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Self-Consistent Treatment of the Pauli Operater in the Brueckner-Hartree-Fock Approach
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Brueckner-Hartree-Fock (BHF) equations are derived including the correction due to treating the Pauli
operator in the HF basis instead of the single oscillator basis, both for standard BHF and for a
variational calculation. Calculations were done with an approximate energy denominator. The correction
effects for ' 0 are significant: about a 10%%uo decrease in total binding energy, 12—30% decreases in

single-particle energies, and up to 20% decrease in the peak of the charge-density distribution.

1. INTRODUCTION

For several years the Hartree-Fock' ' (HF) and
Brueckner-Hartree-Fock' ' (BHF) approaches
have been applied with some success in nuclear
physics in an attempt to understand ground-state
properties of nuclei, such as total binding ener-
gies, root-mean-square radii, and static multi-
pole moments. The structure of the ground-state
rotational band in nuclei has been reproduced with-
in the framework of an angular momentum project-
ed HF' or Hartree-Pock-Bogoliubov" theory. How-
ever HF and BHF calculations employing forces
derived from the basic nucleon-nucleon interaction
have been unable to reproduce the charge distribu-
tion of nuclei. They produced too high a density in
the center of the nucleus and failed to reproduce
the nearly constant density inside as indicated by
electron scattering data. "

Recently this situation has been changed by drop-
ping the requirement that the two-body force be
"realistic. " Several calculations have reproduced
charge distributions by using effective density-de-
pendent forces."" These forces are derived by
solving the Bethe-Goldstone equation in nuclear
matter for a special Fermi momentum:

(
3 v2p)l/3

One finds an effective density-dependent force by
transforming the nucleon-nucleon matrix elements
from momentum representation into r space and
by parametrizing the dependence on the Fermi
momentum kF with the help of the local density ap-
proximation. ~ To improve the force one adjusts
the short-range part of this effective interaction
by fitting the total binding energy per particle and
the average density in nuclear matter. Such a cal-
culation is phenomenological in the sense that a
reasonable answer for the binding energy of nuclei
is guaranteed by the adjustment of the force, but

it leads to some insight into the nature of the ef-
fective interaction. It avoids the primary purpose
of Brueckner theory however, namely the attempt
to completely describe the macroscopic properties
of nuclear matter and nuclei starting from the ba-
sic nucleon-nucleon interaction.

Here we want to treat the effective density de-
pendence of the nucleon-nucleon interaction in fi-
nite nuclei microscopically: This is done by taking
into account the dependence of the Pauli operator
on the self-consistent single-particle states within
a Brueckner Hartree -Pock (BH-F) calculation. We
coin the name Pauli -Brueckner-Hartree-Fock
(PBHF) calculation for this procedure because the
name BHF is associated with the work of Davies
and collaborators' and others' who treat the Pauli
operator in the oscillator representation.

2. DERIVATION OF EQUATIONS

We introduce for the transformation from the
oscillator basis ~a), ( 5), ~c) ~ ~ ~ to the self-consis-
tent single-particle states

~ i), ~
k), ( l ), ~ m), [ n)

the notation:

The total energy of the nucleus is given in first-
order Brueckner approximation by:

+ 2 Q Q &sc~ G(W„}~&d)A,*,A„A,*,A„.
abed ik'&F

Here G(W;2) is the Brueckner reaction matrix
for the starting energy W,~= r, + c„&0 calculated
with the self-consistent Pauli operator Q,

G=V+V G.Q
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Since conventionally the reaction matrix is cal-
culated in the oscillator representation using the
oscillator propagator Qg(W, -H, ), the correction
to the self-consistent propagator is made using
the equation:

0 0

The above equation in this form is very difficult
to use, so we make a few approximations on it.
First, our main aim in this paper is to study the
effect of the self-consistent Q rather than Qp we,
therefore, neglect the variation of G with respect
to the starting energy W' and replace 8' by Wo.
We cannot, however, replace H by Hp because Hp
does not commute with Q. Secondly, since II -Ho
should be smaLL, we write

