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Using the theory of groups the many-particle average of the product of one-body operators
is determined in terms of the one-body average of the products of these operators. With this
all the energy moments of the noninteracting system are derived in terms of the one-particle
moments. For the interacting systems the third and fourth moments are derived.

I. INTRODUCTION

Recently there has been success in calculating
the density of states in nuclei by assuming that
the density per unity energy of the finite set of
shell-model states for a given number of nucleons
is Gaussian. ' The mean and width of the Gaussian
for m nucleons can be determined directly from
the mean and width of the one- and two-particle
system; that is the mean and width for m parti-
cles is a simple known function of m.

However, for extracting more detailed informa-
tion such as occupation probabilities, spin cutoff
factors, ' and low-lying energy spectra more mo-
ments of the density are needed, as well as aver-
ages of product of different operators. In this
paper we develop a genera1 method for obtaining
the ng-particle averages of products of one-parti-
cle operators as a function of e- and the one-par-
ticle averages of the products of these operators.
In particular, we apply the method to obtain all
the moments of a noninteracting system in terms
of the one-particle moments and also to derive the
third and fourth central moments of an interacting
system. The third and fourth moments have also
been derived recently using diagrammatic methods. '

Our attack makes use of the rotation group in
2N+1 dimension, R(2N+1), where N is the num-
ber of single-particle orbits in which the nucleons
are moving. This group is the set of all transfor-
mations on the quantum states of fermions restrict-
ed to N orbits. Our final result leaves no trace of
its ancestry in R(2N+1} so more than likely it can
be derived by some other, probably combinatorial,
method. However, the group R(2N+1) has had on-
ly a trifle of attention in nuclear spectroscopy.
In the course of our work we have derived some
important properties and geometric quantities of
the group which are discussed in detail in the two
appendixes.

In the next section the general properties of
R(2N+1) are discussed. In Sec. III the average of
a general operator is derived using group theory.
In Sec. IV this result is used to find the average

of a product of ¹erent traceless one-body opera-
tors. In Secs. V and VI use is made of the average
of the product of operators to determine the energy
moments of a noninteracting and interacting sys-
tem, respectively.

II. GROUP STRUCTURE

All the possible states of a system of fermions
confined to a quantum system with N single-par-
ticle states (N even) form a basis for the spinor
representation of the rotation group in 2M+1 di-
mensions, R(2N+ 1}. In order to understand this
fact it is convenient to introduce fermion creation
operators for each single-particle state, A„
i = j, , N and destruction operators, B, =A, ,
which obey anticommutation rules:

[A(, B~], = 5( ),
[A„Aq], =[B„Bq),=0.

Consider the set of operators

(1a)

(lb)

2[A( t BI]

E,&=-A, B» i +j,
Cq)

—=A)A), i &j,
Di~ =-B~Bi, i&j.

(2b)

(2c)

(2d)

(2e)

Using the anticommutation rules (1) it is easy
to see that the commutation relations of the opera-
tors (2) with each other give back a member of the
set. Hence this set of operators form a Lie alge-
bra. Since no operator in the set commutes with
all the other operators, the operators generate a
semisimple Lie group. Since there are N(2N+1)
operators in the set, the Lie group has order
N(2N+1) And since t.he subset of N operators

form the maximal set of commuting operators,

{2 A&, 2 8&, F&, E&&, C&&, D&&,i, j = I, . .. , N],

(2a)

where
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f =(f2 f2 " fv} &=I . M. (4)

the Lie group has rank N. Therefore the set of
operators (2) must generate the Lie group of rota-
tions in 2N+1 dimension, R(2N+1). '

The operators F„ i =1, .. . , N commute with
each other and therefore can be diagonalized in a
particular irreducible representation (IR) of
R(2N+1). If the IR is M dimensional then for
each operator E„ there will be M eigenvalues

fP, a = I, . .. , M. The collection of the N eigen-
values for a particular cv form an Ã-dimensional
vector called the weight

ponents are zero; that is

f '-f '=(f2'-ft' fN' f~~-) =(g2 . g~)

