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An off-shell generalization of the Jost function is developed within the framework of the
differential-equation approach to the off-she11 T matrix. Irregular solutions of the inhomo-
geneous Schrodinger-like equation that occurs in this approach are introduced, and their
behavior at the origin is used to define an off-shell Jost function. The half-off-shell Tmatrix
is expressed directly in terms of the off-shell Jost function. It is shown how the fully off-
she11 T matrix for a particular partial wave can be expressed simply in terms of a single
integral involving the irregular solution for that partial wave. An integral equation for the
irregular solution is developed, and used to derive an integral representation for the off-
she11 Jost function. Iteration of the integral equation leads to a series of successive approx-
imations to the T matrix. The formalism is applied to several examples, including a bound-
ary-condition model.

I. INTRODUCTION

The concept of the Jost' function was originally
introduced as a basis for examining the properties
of the 8 matrix that arise in the scattering of s
waves from a central potential. The Jost function
is determined by the behavior of the so-called ir-
regular solutions of the radial Schrodinger equa-
tion at the origin. For large values of the radial
coordinate these solutions behave like e'"", where
k is the wave number. The solution of the Schro-
dinger equation which is well behaved at the origin,
the so-called regular solution, can be expressed
in terms of the irregular solutions. The Jost func-
tion, as well as the regular and irregular solutions,
have played a central role in the general problem
of constructing a potential from a knowledge of the
phase shifts. '' The Jost function itself can be ex-
pressed in terms of the phase shifts and the bound-

state energies. ' Besides being related to the ir-
regular solutions of the radial Schrodinger equa-
tion, it ean be shown4 that the Jost function for a
local potential is identical to the Fredholm deter-
minant of the integral form of the radial Schro-
dinger equa, tion. Thus it is tied in mith the conven-
tional theory of integral equations. Detailed treat-
ments of the Jost function, as mell as extensive
references to the literature, can be found in sever-
al of the more recent texts on scattering theory. "'
Here we shall follow the conventions of Newton. '

In general the Jost function, corresponding to a
particular partial wave, has two very important
properties: Its phase is the negative of the phase
shift for the partial wave, and its zeros in the up-
per half of the k plane correspond to the energies
of the bound states which occur in the partial wave.
Thus, the Jost function for a tmo-particle system
is directly related to the observables of the system.

As is well known, the phase shifts for a two-par-
ticle system can be used to describe the elastic,
or on-shell, scattering amplitudes for the system.
In a many-particle system the various pairs of
particles do not scatter elastically from each other,
and therefore knowledge of the on-shell two-parti-
cle scattering amplitudes is not sufficient to deter-
mine the properties of the many-particle system.
What are needed are the off-shell amplitudes. In
many theories, these off-shell amplitudes are ex-
pressed as matrix elements of a transition or T
operator. This set of matrix elements is usually
referred to as the T matrix. The T matrix plays
a role in the theories of three-particle systems,
nucleon-nucleon bremsstrahlung, ' nuclear matter, '
and finite nuclei. " The T matrix is also used for
the evaluation of cluster coefficients in quantum
statistical mechanics. " The theory of some solid-
state systems can also be formulated in terms of
the T matrix. "

Here we shall present a theory of the T matrix
based on a generalization of the Jost function.
This generalization, which we shall refer to as
the off-shell Jost function, will be formulated in
terms of the van I.eeuwen-Reiner" approach to
the T matrix. In their approach the T matrix is
obtained from an inhomogeneous form of the
Schrodinger equation, in which the inhomogeneous
term is proportional to a free wave. In this equa-
tion there appear two momenta, k and q, where k

is an on-shell momentum, related to the energy
by E =k', and q is an off-shell momentum. When

q = k the equation reduces to the conventional
Schrodinger equation. In analogy to the theory
of the Jost function, we shall define irregular solu-
tions of the inhomogeneous equation, which for
large r behave like e'"". An off-shell generaliza-
tion of the Jost function arises by considering the
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II. OFF-SHELL JOST FUNCTION

The two-particle transition operator T(s) can be
obtained as the solution of the equation