1 1 1

W H QW H. Q'QW. H ("-H'W. H,
Q

(8)

The first iteration of Eq. (6) gives,

G -Go Go Q Q — --- Go

+ GOQ (H -Ho) Q Go.
1 1

0 0 0 0

The third term on the right-hand side of the
above equation contains the Hamiltonian H for the
unoccupied states. The "correct" choice of H is
as yet unknown. This makes the estimation of
these terms ambiguous; for this reason we do not
include them here in our paper, and hope that their

+

c 4

II

Z

contribution will be small. We, therefore, get

1

0 0 0 0
(7')

The two-particle intermediate states are de-
fined by an harmonic-oscillator spectrum b,„(2p)
with a single-particle energy shift of -C. By in-
troducing Eq. (7') into the total energy (8) one

1 2 3 l. 5 6 7

Nt =2Ai+It

FIG. 1. "Eden-Emery" and oscillator Pauli operator
for ~~0. The "Eden-Emery"-Pauli operator is equal to
unity for N&+N2&5 (areas I, II, and IV). The Pauli
operator in the oscillator basis is unity for N& and N2
«2 (areas I and III). The Pauli operator Qo —Qzz for
the strip correction in Eq. (11) is equal to -1 in area I,
to +1 in area III, and to -1 in area IV.

finds:

(H)=g((a)&~b) Q A~, A„)+-,' Q Q (ac[ G,(W„,)~bd)A~, A„A,*,Ae„
aa abc4 fA&E'

+-,' Q Q Q (ac~G,(W«,))e'f')(6, , —Q A, ...A~„)(6I..& —P Az, AP, )
arcs t a &y aqua a'y'

&& (W„~—e, —e~) '(6, ~
—Q A~ A~~) (6I.~ -Q A~, A*„,)(gb ) G,(W„~) ) bd) A ~, A~ ( A,*~A~~

(ac
~ G, (W„~ ) ~ef ) (W„~ —e, —e~)

' ( ef [ G (W,og~) [ bd) A,*~ A~q A~~ Aqq ~

abed 4A&E al&Ep
(8)

The symbol i&I' restricts a sum over the self-consistent states to the single-particle Levels below the
Fermi surface, while e &Ep requires the sum over oscillator basis states to be above the oscillator or
shell-model Fermi surface I'0. The oscillator energies e„&& include the shift -C.

Finally we replace the energy denominator in Eq. (8) by a constant, h = (W„,—e, —ez). This amounts to
replacing (Wo -Ho) in Eq. (7 ) by 6, , and is definitely a very rough approximation, but should be good
enough for an order-of-magnitude estimate. Since most of the correction of G over G, in Eq. (7') will
come from the low-lying excited states in a narrow energy range, and for higher states we will have



SELF-CONSISTENT TREATMENT OF THE PAULI OPERATOR. . .

Q =@0=1. Under these approximations the variational problem

5(&If& -Zei&tlf &) =0

yields the following Pauli-Brueckner-Hartree-Fock (PBHF} equations:

Q h, o Ao& = e, A„,

h„= = &alt [b&+5 (acl Go(wo)lbd& p~. +(I/b)g g &acl Go(wo) I ef & (5~,„-p~„)
a&a&
8 pas cd cd efgh

x (5,1
—p„)(gh [ G,(W, ) [bd& p, —(I/n)g p &acl Go(wo) lef & &ef I Go(wo) lbd& pu

cd ef &P'0

-(»~}Z g &ac[Go(wo)lbf&(bg; a pro)&ah[G. (w. )led&p~p
cd efgh

+Q Q (ac[ G,(wo)[bd&A~~A„Q &ge
' hf&A~, As, pz, ,

h&y' cd gehf 8 0

where we have introduced an average starting energy W, ~ (W„,) after the variation.
The density matrix pd, is defined in the following

way

pro= ZAo*. Aa'
s&E

The last two terms of the Eq. (11) come from the
variation of G(W, Q) with respect to density,
namely:

BG BG 8Q 8Q 8W

Bp BQ Bp NV Bp
(12)

