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The fivefold differential cross section computed from the exact solution of the three-particle Faddeev

equations for separable spin-dependent s -wave nucleon-nucleon interactions is compared with the data
from the recent kinematically complete measurement of 'H(p, 2p)n reaction at 39.5 MeV in 4n

geometry. The calculations agree well with the data, which includes regions of phase space where

quasifree scattering and final state interactions are not the predominant reaction mechanisms.

I. INTRODUCTION

Recent theoretical studies' ' of the three-nucle-
on problem have provided an understanding of the
three-nucleon system in terms of the nucleons
interacting via two-body forces. The three-nucle-
on system is the simplest system which allows
the study of the features of the nucleon-nucleon
interaction which cannot be obtained from nucleon-
nucleon scattering, including the determination of
neutron-neutron scattering length. The most im-
portant features are the off-shell behavior of the
two-nucleon T matrix and the possible existence
of explicit three-body forces. These aspects mani-
fest themselves in other systems too, but the
three-nucleon system is most amenable to exact
calculations and offers the possibility of investi-
gating these effects quantitatively.

In general, two different approaches have been
used for the accurate calculations of the three-
body bound state, N-'H elastic scattering, and

breakup amplitudes. The traditional approach has
been the variational calculations, some of which
incorporate the full complexities of the phenome-
nologica1 nucleon-nucleon interaction. ' However,
for positive energies only one accurate variation-
al s-wave calculation of elastic N-'H scattering
using a central potential of Yukawa type has been
performed by McDonaM and Nuttall. 4 This method
could be used to compute breakup cross sections
and could be extended to more complicated poten-
tials and higher angular momenta. 4 The second
method is to start from the Faddeev formulation'
or one of its variants. ' The solution of the Fad-
deev equations with the full nucleon-nucleon po-
tential is a very difficult problem and has only
been carried out for the bound state. ' Only in the
last few years have exact solutions in the breakup
region been obtained using separable potentials.

One result of many previous calculations' is
that the general features of the three-body break-
up results are not very sensitive to details of the
two-nucleon interaction. If the few critical param-
eters of the two-nucleon interaction agree with the

experimental data, the resulting general features
of the three-body calculations agree reasonably
well with the data although a quantitative fit is not
obtained. This is characteristic of elastic scatter-
ing as well as kinematically incomplete and com-
plete breakup calculations. However, the latter
have primarily been compared with data in the
phase-space regions where the simple reaction
mechanisms, i.e., quasifree scattering (QFS) or
final state interaction (FSI) dominate the cross
section. Thus, theory and experiment have not
been compared in the large region of the three-
body phase space. It is this region, away from
dominating QFS and FSI processes, where the
breakup cross section should be most sensitive
to one of the doublet amplitudes, M», (two like
nucleons coupled to spin zero) and hence to the
details of nuclear interaction. Data in this region
are now available from the recent kinematically
complete measurement of the 'H(p, 2p)n reaction
at 39.5 MeV in 4m geometry. '

We have developed a computer code' to calculate
the fivefold differential cross sections, d'c/
dQ3dQ4dE. These calculations will be discussed
in Sec. II. In Sec. III, our calculations are com-
pared with the data, which includes phase space
regions where QFS and FSI processes do not pre-
dominate. A summary of the results and an out-
line of current work follows in Sec. IV.

II. BREAKUP CALCULATIONS

The Faddeev equations for N-'H breakup have
been solved using separable potentials. One of
the first calculations of do/dQdE for the 'H(n, p)-
2n reaction was performed by Aaron and Amado'
using the contour deformation method. " Recently,
the same model (YY model) was solved by Cahill
and Sloan" with improved results.

The notation and equations for the off-shell T
matrix used in our calculations are from Cahill
and Sloan's paper with corrections' and exten-
sions necessary for calculating the fivefold differ-
ential cross section, d'o/dQ, dQ~dE, appropriate
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for kinematically complete experiments. The sep-
arable s-wave spin-dependent nucleon-nucleon po-
tential used is a charge-independent Yamaguchi
potential" with parameters determined from low-
energy two-nucleon data. " Coulomb effects are
not included. From the Lippman-Schwinger equa-
tion, the off-energy-shell two-body scattering am-

plitude has the separable form,

t„(q, e+ie, q') =g„(q)F„(e+ic)g„(q'),

where g„are the form factors of the interaction,
F, is the propagator corresponding to the two-
body c.m. energy, e. With the above separation
and partial-wave decomposition, the Faddeev equa-

tions reduce to one-dimensional coupled singular integral equations of the form:

6;'(k', k) d4(k;k)+/A JB„„" (k', k')P„(z —Bk',/4 ~ 'a)T'1(k", k)k"'dk",
n
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where s is the total spin, l is the angular momen-
tum, T&;~ is the exact amplitude and B&;& is the Born
term, and n =1, 2 refers to two like nucleons be-
ing in spin 1 or 0 state. The k, k', and q' are the
c.m. wave numbers for the incident particle, one
of the breakup nucleons, and relative wave number
of the remaining two nucleons, respectively. The
main difficulty in solving Eq. (2) is due to the

branch points of the kernel arising from the three-
body propagator in B&'~&, . For the breakup region,
these singularities occur on the real k" axis. Ro-
tating the integration contour into the lower-half
k' plane avoids these singularities in the solution
of Eq. (2) for complex k' (k'=~'e '', '-real).
This requires analytic continuation of 4', , (k', k")
for complex k' and results in an integral equation
for T&„;'(z'e '', k) which is solved numerically. Us-
ing this solution in an integration along the de-
formed contour" the T&„(k',k) on the real k' axis
are obtained.

The numerical integration over k" was performed
by a 28-point Gaussian quadrature. The resulting
simultaneous equations were solved by Gaussian
elimination to calculate 8„;&. The amplitudes, N&„'&,

defined by Cahill and Sloan, are obtained by par-
tial wave recomposition of T&„',& and multiplication
by the propagator and the form factor. The three-
body transition amplitude, M, is expressed in
terms of one quartet amplitude, M~, and doublet
spin amplitudes M» and M~„ the latter two corre-
spond to coupling the spins of two like nucleons to
spin1 and spin 0, respectively. M, M», andM~
are linear combinations of the N~" s.

IMI'=21M, I'/2+1M', l'/'+ 1M„I'/'.

Taking the nonrelativistic limit of Mgller's in-
variant formula, '4 the fivefold differential cross
section in units of mb/sr'MeV is,

d o/dQ~dQ4dE~ = K.F.X ~M
~

(4)
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FIG. 1. The experimental cross sections from Ref. 7
for H(p, 2p) n reaction at 39.5 MeV at the angles 13 94,
and AQ =Q —Q4. The minimum recoil momenta and rela-
tive energies are also identified in the figure. Error
bars shown are statistical errors. The absolute nor-
malization is accurate to 6%. The solid lines are the
results of separable potential calculations discussed in
the text. Dashed lines are model predictions from Ref. 7
These angle pairs are selected to emphasize p-p QFS
scattering.

10(2w)4m' psp4 (5)
k p, (2P4-p, cos84+pscos834)

where the laboratory quantities p, , E„and 8„ i =1,
5, refer to the momentum, kinetic energy, polar
and azimuthal angles of incident particle, target
nucleus, detected particles at (8„+)and (8„$,)
and the undected particle, respectively. The nu-
cleon masses, m, are set equal to 939.2 MeV, c
=1, and cos834 pQ p4.
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In our calculations, the exact solution of the inte-
gral equation for T„', [Eq. (2)j was used for I =0 to 3.
We used the second iteration of the integral equa-
tion for E =4, 5 and first iteration for E =6 and 7.
We have used the Born term of the integral equa-
tioa for all l& 7. This is done by employing 8
-4;& (instead of the usual procedure of using T&;&)

for partial wave recomposition up to l =7 and add-
ing the exact Born term to the resulting expression.
We observed about 1% difference in the values of
cross sections when the exact or iterative solu-
tions up to E = 5 were used as compared to above.
We also comparedour calculations of d'o/dA, dQ, dE
for 'H(p, 2p)n and 'H(p, pe)p reactions at 14.4 MeV

(8, =45', 84 =45; and g —
Q»

= 180') with the re-
sults of Cahill" and found excellent agreement in
all parts of spectra.

ill. COMPARISON WITH DATA

The calculated cross sections can be compared
with the complete set of 'H(p, 2p)n data obtained
at 39.5 Me7.' However, these data consist of
about 2000 two-dimensional energy spectra. There-
fore, the same representative spectra as in Ref. 7
were selected for comparison with our calculations.

In Fig. 1, the calculated cross sections shown

by solid line are compared with the data for three
angle pairs in nearly coplanar geometry. These
were chosen to emphasize the pp QFS, which peaks
at the minimum recoil momentum. Within the ex-
perimental errors our calculations generaQy agree
with the data, except at the highest energy of the
detected particle. This disagreement is largely
due to the finite energy-resolution effects which
are not folded in the theoretical calculations. The
discrepancy at low energy in Fig. 1(b) is partly
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due to finite energy-resolution effects and an en-
energy cutoff of about 3 MeV in the data. The the-
oretical cross section generally lies below the ex-
perimental points near the central peak.

