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Corrections to nuclear densities arising from static short-range correlations are evaluated
for the nuclei 80, Ca, and 56Ni. The corrections are calculated using Rayleigh-Schrodinger
perturbation theory in a basis obtained using Hartree-Fock. All corrections which are sec-
ond order in the interaction are treated. The effects of necessary truncations are studied and
are shown to render the results uncertain by about 20%. The net change in the density is a
radial function which is less than 6% of the Hartree-Fock density and which oscillates in such
a way that its effect on the rms radius is negligible. It is pointed out that in Brueckner-
Hartree-Fock calculations a certain lack of cancellation might result in an excessively
large change in the density and radius.

NUCLEAR STRUCTURE calculated p and rms radius. Hartree-Fock plus
second-order corrections.

1. INTRODUCTION

Because the nucleon-nucleon interaction is not
entirely known theoretically, numerous potentials,
which are to some degree consistent with scatter-
ing data, are presently employed in many-nucleon
problems. Whether or not the particular potential
chosen for a calculation has an infinitely repulsive
core, it is apparent that the nucleus does exhibit
short-range two-body correlations. In order to
take these correlations into account, an extensive
theory based on the Bethe-Goldstone equation has
been developed. ' While such a theory does renor-
malize the interaction so that correlation effects
are included in the calculated energy, present cal-
culations of the density are still carried out using
a single determinant. '

Investigations of the corrections to such a first-
order density calculation, such as those of Negele, '
indicate that higher-order corrections, i.e., the
contribution from higher-order diagrams, are
small, at least for the rms radius. Therefore in
determining the parameters of an effective inter-
action, meant to represent the renormalized two-
body potential, the results of electron scattering
experiments, for example, are compared with
single-determinant results.

A rather different approach consists of choosing

a representation of the scattering data which is
sufficiently "soft" so that straightforward pertur-
bation expansions will converge. Then, instead of
using the Bethe-Goldstone theory, one may apply
the usual Rayleigh-Schrodinger perturbation theory
with the Hartree-Pock method providing a basis.
Such calculations have been carried out for the
binding energies of the light spherical nuclei. 4

The motivation of the present work, in which
correlation effects on quantities other than the
binding energy are calculated, is twofold. First,
it is of interest to ascertain whether simple Har-
tree-Fock with second-order perturbation correc-
tions can describe other properties of the nucleus
as well as it does the energy. In fact it is quite
likely that the perturbation series for the density
is actually more rapidly convergent than the ener-
gy. This is so because the density is only a one-
body operator whereas the energy contains two-
body operators. This does not contradict the usual
statement that the energy converges better than the
wave function itself since that contains the N-par-
ticle density matrix, which is much more compli-
cated than the Hamiltonian. Secondly, by perform-
ing such calculations one may examine the validity
of the single-determinant approximation within the
general context.

In the following section the perturbation expan-
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sion for the one-particle density will be studied.
In See. 3 the effect of truncating the infinite sums
will be considered and in See. 4 the numerical re-
sults will be presented.

2. EXPANSION OF THE ONE-PARTICLE DENSITY

Hartree-Fock calculations have been performed
using the Tabakin interaction in a large variation-
al space, neglecting the Coulomb interaction. '
Single-particle energies and wave functions are
given by the solutions of the Hartree-Pock equation:

(il t[j)+ g(iml vl jm)= 6;, e;,

where (im l
v

l jm) is an antisymmetrized matrix
element of the potential, (il t

l j) denotes one-par-
ticle kinetic energy matrix elements, and basis
states m, a, and i are, respectively, hole states,
particle states, and either of the two. Correspond-
ing to these states, which are linear combinations
of harmonic-oscillator eigenfunctions, are crea-
tion and destruction operators a~~, a, . In the space
defined by these operators, the one-particle densi-
ty operator has the form

p= i ~p j a~a&=- p&a a&

1 ~ (ablvlmn)(mnlvla'b)
2 (e~+ e» —e» —E~)(e~+ e» —6'»' —e~)

m, n, b

(6)

The HF contribution to the density can also be
written in this form as

~ ~o
po ~ dmm' pmm' ~ pmm, '

mm'

(7)

The HF term and the perturbation corrections are
shown diagrammatically in Fig. 1.

The d coefficients thus defined are the compo-
nents of the density matrix. From them one may
immediately obtain the one-particle occupation
probabilities I', including corrections to order

Thus

for g=a, b, c, and d, where

(mnl v
l
ab) (ah

l
v

l
a' n)

(&m &»)(&m + &» e» &b)
a, b, n

(abl v lmn) (mnl vl m'b)
(e» —e~')(em+ e» —e» —~~)

m, n, b

(mnl vl ab) (abl vl m'n)
2 (e~+ e» —e» —E~)(e~+ e» —E'» —e~)

or, introducing the normal product relative to the
Hartree-Fock (HF) ground state,

p=p, +gp„.: a~a, :.
fj

Here p, is the density in the HF determinant.
It is rather straightforward to calculate the ex-

pectation value of p in the wave function consisting
of the HF ground state,

l 0), plus the first- and
second-order perturbation corrections,

l 1) and

l
2). Retaining only terms up to second order in

the interaction one obtains

for the hole and particle states, respectively.