3. RESULTS

The Brueckner matrix G,(W) was calculated' »'
by starting with the Eden-Emery" approximation
for the Pauli operator. The Yale potential" was
used. In a second step the Eden-Emery reaction
matrix t"» was corrected for the difference be-
tween the "Eden-Emery"-Pauli operator and the
oscillator Pauli operator (see Fig. 1) using the

It can be shown'~" that the second term on the
right-hand side in the above equation is equivalent
to the inclusion of the occupation probabilities. '
This effect has been studied by Baranger and co-
workers' and is not treated here for the reasons
discussed right after Eq. (5}. Hence the numeri-
cal results presented in this paper do not take into
account the last term of Eq. (11).

In Eq. (11) we are making two improvements
over previous Bruecknex -Hartree-Fock calcula-
tions. '
(1) We are treating the Pauli operator self-consis-
tently and are not employing its oscillator repre-
sentation.
(2) We are allowing for the presence of the Pauli
rearrangement term [this is the first term on the
right-hand side of Eq. (12)].

equation:

Go(W) = Gee(w) +Gee(w) —— Go(W) . (13)
0 0

The effect of these corrections has been previous-
ly studied. '~" For ' O the Pauli operator Q» is
equal to unity for N, +N, &5 and zero otherwise
where N, =an, +/, . All states N, +N, «12 have been
taken into account for the solution of the Bethe-
Goldstone equation

G„(w) =v+v "G„(w)$$ (14)

6= W'= -78 MeV. (15)

To check the sensitivity of the Pauli-correction

and for the strip correction Eq. (13}. The calcu-
lations were done with modified versions of the
BGOLAP and TGEN codes which were written by
Dr. M. R. Patterson of Oak Ridge National Labo-
ratory. A check of truncation effects was done by
taking only states for which N, +N, «8. The aver-
age starting energy lV = -78 MeV has been chosen
as the weighted average of twice the self-consis-
tent occupied single-particle states calculated
without variation of the Pauli operator (Q =Q,).
The single-particle level shift t." has been fixed
to lower the sd shell to approximately zero ener-
gy (C = -', htu =46.5 MeV). To estimate the average
energy denominator A=w —&e, +e&& one assumes
that the sd shell is contributing the major part and
therefore, for this case
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TABLE I. Neutron and proton single-particle levels (in MeV), binding energy per nucleon, and mass and charge radii
taking into account the finite size of the proton, resulting from BHF, PBHF (without Pauli rearrangement term), and

PBHF (with rearrangement) calculations for O. The single-particle energy shift C =46.5 MeV and results are shown

for 2n& +l&~4 and 6.

i6O BHF

2n;+l) ~4
PBHF

(without
rear r.)

PBHF
(with
rearr. ) BHF

2n;+L) ~ 6
PBHF

(without
rear r.)

PBHF
(with
rearr. )

Exp.
data

OS i/2

0&s/2
O~ i/2

OS i/2

0&s/2
OP i/2

a/~ (Mev)
(r ')'" (fm)
(r 2) (fm)

-49.47
-20.52
-15.50

-52.92
-23.44
-18.81
-5.21

2.37
2.51

-47.37
-19.98
-15.05

-50.76
-22.86
-18.33
-4.86

2.38
2.52

Proton levels

-42.99
-18.75
-13.54

Neutron levels

-46.13
-21.51
-16.70
-4.88

2.43
2.57

-50.60
-20.98
-15.55

-54.05
-23.94
-18.87
-5.36

2,36
2,50

-46.91
-19.97
-14.88

-50.26
-22, 85
-18,14
-4.85

2.39
2.54

-40.94
-18.02
-12.56

-43.99
-20.71
-15.64
-4.89

2,48
2.62

-40 +8
-18.4
-12.1

-21.9
-15.7
-7.98

2.6 + 0.1

effect to differences in the average energy denomi-
nator the case for which C= 56.5 MeV, and there-
fore W=-58 MeV, was also calculated.