(5)
and all the g„ i =1, . . . , N are zero. If the first
nonzero component is positive then f"' is said to
be larger than f "2; if the first nonzero component
is negative, then f ' is said to be smaller than

f 2 Th. e largest weight is unique and labels the
IR. If we call this maximum weight f, then for
R(2N+ 1) the components f„ i = 1, . . . , N can be on-
ly a positive integer, positive odd half integer, or
zero subject to the conditions that'

Two weights are equal if in the difference all com- f2- j2- ' ' ' -fv -0 (6)

The set of all possible states of the quantum system is given by

(0); A, )0), i= I, .. . , N;A, A, (0), 1&i&~ &N; . . . ;A,A, A„)0),

where
~
0) is the zero particle state (the vacuum).

The total number of states is 2". It is clear that
these states are eigenstates of the operators F,
given in (2b), and that the only values that the ei-
genvalues f, can take are +-2'. If an orbit i is filled
than f, = —,'; if it is not, then f, = --,'. Hence the max-
imum possible weight is that with f, = —', for all i
Also it is the only weight which satisfies the con-
ditions (6). Hence the set of states in (V) form a
basis for the spinor IR of R(2N+1) which has max-
imum weight given by:

f (2t 2t ' ' t 2) (8)

We refer to the spinor maximum weight by the
symbol Q for convenience.

We can go further and ask how does a general
operator transform under R(2N+1). The most gen-
eral operator will be a linear combination of the
operators

—,N& l &N

1 «i &2(N- I)+1
2(N- I}+1&i&N.

(10)

A( A) B] 8] (9)1 P 1 s

for all values of p and s such that 0&p&N, 0&s
& N. Commuting these operators with the F, we
see that the eigenvalues f, can take on only the val-
ues +1,0. Hence the maximum weight is that for
which all f, equal to 1. However in general the op-
erators are reducible; more than one IR of R(2N+1}
is contained in this set of operators. But from this
weight content and the condition (6) the possible
IR's are the scalar IR which has f, =0 for all i and
the antisymmetric IR's of rank t which have f, =1
for 1 &i & t and f, =0 for i&i &N. We denote these
IR's as A, which is defined as

0 & l &-,'N

1&i &2l
2l&i &N

The dimension of these IR's is

where (;}is the binomial coefficient:

(
a af
b (t2 —5)!5! ' (12}

h, &h, ) ~ ~ ~ )h„~0. (14)

The h, are the number of fermions which are sym-
metrically grouped together. However, since all
the creation operators must be antisymmetric with
each other and all the destruction operators anti-
symmetric with each other, the IR's relevant to
this paper are those with 0 &h, & 2. Hence we need
only two parameters to characterize an IR of U(N).
We designate an IR of U(N) by X„„,where

h, =2 for 1&i &v+ p,

h, =1 for v+ p, &i &N-2v

h, =0 for N-2v&i &N.

(15a}

The parameters v, p, are restricted by the condi-
tions'

v+ p, =integer;

2v non-negative integer, 0 &~ p~ & v.
(15b)

A subgroup of R(2N+1) which is of great interest
to us is the group of unitary transformations in N
dimensions, U(N), which is generated by the sub-
set of operators,

N).
The IR's of U(N) are labeled by N integers h„
g =1y ~ ~ ~ pe with
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The dimension of these IR's is

N —&v 1
(N 1)(N+1) (16)

The set of states in (7) are reducible with re-
spect to the U(N) subgroup. In fact the states with

a definite number of particles m transform among
themselves under the unitary transformation and
form a basis for the IR's of U(N) which have v

=-p. and m =N-2v and dimension

(0) =Q F(-m, -l; -N; 2)(0') (23)

where F is the hypergeometric function given by

it which is less than N.
Since the average in (21}sums over all the

states of U(N} it depends only on the properties
of the IR of R(2N+1). In the Appendix I it is shown
that the average is

d
N-m m-N N

Of course the total number of states for all m
must be 2" the dimension of the spinor IR of
R(2N+1}. Indeed we have the identity