T(s) = V+ V(s H, ) 'T(s)-, (2.1 )

where V is the two-particle potential, s is a com-

behavior of these irregular solutions for small r.
We shall show that the half-off-shell T matrix can
be expressed directly in terms of the off-shell Jost
function. The fully off-shell T matrix will be ex-
pressed in terms of a single integral involving an
irregular solution. We shall also show that these
irregular solutions can be obtained from the solu-
tion of an integral equation of the Volterra type.
This integral equation will be used to write down

on integral representation for the off-shell Jost
function. All of the elements of this off-shell
theory go over into corresponding elements of the
theory of the ordinary Jost function, when one

goes on shell; i.e., when q=k.
The formal results outlined above, and presented

in detail in Sec. II, are applied in Sec. III to sever-
al examples; namely, the square-well potential,
the exponential potential, the boundary-condition
model (BCM) with an external exponential potential,
and the Hulthen potential. In each case, the irreg-
ular solutions of the off-shell theory and the off-
shell Jost function are derived. For all but the
square-well potential the fully off-shell T matrix
is determined. The results for the exponential and
Hulthen potentials are much simpler than those
given previously. '+" The results for the BCM
mentioned above have not been given before.

A brief summary and discussion of the results
is given in Sec. IV. The Bessel functions used here
follow Messiah's" conventions. Throughout we
work in units in which 5'/2m is unity.

plex energy parameter, and Ilo is the kinetic ener-
gy operator. The operator T(s) can be obtained
from the solution of a differential equation. Fol-
lowing van Leeuwen and Beiner, "we define a wave
operator Q(s) according to the relation

Q(s) = 1+ (s H, )-'T(s) .

It then follows from (2.1) and (2.2) that

T(s) = VQ(s)

and

(2.2)

(2.3 )

(s —H, —V)Q(s) = s H, . - (2.4)

where we have introduced the free waves

(r(qlm) = (2/v)"'j, (qr)Y, (r); (2.6)

j,(qr) is the usual spherical Bessel function and

Y, (r) is a spherical harmonic. The boundary con-
dition that must be imposed on the solution of (2.5)
for large r can be obtained from (2.2). We have

(r(Q(s)(qlm) = (2/v)'~'j, (qr)Y, (i)

+ rGos r' dr' r'Ts q/m

(2.7)

in which we insert the well-known representation
for the free Qreen's function, "
(r(G, (s)( r') = -k g j,( kr, ) k'I(kr, ) Y, (r)P, ' (i'),

(2.8)

Writing out (2.4) in a mixed representation we have

(s+ V'- V(r)](r(Q(s)(qtm)

= (s —q')(2/v)"'j, (qr) Y, (r),
(2.5)

and then let r become large. We find, using (2.6), that

(r(Q(s)(qlm) ~ (2/v)'"(qr) 'Y, (r)(sin(qr ——,
' iv) —,'vq(klm(T—(s)(qlm)e' I'" ]. (2.9)

In (2.8), we have set

s=k'+is, 0««1. (2.10)

(klm(T(s)( klm) = -(2/vk)e' ' sin5, (k), (2.11)

We see that the half-off-shell T matrix element
(klm(T(s)(qlm) can be obtained from the asymp-
totic limit of the solution of (2.5). By comparing
the on-shell (q =k) version of (2.9) with the well-
known asymptotic form of the solution of the
Schrodinger equation, it is easy to show that the
on-shell T matrix elements have the normalization

v, (z) =zng(z),

wI'i(z) =zki'l(z) = v)(z) +lu, (z) .

(2.12)

Since the potential is central, we can write

(r(Q(s)(qlm) = (2/s)"'(qr) '@,(k, q, r) Yg'"',

(2.13)

where 5, is the phase shift for the lth partial wave.
It is convenient at this point to introduce a set of

functions related to the spherical Bessel, Neumann,
and Hankel functions by

n, (z) =zj, (z),
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which upon substitution into (2.5) gives

k'+ — —P(r) P, (k, q, r) = (k' —q~)u, (qr) .
d' I(l+ 1)

(2.14)

We shall now show that the solution of (2.14) can

be related to the solutions of the equation

= (k' —q')e' ""w, '(qr} .
(2.15)

The solution of (2.15} that is of interest has the
asymptotic normalization

(2.16)

It follows from (2.15) and (2.16) that when q =yk,
this function goes over into the two irregular solu-
tions of the Schrodinger equation, which enter
into the theory of the ordinary Jost function'; i.e.,

f, (ak, r}=f,(k, +k, r) .