Results for ' 0 are summarized in Tables I and

II. To see the convergence of Eq. (11) with the
number of oscillator states, all the results are
presented first with the basis N, «4 and then with

N, ~6. From here on the basis referred to corre-
sponds to the basis used for the calculation of Eq.
(11) and not for solving the G, matrix. It can be
seen that truncation effects are small. The differ-
ences between the N, &4 and ¹

~6 single-particle
energies, total binding energies, and root-mean-
square radii are less than a few percent, indicat-
ing that N, &6 is a sufficiently large space. As
should be expected, lowering the excited-state
spectrum (C= 56.5 MeV vs C=46.5 MeV) increased

the total BHF binding energy from -5.36 MeV/nu-
cleon to -9.01 MeV/nucleon. (The iI&v=13.39 MeV
corresponds to the rms charge radius of 2.77 fm in
oscillator basis including the finite size of the pro-
ton. ) However the effect we are trying to study is
the Pauli correction. For C =46.5 and 56.5 MeV
the total binding energies changed by 9 and 15%,
respectively, when the BHF results were com-
pared with the PBHF results with Pauli rearrange-
ment. Although taking an average energy denomi-
nator is a severe approximation it can be conclud-
ed reasonably that a 10% effect is present. Also
it was discovered that all of this change was con-
centrated in the term resulting from an improve-
ment of the Pauli operator within the framework
of standard BHF calculations; the contribution to
the total binding energy from the Pauli rearrange-

TABLE II. Results for C =56.5 MeV. Refer to Table I for a description.

iep BHF

2n] +l ( ~4
PBHF

(without
rear r.)

PBHF
(with
rear r.) BHF

2n]+l] ~ 6
PBHF

(without
rear r.)

PBHF
(with
rear r.)

Os i/2

OPs/2

0&i/2

Osi/

0&s/2
Op i/2
B/A (MeV)
(r ) (fm)

(r 2)i/2 (fm)

-64.12
-28,04
-21,44

-67.81
-31.19
-24, 95
-8.65

2.24
2.39

-58,12
-26.55
-20.41

-61.67
-29.60
-23.86
-7.76

2,28
2.43

Proton levels

-51,19
-24.68
-18.22

Neutron levels

-54.39
-27.56
-21.51
-7.78

2.34
2.48

-67,41
-29.60
-21.82

-71.17
-32.88
-25.42
-9.01

2.18
2.33

-57.27
-26.71
-19.98

-60.78
-29.78
-23,43
-7,56

2.27
2.41

-47.58
-23.55
-16.40

-50.65
-26.36
-19.60
-7,67

2.38
2.52
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FIG. 2. (a), (b) Charge distributions for 0 with C
=46.5 MeV. (a) gives results for N& ~6 and {b) for N&

~4. The dotted lines are for BHF, the dashed lines for
PBHF (without Pauli rearrangement), and the solid lines
for PBHF (with rearrangement), respectively. The dis-
tributions are normalized to protons per fm3.
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FIG. 3. (a), (b) Charge distributions for ~~O with C
=56.5 MeV. See Fig. 2 for description.

ment term was negligible. However, this term
played a significant role in the decrease in mag-
nitude of the single-particle energies and increase
in the rms radii. The rms radius increased by
about 5-8% and the single-particle energies de-
creased in magnitude by about 12- 30%. The agree-
ment with experiment for C = 46.5 MeV is surpris-

ingly good for everything except the total binding
energy, as shown in Table I.

Figures 2 and 3 demonstrate the reduction in the
central density resulting from PBHF calculations,
both with and without the Pauli rearrangement,
when compared with BHF results. For C =46.5
MeV and N, ~6 the reduction of the peak density
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was about 7% for PBHF without rearrangement
and 14% with rearrangement, while for C = 56.5
the reduction was about 14 and 23%, respectively.
The actual magnitude of this reduction is not im-
portant in the present calculation; what is impor-

tant is that it has been shown that most of the im-
provements attained by the phenomenological den-
sity-dependent BHF calculations over standard
BHF can also be reproduced by a more correct
microscopic treatment of the Pauli operator.
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