(17)

=(-1)'F(m —N& -l; -N& 2)

=(-1) F(-m, l-N; -N; 2)

(24b)

(18)

Because we shall use these IR's often we designate
these IR's of U(N) which are contained in the spin-
or IR of R(2N+1) by

+m (N- fft)/2, (haft-N)/2 '

The operators which have been reduced with re-
spect to R(2N+1) and transform like a definite IR
A, of R(2N+1) will be reducible with respect to
U(N) also. The allowed IR's of U(N) will be those
which have

0 ~ » - (~l, N-/), ,
(20)

where (d, e},means the lesser of the two integers
d and e. These IR's of U(N) appear once and only
once for a given IR of R(2N+1}.

=F (- l, -m,' -N; 2) .
(24c)

(24d)

From (24b} we see that the operators with l even
are symmetric under particles going to holes and
antisymmetric for l odd.

The average can be determined from (23) if the
vacuum expectation value of the reduced opera-
tors are known. We can, in fact, project out the
operator 0'from 0. If 0 has an even number of
fermions we label it 0„' if an odd number we la-
bel it 0 . We then define an operator C such that

that is the double commutator is used for an even
number of fermions and the double anticommuta-
tor for an odd number of fermions.

The operators 0,' are eigenoperators of C

III. OPERATOR AVERAGES

CO', = )0
co' =(I- —,')o';

(26 a)

(26b)

The fact that all the states of the quantum sys-
tem belong to the same IR of R(2N+1) will be help-
ful in determining how the averages of operators
depend on the number of particles. By average
we mean

this fact is proved in Appendix II.
Using (26) we can construct projection operators

(27a)

(0) = Q(Q(a) aioiQ(o n), (21) (27b)

where Q is the IR of R(2N+ 1), u& the IR of U(N)
and o labels the (N) states in the IR &u

The operator 0 can be reduced with respect to
R(2N+1):

N

0=+ 0', (2
1=0

where the operator 0' transforms like the IR of
R(2N+1) called A, and defined in (10). The sum
over l will in practice have some known upper lim-

such that

0,' = P,'0, . (27c)

Since in the vacuum expectation value only the
operator with an even number of fermions will.

contribute we have

(0) =Q F(-m, -l; N; 2) (P',0)'.-
j

From (24a) and (26a) the sum over l can be per-



138 J. N. GI NO C C H IO

formed:

(29)

F =g &~IF IP)&.Bs =&+s&»2, (30a)

where n is the number operator

Hence the average can be expressed in terms
of the vacuum expectation of certain contractions
of the original operator. In the next section we
shall use this result to derive the average for the
product of one-body operators.

IV. AVERAGE OF A PRODUCT
OF ONE-BODY OPERATORS

In this section we shall derive the average of
the product of p one-body operators for a fixed
number of particles m in terms of the averages
for one particle of different arrangements of the
products. With this result the average for prod-
ucts of two-body and in fact for arbitrary opera-
tors can be deduced.

Every one-body operator can be reduced with

respect to U(N) in the following way'.

(3lb)&F) =m&F)'.

We need only consider the product of p traceless
one-body operators. Using (29) we have

(s,s, . 2~) =Q ( ) ( )(-2)'

X (32)

CS.,S, =(C6.,)9, +6:,(Cr,}

——,'{[B„9,][9„A,]+[9„A,][B„6:,]]
(33)

Now the product of one-body operators is an opera-
tor with an even number of fermions so the double
commutator in (25) is used. In the operation of C
on the product of these operators there will be the
operation of C on each operator and also contrac-
tions between operators with a factor of --,'. Take
as an example two operators, using the summa-
tion convention for repeated indices,

n=+A B (30b) where we have used the result of (26a) and have
defined

and 5 is

9 =F s&F)'- (30c)
.& = [B.) 6'] 2

V'-=[6:,A.].
(34)

(35)
and (F)' is just the average in the one particle
state

(F)'=N 'Q&0~2a I
F IQ&dsa). (30d)