3. EFFECTS OF NUMERICAL TRUNCATION

Although there are alternative methods for eval-
uating hp„b, p„, and K,

' these as well as Ap, and

where

Po + P02 P11 &

(b)

and
II )g lk

Here the only contributions come from two-particle
two-hole states in

l 1) and from one-particle one-
hole states in

l 2). The various corrections to the
density can be written as

&p»(r) =+&I p&&(r),
$j

(c)

FIG. 1. Diagrammatic representation of the Hartree-
Fock density and the second-order perturbation correc-
tions to it. The letters (a)—{d) refer to the indices on
the various 4p terms in Eqs. (5) and {6).
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Apb may be explici. tly and directly evaluated in the
HF basis. The advantage to this method is that all
terms and all parts of the interaction are treated
uniformly rather than using different approxima-
tions appropriate for the central and tensor parts
of the force or for the different geometries of the

diagrams.
The difficulty with such a procedure arises from

truncation. First of all, the single-particle orbit-
als are expanded in a large, but not of course in-
finite, basis and secondly, the total number of
orbitals obtained by solving Eq. (6) must be trun-
cated.

For the first point, the particle-state wave func-
tions appear in two different ways: as matrix ele-
ments of the potential, which is short-range, and
as representatives of the density operator, which,
for light nuclei, have a range of interest of only a
few fermis. Therefore, as with hole states, one
needs to know these wave functions accurately over
a relatively small distance. In this particular ap-
plication the wave functions are described, with
sufficient accuracy, up to at least 6 fm, ' so that
this truncation is of little consequence.

For the following it is of interest to consider the
average change in the occupa, tion probabilities,
defined by

g(1 —P ) gP~
A A

1 ~ ~ (mn~ v~ ab)

diagrams (a) and (b) it will be shown that a similar
cancellation does occur. These diagrams prove to
be of the same magnitude as (c) and (d), although
the integrals of hp, and Ap& are zero by virtue of
the p indices being a particle and a hole.

In order to study the results of truncating the
space it is convenient to introduce a parameter
which will characterize the space. The use of
NSw for such a purpose is inappropriate since it
is the eigenvalues of the HF Hamiltonian, not the
harmonic oscillator, one wishes to characterize.
The parameter chosen is defined by

( )
1 ~ ~ (mn~v~ab)

&m+ &n —&a —&b
a, b~g mn

The remainder will be'

(12)

where the set M is restricted to a single parity
and to the highest HF state of a given set of quan-
tum numbers, j and l. (Since only spherical nuclei
are considered, only states with the same j and l
are needed in the expansion of the HF states and
there is complete degeneracy in j,.) The set of
states obtained by solving Eq. (1) in a space of N
oscillator shells is called the model space which
will henceforth be characterized by $.

The various quantities can now be considered to
consist of two parts. For example, one may cal-
culate a quantity «($) with all sums limited to the
model space,

This parameter is equivalent to the nuclear matter
defect parameter which measures the strength of
the short-range correlations. It is related to the
magnitudes of the diagrams 1(c) and 1(d) through
the equalities

1 ~ ~ (mn~ v~ ab)

1 (mni vi ab)
2A + + E.+ „etg e,

a, b) 5 mn

(13)

Js' ~p, =Q d'J'fd p. ,
'

mm'

and

d'r~ p, = g d",,! d'r p... = W

so that the fractional change in the density arising
from each of these terms is of the order of I~. . It
may also be noted that diagrams (c) and (d) are
each related to the square of the "defect function"
and therefore arise from the same type of physical
correlations which produce the g matrix. ' Further-
more these diagrams approximately cancel each
other in the calculation of the corrections to the
rms radius in a finite nucleus. '

Although no analogous relationships exist for

Using a simple model one can estimate the re-
mainder, sz, for a given model space computa-
tion. For large model spaces, in which particle
states extend about 80 MeV into the continuum,
the second term on the right-hand side of Eq. (13)
is obviously small compared to the first and can
be neglected. For the first term, following Ker-
man and Pal, "one makes the approximations:
(1) The particle states a, b are replaced by plane
waves which are subsequently transformed to rela-
tive and center-of-mass momenta,

~
ab) =

~
Kk) .

(2) The summation on a, b, is replaced by inte-
grals over K and k.
(3) The hole-state energies are replaced by an

average valuep E'm+ cn~ 24o
(4) A multiplicative factor which rcughly corrects
for the phase space of the filled Fermi sea is in-
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eluded

q(K, k, k, )=
if k'+ —,'K'&k~',
lf k —pg&ky,

otherwise .

With these approximations Eq. (18) becomes

b, «($) =- —g (mn —nm1 E1 mn —nm),
1

The results are shown in Fig. 2. The solid line
represents the results of a series of different
model space calculations of «($) for $ & 80 and the
dashed curve the estimates obtained using Eq. (16).
By construction the curves meet the 80 MeV. The
fact that the curves continue smoothly through (
= 80 indicates methods are equally appropriate in

the region of the intersection.

