). For small E„however,
the regularities described above no longer hold
and the density structure is determined by the in-
dividual level structure of each nuclide.

B. Lead Isotopes

Shell effects in the state density will be most
pronounced for a double shell closure. This is
demonstrated in Fig. 4, where the (total) proton
number is kept fixed at Z'= 82, while N varies
around 126. Consequently, the proton contribution
to the density does not change with N, as the
smooth A dependence of Nilsson's levels can be
neglected over the small range of A considered
here. Thus Fig. 4 complements Figs. 2 and 3 in
the following sense: It shows the variation of the
neutron shell effect near a shell closure in the
presence of a large (but constant) proton shell
effect, while Figs. 2 and 3 show the behavior near
a single shell closure with the other kind of fer-
mion occupying the middle of a major shell.

Due to the higher density of single-particle lev-
els in Pb, the partial densities fluctuate much less
than those in the Sn region. For large 8„ the same
regularities in the average behavior of ~ as dis-
cussed in the previous subsection are seen to hold
here. Even for small E„, a regularity is observed
now: For each exciton number (3 or 5) the most
neutron-rich configuration has the highest density.
This is not simply due to the fact that the neutron
shell gsp (3 MeV) is smaller than the proton gap
(3.5 MeV). B also results from the number of
single-particle states available above and below
the gaps. Otherwise Figs. 2 and 3 would exhibit
this regularity as well.

Except for the very neutron-rich configurations
in'"Pb, all energy intercepts in Fig. 4 are of
considerable magnitude, as expected near a double
shell closure. Thus the discrepancy with respect
to ~™is very large for small excitations and can
reach six orders of magnitude in the most un-
favorable case.

C. Comparison to ESM Results

The only free ESM parameter is the spacing d
introduced in Sec. 4. Its value practically does
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F&0. 4. The same as Figs. 2 and 3, but for Pb isotopes.
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not influence the shape of the curve Iog&oE'"(S, ),
since dlog&u

' /dE, =(31—I)/E„neglecting the
small effect of the 8 term. Thus varying d will
merely result in a vertical shift of the curve. The
same holds true if g, and g, are treated as inde-
pendent parameters.

The value of d is chosen here such that (d fits
the average behavior of the realistic + at high
excitation as well as possible. For both the Sn and
the Pb region we found d =12 MeV satisfactory.
This value differs from the d=14 MeV used in
Ref. 2, due to the fact that the increased range of
E„consi dere dhere (40 MeV vs 20) allows us to
determine d more precisely. Part of the dis-
crepancy may also result from the 6 term neglect-
ed earlier. The spacing d is related to the more
familiar 1.evel density parameter a by

which yields a =A/7. 3 MeV ' for our choice of d.
Thus a=15.8 MeV ' for the Sn region and a=28.5

MeV ' for Pb. Both numbers agree reasonably
well with those obtained by Williams, Chan, and
Huizenga, ' who fitted the ESM total state density
expression (back-shifted Fermi-gas formula) to
recursion-relation results in the 40-60-MeV range.
The Pb value is also in agreement with the experi-
mental data taken at these energies (see Ref. 4
for a fuller discussion). It differs, however,
drastically from the value a= ll MeV-i found a
low excitations in Pb [see, e.g. , the a(A) data in
Ref. 8], due to the washing out of shell effects
with increasing E„.

This behavior of a seems to be most character-
istic for a double shell closure, since it is not ob-
served in the Sn region. Here, our value of a is
practically the same as the one obtained from ex-
periments at low energies. Thus the effect of the
proton shell Z= 50 seems to be overridden by the
neutrons as far as a is concerned. This can also
be seen from the experimental a(A) curve, which
deviates markedly from its average trend a A/8
MeV ' in the vicinity of ' 'Pb, but not in the Sn
region. It should be remembered, however, that
this applies only to comparisons made in terms
of the over-all parameter a. When the total den-
sity is broken down into its partial contributions,
the single-shell effect is clearly recognized: The
pure proton configurations for "'Sn in Figs. 2 and
3 are those least mell approximated by the ESM.

Another ESM feature is also evident from Fig.
2: The discrepancy between realistic and ESM re-
sults becomes larger when the exciton number de-
creases. Thus the average single-proton density
('"Pd in Fig. 2) is not reproduced at all by the
ESM, because g„ is an average of the densities

of excited single-particle and single-hole states,
the latter being much smaller than the former.
The density +„„&is therefore much better repro-
duced by the ESM, although (d

' generally over-
estimates the realistic +.

For the 3- and 5-exciton configurations in Figs.
2 and 3 the ESM describes the average high-ener-
gy behavior of the realistic densities fairly well.
This might at first seem surprising since the ESM
obviously cannot take into account the increase of
the real single-particle density with excitation, but
it must be realized that the hole state density de-
creases with excitation (in fact, there are no hole
states above =30 MeV}, therefore these trends
cancel partially as soon as holes are present. This
cancellation becomes, however, less effective
when A is large, because the maximum hole ener-
gy does not change appreciably with increasing A,
while the increase of the single-particle density g
becomes more rapid. (For oscillator potentials
g(e) is roughly proportional to e'A.} This is clearly
seen in Fig. 4: The slope of log&ad™(which does
not depend on parameters) is consistently smaller
than the average slope of the logarithm of the real-
istic densities.

6. CONCLUSIONS

Partial state densities calculated from realistic
level schemes show strong shell effects in nuclei
near closed shells. At low and moderate excita-
tions, these densities can differ drastically from
those calculated with the ESM. If the latter model
is still to be used in the context of preequilibrium
decay calculations, we feel that several modifica-
tions must be made in the ESM. Such corrections
should include independent parameters for the
average single-particle density as well as for the
single-hole density. Most crucial near closed
shells is the introduction of an energy-shift param-
eter depending on the number of excitons and the
difference between the actual and the average
single-particle density of states at the Fermi
energy. Finally, the shape parameter K of the
logco curve should be made adjustable to include
the effects resulting from the variation of the
single-particle level density with excitation.

We stress that the above criticism of the ESM
is not meant to discredit its value, which lies in
its simplicity and generality. The ESM and our
approach should rather be regarded as comple-
mentary, in that the ESM illuminates the physics
of the problem while the realistic density is more
appropriate quantitatively, in particular for nuclei
near closed shells.
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