The operator 5 transforms like the A, IR of
R(2N+1) and the X„,IR of U(N). [See (ll} and

(15a).] F is a one-body operator but it is the
traceless part of F. That is

(31a)

CP' = —'5'

C,B' --,F ~

(36a)

(36b)

Since the )y's transform like A, of R(2N+1), the
5' and, F do also. This follows because A, and

B, are generators of R(2N+1) and hence cannot
change the IR of operators. However, they do

change the number of fermions from even to odd,
so we have by (26b)

Applying C again we get

C'6.,9, = 2[(C9.,)6:, + r, (C6:,) ——,'(,6,S;+r,*,S,)] ——,'[(C,r,)6:,'+.6:,C6:;+C6",,S, + r;C(.S,)]

+ ( 2) [s'26 29s + 26 1 2'LF1 +2'+les + 6 1 s'2+)2] 2 (37a)

where

...6: ={B...,9) =0

ps'2 {92 A

, F' ={B,„r'j=(s'
I
6'I s&.

(37b)

(37c)

(37d)

ducing a factor (-s). Also we note that there are
two kinds of contractions. The contraction

(38)

we call normal, since it is the contraction which
would occur if the operators were normal ordered
(in the sense of Wick's theorem). The other

Again we see that C operates on each term in-
dividually and also contracts between terms intro- (39}
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we call backward contractions.
Using (26a) and (36), (37a) becomes

C 8'xF)) = 2[25'i%~ —2(,0x5i + 6'x ~5'a) ]

Cdc, =(p- k)d~- d)„i.P— k+1
(41)

If we start from k =0 and apply the operators (~)
we will then get a linear combination d „with i
running from i =0 to i =r. From the relation (41)
it follows that this linear combination is

do= -p . d]. (42)

If we take the vacuum expectation of the term d~

there will be more normal contractions, however
no additional backward contractions. Let D~ be
the sum of terms with all p operators contracted
but with t backward contractions. The vacuum
expectation value of d~ will give rise to terms
with backward contractions from t =0 to t =i. The
total number of contractions must be p so the re-
maining p —t contractions must be normal. Opera-
tors with t contractions will appear (NNcc) times.
That is,

(40}

We can now generalize the result. We know that
each time C operates on the product of p opera-
tors with 4 contractions it has one term which
gives those operators back multiplied by (p —k}
and another term which has 4+1 contractions and
a factor of (--,'). If we denote by d f the sum of
terms with p operators and k contractions we have
the recursion relation

t=r ++Sf
f-1

and (45) becomes

( ) (N) 'P( )D)NI

(47)

r if

(48a)

The sum is over all partitions and rearrangements
under conditions

have one of two effects. One is that it can sepa-
rate the operators into partitions in which a sub-
set of say k of the p operators are contracted with
each other, excluding the other p-k operators.
The other is that it can rearrange the order of
the operators.

Say there are v. partitions. There must be ~
backward contractions to produce these partitions.
Within each partition the operators can be rear-
ranged. If the operators appear in natural order,
that is labels increasing in value from left to right
[as on the left-hand side of (45)], there are no re-
arrangements. If there are two groups of increas-
ing labels there is one rearrangement, and so on.
For a partition with i operators there can be s re-
arrangements where 0 & s &i —2. Vfith each rear-
rangement a minus sign is picked up. This follows
from the fact that for a rearrangement two back-
ward contractions are needed. After the first con-
traction, the next contraction must pass a single
fermion rather than a one-body operator; hence
a minus sign.