Figure 2 shows the data for the angle pairs such
that the np FSI dominates. The spectra exhibit
peaks for minimum np relative energy. Again the
agreement is generally within experimental uncer-
ta, inty.

In Fig. 3, the data for noncoplanar geometry are
compared with the calculations. These angle pairs
were selected to minimize the contribution of QFS
and FSI. The agreement is again good except for
low energies of E, or E,. At this time, it is not
possible to quote the percentage disagreement de-
finitely. The reason for this is that part of this
disagreement is due to the experimental difficulty
of measuring low-energy protons and to possible
contamination from background events arising
from detection of uncharged particles at forward
angles.

Figure 4 shows the spectra at two angle pairs
where pp FSI effects are important. The spectra
exhibit a broad peak for low relative pp energy,
which is split by the Coulomb repulsion. The depth
of the Coulomb minimum increases for lower pp
relative energy. The maxima occur for E»- 0.4
MeV. The absence of the Coulomb interaction in
the theoretical calculations is responsible for dis-
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FIG. 2. Same caption as Fig. 1, except that np FSI
dominates.

FIG. 3. Same caption as Fig. 1, except that angle pairs
are selected to minimize the contributions due to QFS
and FSI on the cross sections.



EXACT N-2H BREAKUP CALCULATIONS 127

X
cv

E

b
D

Cy

1.0
-(a)

0.5—

0 s—
I e0

( b)

0.5—

H(p, 2p)n E, = 39.5 MeV

I
I

I
I

I
I

83 = I I. I

e~ = l9,7'
D$= I3.9'

2I MeV

83 = 30.8
8g = 32.0'
h,$= 26.5'

0.36 MeV

0
IO 20

E, tMeV)
40

FIG. 4. Same caption as Fig. 1, except that pp FSI
is emphasized.

agreement with the data in this region.
For comparison, we have included the dashed

lines from Ref. 7, which are the results of a four-
parameter model calculation to represent do/
dQ, dQ~dE as an incoherent sum of terms repre-
senting contributions from phase space (statistical
processes), QFS, and FSI. The four adjustable
parameters were fitted to a partial Dalitz plot of
the data at 43'. This model calculation gives best
fits to the data in these spectra. The fits to the
data in other regions are also fairly good. How-
ever, the model calculation does not reproduce
the minimum in the partial Dalitz plot' which is
interpreted to be due to destructive interference
of the Born term with the rest of the multiple-
scattering series. " This is perhaps an illustra-
tive example of why the simple models have been
so successful in fitting the previously available
three-body data in the QFS and FSI regions. Their
success is possibly due to the fact that these pro-
cesses are quasi-two-body effects in the first
approximation.

Wallace" and Ebenhbh have also done similar
calculations. Wallace computes the multiple-scat-
tering series and uses Pads approximates to sum
the series. He modifies the two-nucleon-interac-
tion propagators to fit two-body cross sections.
These calculations at 20, 45, and 100 MeV for the

coplanar quasifree scattering consistently over-
estimate the experimental cross sections at 20
and 45 MeV and give good predictions at 100 MeV.
Ebenh5h uses a different numerical technique and
concentrates on the FSI region and also gives some
results for the QFS region. These calculations
are for coplanar cases and are in reasonable
agreement with the data.

IV. CONCLUSION

It is somewhat surprising that such a simple two-
body potential can reproduce so well the genera, l
features of the three-body breakup data. It is prob-
able that this is due in part to the fact that the deu-
teron wave function is as so extended that only a
small amount of the scattered particles actually
contain information about the region where three
nucleons interact. It is known that significant var-
iations can be obtained in the 'S phase shifts and
inelasticity parameters by varying the two-nucleon
potential. 4 The s-wave doublet and quartet inelas-
ticity parameters, for nucleon-deuteron scattering
at 40 MeV, are -0.3 and W.9, respectively. "
Also, the s-wave quartet phase shift and inelas-
ticity are nearly model-independent. Therefore,
variations in the nucleon-nucleon potential would
primarily affect the doublet amplitude, M».

We next plan to study regions in which M~ dom-
inates and hope to separate its effect on the cross
section. We hope to determine what corrections
are needed to account for the deficiency of the YY
model. This correction would be a phenomenologi-
cal way to include large off-shell effects and pos-
sible three-body forces. However, this interpreta-
tion is not clear cut due to omission of higher par-
tial waves (I& 0) in the nucleon-nucleon interaction,
which is not a good approximation at 40 MeV. We
are also currently investigating the incorporation
of a Coulomb potential and the YYY model (no
charge independence) to study the stability of the
solutions with respect to variations in the param-
eters of two-body potentials.
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