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Using the Faddeev formalism, a study of the off-energy-shell variation of the triton bind-
ing energy (E,) is made. The results are indicative of the insensitivity of E, to the off-shell
differences associated with the various nucleon-nucleon potentials considered, which are
equivalent on the energy shell and vary mainly in the shape of their repulsive cores for

7<0.5 fm,

Various nucleon-nucleon (NN) potentials which
are equivalent on the energy shell were found to
lead to very small changes!™® and substantial
changes*™® in the triton binding energy. Recently,
Kharchenko, Shadchin, and Storozhenko! noted that
this could be attributed rather to various degrees
of coincidence of the compared potentials at inter-
mediate and large internucleon distances, and not
to the shape of the short-range core interaction.
Usually, these investigations make use of finite
and hard-core interactions™? or separable ones.®
However, different potentials should be studied
with a variety of core interactions, so that model-
independent conclusions may be reached.

Working within the framework of the Faddeev for-

malism, the present paper aims at doing this using
1

NN data.’®"® They have the form®:

NN potentials of a nonlocal-square-well (NLSW)
form” for the core repulsion combined with an out-
side attraction of a local-square-well (LSW) form.®?
In particular, the NLSW-core interaction provides
a generalization of the hard- and finite LSW-core
interactions as well as the separable ones. Fur-
ther, the use of a nonlocal-core interaction re-
flects the basic notion of nonlocality of the poten-
tial at short internucleon distances.® '

As a preliminary to the study of the off-shell ef-
fects in the three-body system, we investigate in
this paper the off-shell variation of the triton bind-
ing energy for a family of such potentials. These
are taken, for simplicity, to be central, spin-
and isospin-independent s-wave two-body inter-
actions which match an average of singlet-triplet
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where 7, is the range of the repulsive NLSW-core
interaction, V, defines its strength (V,>0), and g
is a measure of the degree of nonlocality. The out-
side LSW has a range #, and depth V.

Various sets of parameters determined for the
above potential are presented in Table I. The five
potentials so given produce an average of singlet-
triplet low-energy NN data’®~** and s-wave phase
shifts up to 340-MeV lab energy.'® Such average
NN data are given in Tables II and III, where we
also list those for the hard-core square well of
Kim and Tubis'® and Fuda.!’ The two-nucleon
scattering length a,, effective range 7,, binding
energy E,, and s-wave phase shifts are calculated
by a standard procedure'* and are given else-

| oo

r
where. '

It should be remarked that our potentials differ
from each other only at quite short distances of
order of 0.5 fm. Besides allowing us to isolate
the off-shell effects associated mainly with the
short-range repulsion, this choice of distance
closely approximates the radius of the innermost
core region (»<0.7 fm) of the NN interaction’® and
excludes the intermediate (0.7<»<1.5 fm) and
outermost (r=z 1.5 fm) regions, both of which are
known to be dominated by local components.

Under the assumption of an average singlet-
triplet s-wave NN interaction, the triton ground-
state wave function would be completely symmet-
ric. The justification of this averaging procedure
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TABLE I. Parameters of NLSW-core NN potentials.

Yo VU l/B 71 Vl
Potential (fm) (MeV) (fm) (fm) (MeV)
Pl 0.51 248,82 0.18 1.68 —-63.5
P2 0.44 829.40 0.10 1.68 —63.5
P3 0.38 4105.5 0.04 1.68 —63.5
P4 0.35 99528 0.01 1.68 -63.5
P5 0,34 2571140 0.001 1.68 —63.5

in the triton is given by Blatt and Weisskopf*” in
calculations of its binding energy. For the com-
pletely symmetric three-nucleon bound-state prob-
lem (corresponding to the case of three identical
bosons), the two-variable Faddeev equation is'® *:

8 0
W p, q) ‘mj; 3,44, J-IZq-qz‘/SUZ DdD,
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where same notation as that of Kim' is used, with
S being the total center-of-mass energy of the
three-particle system, p is proportional to the
relative momentum of a pair of particles, and ¢
is proportional to the magnitude of the momentum
of the third particle in the three-particle center-
of-mass system. Further, #,(p, p;;S ~ ¢°) is the
complete off-shell ¢ matrix with p,% =p,? +¢,* - ¢°.