The total number of backward contractions t is
then the sum of those used to make partitions and
rearr angements,

( D)c-I
( )))D

1=0

(43) (48b)

Inserting this into (42) and performing the sum
over i

(44)

(c c c ) ( )p ())cc )D)DD-(45}

The D~~ contains terms in which the p traceless
one-body operators are contracted with t back-
ward contractions. A backward contraction can

Inserting this into (32) and doing the sum over r
explicitly we have

For each rearrangement for a given partition
there is a rearrangement which corresponds to
the matrix elements of each operator replaced by
the transpose of the matrix elements. Thus for a
term with t tl there is a term with t =p —t, in
which all the operators are replaced by their
transpose. From the symmetry of the binomial
factor in (48) and the fact that an odd number of
rearrangements are negative, the following rela-
tionship holds between the m-particle average of
p operators and the average of their transpose:

(cy cy . . . cF ))Dc ( I)D(cy cy . . .J()N-c)c (48c)

Hence if the operators are all symmetric the m-
particle average and the m-hole average are equal
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for an even number of operators and the negative
of each other for an odd number of operators.

V. CENTRAL MOMENTS OF A

NONINTERACTING SYSTEM

If particles are moving in a potential well but
are not interacting the Hamiltonian is just a one-
body operator,

PfHo=+ 2' +U(, (49)

&H,& =m&H, &'. (50a)

where U, is the central potential which the ith par-
ticle feels and A is the total number of particles.
The average energy of the system depends linearly
on m.

operators partitioned all become equal. Let Ky be
the number of partitions each with one operator,
x, the number with two operators, and so on up to
~p, so that

P

Q tKl p ~— (52)

The number of terms corresponding to this parti-
tion is

(53)
1

i=1
Another way of saying it is that given p distinct
operators there are Xp ways to make the partition
( Kg ~ ~ ~ Kp) ~

Also rearrangements would become equivalent.
The number of ways to make s rearrangements of
i operators is given by Euler numbers':

The higher central moments are defined as

p,"=&(tf, - &H,&")'& =&(tf, - n&H, &)'&"=&x',&",

(50b)

S

=g(y+], )'-' ( l,)"
s -k

k=o

which have the symmetry

(54)

where 3Co is the traceless part of the Hamiltonian.
We can then use the general result (48) for evaluat-
ing these central moments as a function of m. In
this case the p operators will all be equal

=5 =X1 I p 0'

Partitions which differed only in the labels of the

Af, s -A f,f-s-2 ' (55a)

This symmetry follows from the fact that the one-
body averages are invariant under cyclic permuta-
tions of the operators.

Using this symmetry the central moments for
m particles are related to the central moments

of one particle in the following way:
P Kf

Pp =Pl + 1-5 p„-1 N '"' -1' sA„s„. , 55b
f=o i=1

where

pp p even

(p -1)/2, p odd. (55c)

i 4 2, I!., = —,'P will be the largest term. For p odd
t = (p -1)/2 will dominate which means the parti-
tion s, =0, i s2, 3, s, =(p —3)/2, ~, =1.

Asymptotically the moments become

The second summation is over rearrangements
and all distinct partitions subject to the condition

p

p=P g,i,

g~ -m~"(p-1)!!(p,')~", p even; (56a)

u"-m" ""[(p-1)/6]p!~ (p')'&-" 'p' p odd
(56b)

The width is given by the p=2 central moment
p p K

t=Qs, +Q Qs,
(55d)

IUa =0m (57)
f =1 /=1

It is interesting to examine how the moments
vary for large systems, that is N large. From
(55) we see that for a given t the terms with s, ~

all zero will dominate because of the factor N~f Ki.
For a large number of particles, but small com-
pared to N, the t with highest powers of m will
contribute the most. Hence for p even t =-,'p will
dominate which means that the partition zf =0,

In terms of the width these central moments be-
come

p~~-(p —1)!!o ~, p even; (58a)

4p ~ 6 p'! o ~ &s(&a) ~ p odd ~

1 (p-1) y x x -3/a

(58b)

Hence as m becomes very large the odd moments
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go to zero and the even moments go to moments
derived from a Gaussian distribution of the den-
sity of levels as a function of energy. Thus in the
limit of large systems the density of levels ap-
proach a normal distribution. This asymptotic
result for noninteracting particles has also been
derived by French.