It now follows in a straightforward manner from

(2.9) and (2.12}-(2.17) that we can write

P, (k, q, r) = 2vq T-, (—k, q; s)e ' '" ' "f (k, r) + (I/2i)[ e ' '" ' "f (k, q, r}—e' '""f(k, -q, r)], (2.18)

where

T, (k, q; s) = (kl m IT(s) I qlm) . (2.19)

-«z)2)tw(21 1)f (k, q) = .. . limr' f (k, q, r) .
r O

(2.20)

The half-off-shell T matrix element T, (k, q; s) is
determined by the behavior of the f, 's for small r.
Since, in general, for small r, the centrifugal bar-
rier term in (2.15) will dominate over the poten-
tial, it is expected that f, will behave as r as r
approaches zero. This can be shown more care-
fully by assuming a power series solution for f„
and by requiring that the potential either have a
simple pole at the origin or be analytic there. VYe

define an off-shell Jost function by

%e have normalized the off-shell Jost function

f, (k, q) so that when q =k it becomes the ordinary
Jost function. ' It now follows from (2.18) and

(2.20) that

T (k . , k 'fr(k, q) -f&(k, -q)
q wiqf (k)

where

f, (k) =f, (k, k),

(2.21)

(2.22 )

and is the ordinary Jost function. Thus the half-
off-shell T matrix elements can be expressed di-
rectly in terms of the off-shell Jost function. By
using the relations which exist between the fully
off-shell T matrix elements and the half-off-shell
T matrix elements, one can write the off-shell
7." matrix in terms of the off-shell Jost function.
For example, rewriting (2.21) of Ref. 17 with our

normalization and notation, we have

Ti ( p, q; s) =, , (q' —s)T ~(q, p; p'+ ie) —(p' —s)Ti ( p, q; q'+ is) —( p' —s)(q' —s)

T, (P, x; x'+ ie)T,*(q, x; x2+ ie) 1 1Jx xdx 2 2 2 2 2X —S X —g —ZE X —P —l6 (2.23)

This relation assumes there are no bound states.
It follows from (2.15) and (2.16) that

f, (k, -q, r) =fP(k, q, r) (k, q, and r real),

(2.24)
which in turn implies from (2.20) that

f, (k, -q) =fp(k, q) (k and q real) . (2.25)

It is well known' that the phase of the Jost function
is the negative of the phase shift; i.e.,

(2.26)

Combining this with (2.21) and (2.25), we see that
for k and q real, the phase of the half-off-shell
T matrix element is the phase shift.

Using standard Green's function techniques, it is
possible to derive the following integral equation:

f (k q r) =e« ~»«tg&+~(qr)

-k ' dr' u, kx v, kr' —v, kt' u, kr'

x V(r')f, (k, q, r') . (2 27)

An integral representation for the off-shell Jost
function is obtained by combining (2.20) and (2.27)
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to yield

f, (k, q) =1+k '(q/k)'e '('""'
x dru, krVr &k, q, r .

0
(2.28)

It follows from (2.15) that if the energy k' is every-
where large compared to the potential, then

f, (k, q, r) should be well approximated by the so-
lution of (2.15) with no potential; i.e. , we expect

BCM can be obtained in the form

T)(p q s) tl(p q; s)+tl (p q; s), (2.34)

2a(q)
t, (k, q; s) =

mq r~

Here

(2.35)

where t, (p, q; s) is the T matrix for the pure BCM
(no outside forces), and is given in the half-off-
shell case by the simple formula"

f (k y) ~ s (1/2)tv (+)( ) (2.29)
d, (k) =w, + (kc) —kb, w, + '(kc), (2.36)

Thus at high energies the iterative solution of
(2.27) should be of practical value in determining
the off-shell function f, (k, q, r), and from (2.28)
the off-shell Jost function. One also expects the
right-hand side of (2.29) to be a good approxima-
tion to f, (k, q, r) when the centrifugal barrier term
in (2.15) dominates the potential.

Besides the possibility of obtaining the off-shell
T matrix from (2.23), it is also possible to use
(2.3). Combining (2.3), (2.6), and (2.13), we have

T, (P, q;s) = (P 1m
~
T(s) ~q I m)

and

Z&(q) =u)(qc) —qb( u((qc)

d((q) —(-)'d, (-q)
2z

(2.37)

oo

t'(p s)= dr u(pr)- ' w+(kr)
7(pq

' d (k)

The other part of the 7.' matrix is the contribution
from the potential outside the boundary-condition
radius and is given by

Oo

dru, (pr)V(r)p, (k, q, x) . (2.30)
WPQ o

xy(r)y, (k, q, r), (2.38)

Inserting (2.18) in (2.30), we obtain

x &r+, O' V rf, k, q, r . 2.32
0

One can easily check that (2.31) reduces to an
identity when p= k by comparing (2.32) and (2.28),
and by using (2.21).