4. RESULTS: DENSITY AND rms RADIUS

where

v1Kk) Q(K, k, kz)(Kk1v
[(k '/2m)(-, ' k'+ —,'K') + 2z j'

(15)

For "Q, in a model space given by $ =80 MeV
and choosing 6 = 25 MeV and k& =1.4 fm ', the re-
sult is ax(80) =0.017 while z(80) =0.068. It is
therefore concluded that for this space, errors
of approximately 20% are introduced by truncating
the space, i.e. , that a=0.085.

It should be noted that this value for ~ is not so
much smaller than that obtained from very much
harder interactions. " This indicates that the con-
tributions to g come to a large extent from the low-
er energy region (below $ = 80 MeV) even for those
interactions.

To further examine this truncation effect one
may fit the expression for «($) in "0with the form

Calculations of the corrections to the density
were carried out for the nuclei "Q, 'Ca, and "Ni
in a model space with ( =-80 MeV. The results are
shown in Figs. 3-5. The solid curves, labeled
a —d, represent the contributions of the four dia-
grams described in Sec. 2. The total second-order
correction is also shown and labeled Ap. Since all
of the corrections have a magnitude of the order
of Kpo, this quantity, exp„has been included in
each figure, As the figures indicate, Ap, and Apb
are about as large as hp, and Apd.

The main result of these calculations of the den-

20

+ sKp

oo -g

«($) =0.085 —0.112 e ' ' dt
t (16) 3 p

where

f, = 7($ + Sn, )/800 . (17)
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FIG. 2. Defect parameter f(: in the Q as a function of
the upper bound of the continuum. The solid curve rep-
resents explicit model space computations while the
dashed curve is an extrapolation based on a simple Fer-
mi-gas model.
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FIG. 3. Comparison of the terms Ap;, +Kpo, and Dp
in "0.
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a=a, 1+ (18)

where

tl/2
a, = — d'r r 'p, (r)

sity corrections is shown in Fig. 6. The three up-
per curves are the HF or single-determinant den-
sities, p, . The lower curves are the total second-
order corrections, multiplied by 10 to show their
structures. As is apparent from the figure, the
total correction to the density is, at every point,
smaller than 6%.

Having obtained the corrections to the density it
is straightforward to calculate the change in rms
radius a. Including second-order corrections the
rms radius is given by

TABLE I. Excitation parameter, rms radius, and
fraction change in the r'ms radius.

ao

0 0.068 2.38 0,031 -0.044 -0.035 0.044 -0.004
4 Ca 0.080 2.90 0.032 -0.034 -0.046 0.055 +0.007¹i 0.081 2.98 0.022 -0,012 -0.032 0,040 +0.018

As is shown in the table the f, 's are not negligi-
ble and a,f, represents a correction to the rms
radius of from 1 to 5% with varying signs. Be-
cause of this sign variation the net change in the
radius is quite small, less than 1% in "0 and 4'Ca

and less than 2% in "Ni.

5. CONCLUSIONS

f,=,~ d'rr'n, p, (r) .
2ao'A (20)

The second-order corrections to the density and
rms radii of various nuclei have been calculated
in a large model space. These corrections are in
every case rather small indicating that single-de-
terminant approximations are reasonable provided
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FIG. 6. Comparison of the density term po and the
correction term 4p.

all paxts of the corrections are treated consistently.
The convergence of the calculation has been stud-

ied and, as is. indicated by the calculation of ~,
these results are uncertain by at most 20%. Since
the size of the corrections does depend on a can-
cellation it is possible that this percent error will
be multiplied in the final result. However, this
will not change the conclusion that the second-or-
der corrections are rather small. The quantity x
is sensitive to the details of the nucleon-nucleon
interaction and it is known that "harder" potentials
lead to larger values.

Independent of the particular interaction it ap-
pears that short-range correlations do not have a
dramatic effect on the nuclear density. The cor-
rections have the magnitude of I(:po, with z an av-

erage defect factor, and the different terms com-
bine to have a small total value.

Finally, it is interesting to speculate on the out-
come of similar computations using g matrices
derived from strong potentials. In the calculations
of navies eI; al."the average field is defined by
solving the Brueckner-Hartree-Fock (BHF) equa-
tions. This ~ives single-pax"ticle and -hole wave
functions quite similar to those resulting from HF
calculations with the Tabakin interaction and they
will be considered, in what follows, as identical.
In the BHF theory the particle-hole potential is
usu: y defined so that diagram 1(b) is exactly can-
.celled. Thus the terms contributing to the density,
to this order, are 1(a) which is -xp, and 1(c) and

1(d) which roughly cancel. In their calculations a
z of about —,

' wouM consequently decrease the cen-
tral densities by about 15% and increase the radii
by about 8%, if the diagram itse1f is not very
small. In other calculations with nuclear matter
g matrices, using the local density approximation,
it is not clear that the diagram in Fig. 1(b) would
be exactly cancelled so that no conclusion can be
drawn. It would thus be of interest to have higher-
order calculations of the density in the g-matrix
framework.
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