VI. CENTRAL MOMENTS OF AN

INTERACTING SYSTEM

The Hamiltonian for nucleons in a central field
and interacting pairwise is

H =Ho+ V, (59a)

Again we separate the trace and the traceless part
of the operator. However, we further separate the
traceless part of the interaction into a part which
transforms like the IR X„,and X, , of U(Ã)'.

H =n(H, )'+ (V&' X+, (+-n1)V V+,
n(n —1)

2

(60a)

where

X,=H, -n(H, )', (60b)

(60c)

v=v- p&aplvlyp&. ~.a„+ &v&'.
(n-1) n(n —1)

(60d)

The matrix element of V in the above is the anti-
symmetrized matrix element and a, P, y, 5 label
the quantum numbers of the single-particle states.
The operator is a one-body traceless operator
derived by taking one trace of the interaction V
and it transforms with respect to U(N} in the same
way as X,.

The mean energy is given by

where V is the residual two-nucleon interaction:

(59b)

In the above we have defined

R(m) -=X, +(m -1)V, (61c)

a useful step because X transforms like A.» of
U(N) and is a function of the number of particles m.

The general result given in (48) can be used to
calculate the central moments (61b}because the
traceless part of the Hamiltonian can be written
as a linear combination of at most a product of
two traceless one-body operators. However,
since the interaction must be separated this way
the central moments for P & 2 cannot be written in
terms of the one-body and two-body central mo-
ments alone, but other types of products of matrix
elements are needed as well.

Using (48), S. Ayik has derived the central mo-
ments for the entire Hamiltonian for P ~4. For
these moments there are certain matrix combina-
tions which appear. For this reason it is conven-
ient to define the following matrices:

(ah I%Pl cd& =—(adl vl cb), ,

&ablm'I«&-=&bl26la&& el&I d&

(aim lc&= 2 (ablvl «&.&«I vlcb&. ,
8&e

b

&ablblcd&=&bi&la&&clg I d&

&abl%, lcd&= Q(dblmlef&&ef I+I ca),
e. f

&abI&Icd&=g&adl~lef&&ef I%I cb).
elf

In the moments the traces of the products of these
matrices will come in with a sum over all single-
particle states. For example

tr%'= Q &abl'%lcd& &cdl~lef& (ef I~lab&.

(62a)

(62b)

(62c)

(62d)

(62e)

(62f)

clef
ef (68)

The Hamiltonian H conserves the angular momen-
tum. Hence if the single-particle basis is spheri-
cal and the states are coupled to a definite angular
momentum, the Hamiltonian matrix will be diago-
nal with respect to these angular momenta. The
same is true of the matrices in (62}; if ab and cd
are coupled each to a definite angular momentum,
the matrices will be diagonal with respect to this
angular momentum.

The third central moment is given by
(H) = m (H,)'+ ( V)' (61a}

and the central moments are

V& -=&(H-&H& }'&

=
& [3', + (n -1)V+V]'&'"

= ([X,+ (m —1)v+v]')
=

& [3.'(m ) + V]'& (61b)

(64)

where the M, are given in Table I. For display
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simplicity we have dropped the explicit m label on
K(m) and have simply written X. The fourth cen-
tral moment is given by

N-q N q

(65)

(g2)~ L
a&2

(66)

Only if the trace of % cubed falls off slower than
N' will the Gaussian limit be reached asymptoti-
cally.

VII. SUMMARY

Using the group theory of the rotation group in
XV+1 dimensions, we have derived the averages
for a product of operators. The m particle aver-
ages of the product of p traceless one-body opera-
tors depend only on the one-body traces, but with

Table I. The coefficients M) needed to calculate the
many-particle third moment p3~ for interacting systems
are tabulated.

N (X3) '

3N (N —1)
(X '0)

3N (N —1)(eg)

with K,' tabulated in Table 0, Nomura-has derived
these results for nucleons moving in at most two
spherical orbits. '

If 'U is not small compared to , then the central
moments tend to the Gaussian limit for a large in-
teracting system using arguments similar to those
used in deriving the asymptotic limit for the non-
interacting system of particles.