The results of this section can be generalized in
a. natural way to the boundary-condition model is

In a BCM the logarithmic derivative of the radial
wave function is specified at a certain distance
r = c from the origin, and no detailed assumptions
are made about the potential within the boundary-
condition radius c. We shall specify the boundary
condition by the equation

4'g(c) = b,4')(c) . (2.33)

Throughout, primes will denote differentiation
with respect to the argument. The case b, =0
corresponds to a hard core within the radius c.
It it shown in Ref. 19 that the T matrix for the

T, (p, q; s) = T, (k, q; s)II —Y, (p, k, k)I

~ „,, [Y,(P, q, k)- Y, (P, -q, k)l,
(k/q)'

(2.31)

where

Y, (p, q, k) = 1+p '(q/k)' e '('/""

d, (q)F, (k, q) —(-)'d, (-q)E, (k, —q)

where

/k 5 -i(1/2)l w f) (» q c) —b)fI(k, q, c)
Eg(k gg —8

d) (q)

(2.39)

(2.40)

E, (k) = F, (k, k) . (2.41)

We have chosen to write the formulas this way so
that for large k, Il, has the behavior

E, (k, q) ~ 1. (2.42)

This follows from (2.29) and (2.36). Clearly,
E, (k, q) plays the role of an off-shell Jost function
for the potential outside r = c. If there is no out-
side potential E,(k, q) = 1, and (2.39) reduces to
(2.35).

The integral equation (2.27) is still valid for
r & c, and can be used to derive an integral rep-

where Q, is the solution of (2.14) with the boundary
condition (2.33).

The expression (2.18) for Q, is still valid for
r ~ c, and when combined with (2.33) leads to the
following result:
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resentation for E, . The result is

x dr[cosy, (k)u, (kr)+sin)I, (k)v, (kr)]
C

x V(r)f((k, q, r), (2.43)

I"((k, q) =1+k "[d((k)/d)(q)]e '"""e'"I'"

where g, is the phase shift for the pure BCM, and
is given by the on-shell version of (2.35), which is
normalized as in (2.11). It is easy to see that the
factor in square brackets under the integral sign
in (2.43) is the radial Schrodinger wave function
for the pure BCM. It is also not hard to show that
when the BCM is turned off, i.e. , b, =0, c-0,
(2.43) reduces to (2.28).

By inserting (2.18) into (2.38), and using (2.34), (2.35), and (2.37), it can be shown that

t, ' (p, q; s) =t, ' (k, q; s) —T(k, q; s)I'k(p, k, k)+ .
( )

[(f (q)I'((pkq) k) —(-)'(f (-q)Y;(pk -qkk)]k

with

1;(j,q, k)=( ~ k ']k( k)/k(k)]e ' "'" kr, (kk) — ' n; (kr))v(r)f (k, k, r).
C

(2.44)

(2.45)

When the BCM is turned off, (2.44) and (2.45) re-
duce to (2.31) and (2.32).

We shall illustrate the results of this section in
the next section by presenting some explicit ex-
amples.

III. SOME EXAMPLES

A. Square Well

The simplest example is that of the square-well
potential, given by

y(r) = p„, 0&r&a

square well is obtained from (2.21) and (3.4). The
relations (2.39), (2.40), and (3.2) can be used to
construct the half-off-shell T matrix for a BCM,
in which the external potential is a square well.
The fully off-shell T matrices are derivable from
(2.31), (2.32), (2.44), (2.45), and (3.2). We do not
bother to write these results out since they have
been given before, "and do not appear any simpler
in our formalism.