An analytic expression of the two-body s-wave
off-shell f matrix was previously derived® by the
author for the potential combination in Eq. (1).
Since our off-shell ¢ matrix® is nonseparable, we
therefore proceed to solve the above two-variable
Faddeev equation. This is not an easy task due to
the variable limits of integration involved. The
problem was recently tackled, however, by some
authors.'®1%2° In this paper, the approximate-
product integration technique due to Kim!® is em-
ployed. This method for solving the two-variable
Faddeev equation has proved to be quite accurate
and practical in a number of situations.!®2!

The method is discussed in detail by Kim!® and
by Kim and Tubis,'® and only a few details about it
will be given here. After discretizing the p and ¢

TABLE I, Low-energy NN parameters and triton
binding energies. '

a 7 E, E,
Potential (fm) (fm) (MeV) (MeV)
Pl 10.8 2.29 —-0.414 -~8.12+0,04
P2 10.3 2.25 -0.414 —8.14+0.04
P3 10.5 2.23 -0.414 -8.16+0.04
P4 10.1 2.21 —-0.414 -8.11+0.04
P5 10.8 2.24 -0.414 -8.11+0,04
HCSW 2 10.8 1.95 -0.435 ~8.13+0.04

2 The HCSW has a core radius of 0.4 fm and an outside
attraction which is éssentially similar to our NLSW-
core potentials, namely an outer radius of 1,737 fm and
a depth of —63.85 MeV (Refs, 10 and 11).

variables with N, and N, points, then using N, -
point Gaussian quadrature for the g, integration,
the method is essentially based on expanding

¥(p, ) in a set of linearly independent functions
[which are taken in the present work to be of the
same form as that used by Kim and Tubis'®: Eq.
(4.9) in their paper] for fixed q to deal with the p,
integration. Once this is made, the difficulties
associated with the variable limits of integration
are avoided and the N, points selected in the p
variable are then taken over the entire range
(0,). In such a way, the two-variable Faddeev
Eq. (2) is directly transformed into an NXN (N
=N,XN,) matrix equation, the vanishing of whose
determinant yields the triton ground-state energy
E,

The values obtained for E, using the five poten-
tials in Table I are listed in the last column of
Table II. At the bottom of Table II, we also quote
the value of E, obtained by Kim and Tubis® using
the hard-core square well (HCSW). In getting our
values, both N, and N, were varied until the solu-
tions were found stable under further increase. As
such, all values of E, in Table II are obtained with
N,=10 and N, =8.

The values of E, so obtained are quite close to
each other and indicate the insensitivity of E, to
the off-shell differences associated with the var-
ious potentials considered. The conclusion to be
drawn from these results is that the triton binding
energy is very weakly dependent on the form of the

TABLE III. Average s-wave phase shifts (§; in radians) and experimental (Ref. 13) values for comparison.

E 1ap Experimental §; NLSW-core 6,
(MeV) Singlet Triplet P1 P2 P3 P4 P5 HCSW 6,
40 0.808+0.015 0.746 + 0,002 1.02 1.03 1.03 1.02 1.02 0.97
180 0.296+0.036 0.177+0.005 0.219 0.223 0.223 0.221 0.219 0.13
260 0.102+0.037 —0.019+0.006 ~0.033 -0.029 —-0.029 -0.032 -0.034 -0.14
340 —0.059+0.039 —0.192+0.008 -0.221 -0.219 -0.219 -0.221 -0.224 -0.34
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short-range NN repulsion. This is consistent with
the results of Kharchenko, Shadchin, and Storoz-
henko! and Harper, Kim, and Tubis.?

The present results are of interest for the follow-
ing reasons. First, they show that the above con-
clusion can still be drawn for more generalized
core interactions. Second, they are “exact” in the
sense of using an analytic expression for the off-
shell ¢t matrix and solving the two-variable Fad-
deev equation involved. Third, the off-shell ef-
fects due to the short-range NN repulsion are quite
well isolated since the various potentials consid-
ered differ only for » <0.5 fm and agree at inter-
mediate and long distances for »= 0.5 fm.

Calculations with more realistic NN potentials
would, of course, be desirable. Our purpose, how-
ever, was mainly to explore the off-shell variation
of E, in a situation which is moderately realistic
and yet allows main conclusions to be drawn.

We also need to investigate the off-shell varia-

tion of other properties of the three-particle sys-
tem (not only the bound state but also the continuum
one) which would be more sensitive to the short-
range NN repulsion than the triton binding energy.
The author is currently studying such possibilities.
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