For averaging with a fixed number of particles
in spherical orbits 'U vanishes. In that case the
moments will not tend to their Gaussian limit.
For example p,, tends to
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Table II. The coefficients X&~ needed to calculate the
many-particle fourth moment @4~ for interacting systems
are tabulated.

q t Kf

N (X') '

2 3N yC ) (X ) -4N(X)
5 1 0

2 2N(N -1)(aC+) 2

6 1 0

N(N —1)(2(X 'Q ) + y."gZ'Q) )

- 3N'(N -1)(3.") '(V') '+12 trQ'~) - tr(X~ ')
+ 2N(N —1)(X *+ ) +4N(N —1) (MAC'U)

7 1 0

2 2N (N —1) (K'Q3)

3 4N(N —1)Q'U ) +12tr(w, k ) —12tr~ws)
8 1 0

N(N —1) 4 2

the operators partitioned in different one-particle
averages and with different ordering of the opera-
tors within a one-particle average. The average
is given by a sum of all possible partitions and re-
arrangements weighted by a binomial factor which
depends on m and on the total number of partitions
and rearrangements. From this all the energy
moments for a noninteracting system are derived
and it is shown that for large systems the moments
are those of a Gaussian system. The third and
fourth moments of an interacting system are de-
rived and it is shown that for large systems the
moments go to a Gaussian limit only if the one-
body trace of the interaction is not small.

These results will be used in studying the nu-
clear spectroscopy of nuclei with many valence
nucleons. The moments for a given configuration
(configuration averaging) are also being derived
by the method derived in this paper and will be
published soon. '

N (N —1)
2

3 —2trS -tr(~ %)+4tr('U I)

4 3 (g2) 2 (g 2) 2+2N(~ 1) (U 4) 2

4
—8 tr'JJ -4 tr(W %j+4tr('Q 0)+3trW
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APPENDIX I

A generalized Wigner-Eckart theorem applies to a tensor operator which transforms in a definite way
under R(2N+1). That is, given a matrix element of a tensor operator it can be factored into a Clebsch-
Gordan coefficient (CGC) which reduces the Kronecker product of two IR's of R(2N+1) into an IR of
R(2N+1), and a reduced matrix element which does not depend on the quantum numbers which label the
basis states of the IR of R(2N+1). Given a tensor operator T~z~ we have

&aP

(II )TAg (II~ ~ ) CAAtQ C
' k, P (II()TAI [[II) (A1)

In this formula we have also used Racah's theorem, ~' which states that since U(N) is a subgroup which has
a given IR X„„appearing only once for an IR A, of R(2N+1}, the Clebsch-Gordan coefficient can be fac-
tored into the CGC for the subgroup U(N), CPs"" v and a unitary scalar coefficient (USC} C""',~o„„~
which does not depend on the quantum numbers which label the basis states of U(N).

If we take the trace of the matrix element in (Al}, that is set a = a' and sum over a only the scalar IR
of U(N) will survive:

(A2)

Hence

CQA) Q

(TA) ) 6 5 5 CGA(o (II
~~

TA) ~~g)
— & xao& (TA( )

0
(AS)

where in the last line we have converted to the vacuum expectation value, the m dependence is in the uni-
tary scalar coefficient.

We can determine the USC appearing in (A3) by taking a special case of an operator which transforms
like A, but whose m-particle average is easy to evaluate. Such an operator is simply

(A4)

The m-particle average of this operator is

(A5)

x=o

Hence

(A6)

which can be shown to be equal to the expression given in Eq. (24) in the text.
If we take the normalization to be

C Qh / Q 2-Pr/2
&~0,~

the USC can be shown to satisfy the orthonomality conditions:

(AV)

(AS)

and the inverse relations:

CAh) Q CPA) Q

2

Hence the USC are completely symmetric with respect to the interchange of l and m.
Using similar arguments the USC can also be derived for other IR of U(N) In general.