B. Exponential Potential

=0 r&a. (3.1) The s-wave T matrix for the potential

It is straightforward to solve (2.15) and carry out
the limit in (2.20). The results are

f (»q r)
Q2 2

= e' '" ' " A., u, Kr + B,v, Kr +, , m, ' qr

I'(r) = -(z.'/4a') e "~' (3.5)

has been worked out before, "but it is instructive
to rederive the results in terms of the formalism
of Sec. II. The new expressions are much simpler
than those given previously. Following the tech-
niques of Ref. 14, one can show that the solution
of (2.15) for /=0 is

0&r &a=e' '" "u) '(qr), r~a,

K = Vo+k,

(3.2) f,(k, q, r) = e'",E,(I; 1 —ika —iqa, 1

+ika-iqa; ——,'z, 'e 't'), (3 6)

and

W [v, (Ka), u), ' (qa)],

B, = —(, ' „W[u, (Ka), u) I' (qa)],K —@2'

(3.3)

where, E, is a special case of the generalized hy-
pergeometric function defined by

~ A A ~ e
known(+1k ' ' k ~)nk Pk) ' '

k Pn) «)

(3.7)

k~-
f, (k, q) = (q/K)'B, + (3.4)

One can easily verify that (2.29) is valid for this
potential. The half-off-shell T matrix for the

This result is interesting in that each term of the
power series in (3.6) corresponds to an iteration
of the integral equation (2.27). The power series
converges for all values of the independent variable.
The integral in (2.32) can be evaluated by integrat-
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ing the series term by term to give

(1 —ika —iqa)„(1+ika —iqa)„[pBa'+ (n —iqa)'] (3.8)

Combining (2.31) and (3.8) gives a much simpler result for the T matrix than that given previously
The half-off-shell T matrix, for the BCM in which (3.5) is the external potential, can be obtained from

(2.39), (2.40), and (3.6). The integral in (2.45) can be performed by integrating the series term by term,
which yields

Y (p q k) =1+(pa) '[d ( k)/ de(q)]e'
(1 —ika —iqa)„(1+ika —iqa)„

pa cospc+ (n —iqa)sinpc sinpc pb, co—spc
p'a'+ (n —iqa)' (1 —ikb, )(ika+ iqa —n)

(3.9)

The results for this BCM have not been given before. All of the series (3.6), (3.8), and (3.9) converge for
all values of z, ', moreover, for reasonable values of z,' they converge rapidly enough to be of practical
value in numerical work.

C. Hulthen Potential

This potential is given by

e- r/a
V(r) = V, , (3.10)

It falls off exponentially for large r and has an t' ' singularity at the origin. Following the techniques of
Ref. 15 it is not hard to show that

e- rla
f, (a, q, r)=e' 1 ~

)( ),E,(1, 1 B 2, 1 ~ B;2~, 1 C+;e 'a)), (3.ii)

where, E, is a special case of (3.7) and

A =- ika+ i(V-a2+ k&aB)

B- ika i(PaBq k&'aB)2f&

t" = 1 —2ika,

o =- ika —iqa.

It can also be shown using Ref. 15 that

I'(1+ o)I'(C+o')
r(i+A+a)r(1+Be+o) '

(3.12)

(3.13)

The result is
00

V a'
2'a' —q'a' a(a —2(q ) ) '

(3.15)

When q =k (3.13) and (3.15) reduce to the known
results for the Hulthhn potential Jost function. ' In
evaluating the fully off-shell T matrix it is conven-
ient to rewrite (2.32) in the form

I;(p, q, k) =f,(k, q) + (k' —p')p '

thus the off-shell Jost function for the Hulthhn po-
tential has a very simple expression. This can be
written in terms of an infinite product by using the
well-known representation for the gamma function

1 OO

r(l+ s)
=e~' 1+z n e-'". (3.14)

x dr sinpr [f(k, q, r) —e'~) .
0

(3.16)

This result is obtained by combining (2.15) and

(2.32) and by carrying out an integration by parts

Putting (3.11) into (3.16), we find

(k'a' P'a')AB " (1+A+o')„(1—+B+o)„1
(I+o)(C+o) + (2+a)„(1+C+o)„p'a'+ ( aiqn —1)'- (3.i7)

(2.31) and (3.17) can be combined to give the fully off-shell T matrix for the Hulthbn potential.
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IV. SUMMARY AND DISCUSSION

We have shown how the Jost function can be gen-
eralized in a natural way, so as to allow a treat-
ment of off-shell scattering. All of our equations
have been written in terms of local potentials;
however, it is clear that they can easily be extend-
ed to nonlocal potentials as well. Besides making

the analysis of the exactly solvable examples more
transparent, our results lead to a series of suc-
cessive approximations to the 7.

' matrix. Iteration
of (2.27) and subsequent substitution into (2.28) and
(2.21) gives the half-off-shell T matrix as the ra-
tio of two power series in the potential strength.
These series should converge rapidly for high en-
ergies and/or high angular momeata.
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