CQhg Q g CQh~ Q
~fath. P, Putft ~',.~+ 2P Cu)fftX

and

C"~''", =[2 + "]~ F( m+v —g —I+ v --N+2v 2),~fft~u, P4" m+ pp 7

(A9)

(A10)

(A 1la}
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where

v for 2v even
v+ & for 2v odd.

~

~

~ ~ ~These USC satisfy the orthogonality'relations:

N-2v ~ N-2v
C nwi' n

l —V ~ SZ —V+ p, fft Ii p 1ft+2jf m~v Q~sl+2]1
m

and

(
N 2v ~ N 2v nA CAAg n

V+ p ~ E V &mXu ]I&m+2' ur Na Xy gum'+2]I m. m'
l

APPENDIX II

(Al lb)

(A12)

(AIS)

An operator with an even number (= 2l} of fermions (both creation and destruction operators, A„B~) or
an odd number (= 2l —1) all in antisymmetric combination belongs to the IR A, of R(2N+ 1). An operator
which transforms like an IR A.„„ofU(N) must have at least 2v fermions; if such an operator has exactly
2v fermions these fermions must necessarily all be in an antisymmetric combination. This follows be-
cause fermions in a symmetric combination are just a constant (zero or one} and therefore invariant under
U(N) and thus the operator would not transform like X» but rather like X„» if any two of the fermions
were in a symmetric combination. Hence an operator which transforms like X, „under U(N) and has 2v
fermion transforms like A„of R(2N+ 1) if 2v is an even integer and A„,», if 2v is an odd integer.

Let us denote such an operator as

0'(v, V),

where v is defined in (Allb). Define the operator

0'(v, g) =[2'" "]'"E(-n+v+g, l+v; N-+2v; 2-)0'(v, p),

(Bl)

(B4a)

(B5)

where F is the hypergeometric function given in (24), and the argument m the number of particles has been
replaced by the number operator n. Since n is a scalar under U(N), the operator 0'(v, p} transforms like
X„„under U(N) However. , under R(2N+ 1) it transforms like A, . To see this we take the matrix element
of 0'(v, p):

(Q(u .a'(0'(v, p)iQ(u a)=5„. „„C"A'„",„„„(Qcva'}Cf(v, p)in(u a) (B2)

which follows simply from the fact that the states are eigenfunctions of the operator n and from (All).
Thus comparing (BS) with the generalized Wigner-Eckart theorem (Al) we see that the matrix element of
this operator has the dependence on I like a tensor operator of R(2N+ 1}of IR A, .

Chang, French, and Thio' have shown that

Q A, 0" (v, g)B, =(-1)'"(n —v —g)O'(v, p),
S

p B, Ov (v, p)A, = (-1)'"(N—n —v + p) 0"(v, p ) . (B4b)

These relations follow from the fact that the operators are completely traceless with respect to U(N). We

have then

QA, O'(v, p)B, =[2'" "]'i' F(-n+ v+g+I, —I+v; -N+2v; 2)(-1} (n —v —P}0"(v, y},
S

QB, O'(v, p)A, =[2~~ "]'i'E(-n+v+ p. —1, -I+ v; N+2v; 2)(-1)'-(N —n —v+p)O" (v, p).

Using the definition of C given in the text we have

Cd (v, p) = p [NO'(v, p) —(-1)~+ (A, O'B, + B, O'A, )]. (B6)

Using the property of the hypergeometric function,

NF(-n+ v+ p, -l+v; N+2v; 2) —(N —n —-v+ g)E(-n+ v+ g —1, -l+ v; -N+2v; 2)

—(n —v —p)F(-n+ v+ g+ 1, -l+ v; -N+2v; 2) = 2(l —v+ v)E(-n+ v+ p, l+ v; -N+ 2v;-2)

(BV)
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we will get the result (26) quoted in the text.
From the definition (B2) we see that 0'(v, p) has the symmetry property

(B8)

Under the particle-hole transformation

A, = -B, ,

B,= -A, ,

the operators go into their hermitian conjugate except for an l-dependent phase:

O'(v, p, }=(-1)'(O'(~, V)}'.

(B9)

(B10)
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