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Nuclear Spreading Widths of Particle-Vibration 2' Doorway Resonances in Pb and Pb
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The nuclear spreading widths of the VPb and 9Pb doorway resonances are calculated
in a particle-vibration model. The hallway states are of the particle-two-phonon type. The
fine structure in Pb is essentially due to the availability of many hallways (some with

large matrix elements) and their proximity to the doorway. The Pb and ~Pb ~ doorway
spreading widths are found to be in line with the experimental situation.

I. INTRODUCTION

In previous work'' we have applied the weak-
coupling (WC) particle-vibration (or particle-pho-
non) model to the calculation of the energies and

escape widths of low-lying —,
"neutron resonances

in the compound nuclei "'Pb and 'Pb. The only
available —,' particle-vibration doorway level 4 „
with appreciable neutron escape width located be-
low 1 MeV in each nucleus is (2g„, 4'). While

these two states have similar calculated neutron
escape widths and are in line with experiment, '
the fine structure observed in this low-energy re-
gion differs drastically for the two nuclei. There
is essentially no structure in "'Pb while "'Pb
possesses many fine-structure resonances. ' We

have accounted for the fine-structure effects quali-
tatively in Ref. 2 by simply counting available one-
particle-two-phonon background states, and in the

present paper we give the results of a detailed
quantitative study of the theoretical spreading
widths of the —,"doorway resonances.

In the particle-vibration doorway model the only
levels that can be directly reached through the
doorway are particle-two-vibration states. 4 We
refer to these levels as hallway states (hj. These
levels are the next stage in complication beyond
the doorway and are assumed to provide the mecha-
nism for forming the complex compound nucleus
levels (we assume that these are one-particle-
three-vibration etc.) observed in fine-structure
experiments. While several authors' have studied
the energies, electromagnetic transition rates,
etc. of particle-multiphonon states in the bound

region, there has to our knowledge been little at-
tempt to apply the basic WC collective-excitation
ideas to the continuum. The general theory will
be given in Sec. II. Section III will present the re-

suits of our application to "'"'Pbp and a discus-
sion and conclusions will comprise Sec. IV.

II. THEORY

Feshbach, Kerman, and Lemmer' have shown

that the spreading width 1"~ (or width for decay into
more complex states C,) of a. doorway 4„at energy
E„ is given by

where the coupling interaction is qIId (q and d are
the usual Feshbach projection operators), the en-
ergy of the q'th complicated level is E, , and the
sum is over these complex states. The symbol I
represents the Lorentzian energy-averaging inter-
val used in converting the fine structure to inter-
mediate structure.

We assume that the sum in Eq. (1) over complex
states is restricted by the coupling interaction to
only the hallway states (h) defined in Sec. 1 and

interpret I as the width of the 5th hallway state C„
due to nuclear interactions. A more descriptive
notation is to replace I by the symbol I"„. If all
states Ch have a similar basic structure then I'h

may be considered as a constant and Eq. (1) be-
comes

~ [(C „fhIIdl@'a)f'
h~(E E )2 &P 2

h

(2)

where hIId is the coupling interaction (k being the
operator that projects onto hallway states). ' The
particle-phonon model is used in this work so that

)4~) =
~

n' l'j'; N'=1, It';IM),

where n'l' j' are the single-particle quantum num-
bers, N'=1 indicates one phonon with angular mo-
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mentum R', and IM are the total angular momen-
tum and 2' projection of the pal tlele-phonon door-
way state. The 6th hallway state is of the particle-
tmo-phonon type and is written as

(4„)=
~
[nlj;N= 2, R( J,J );IM]g), (4)

where nl j are the single-particle quantum numbers,
K= 2 indicates two phonons with individual angular
momenta J, and J, and total angular momentum R,
and IM are the same as in Eq. (3).

The coupling interaction is taken as

dV(r)/lHd=r Q Qj„p yap
X)1

which was discussed by Mottelson. e The symbol
o.z„represents collective coordinates of the nu-

clear surface, 7z& is a spherical harmonic, x is
the particle coordinate, and V(r) is taken as a
Woods-Saxon potential. In many of the calcula-
tions' of matrix elements between the types of
states represented by Eqs. (3) and (4) the quantity

d V(r)
dp

is treated as a parameter. In the present work,
however, the full radial dependence will be ex-
ploited and radial integrals calculated.

In second quantization Eq. (5) may be written as

where (g+~/2C~)"2 is a one-phonon vibrational amplitude, and 5 and 5 are phonon annihilation and crea-
tion operators, respectively. Inserting Eqs. (3), (4), and (7) into Eq. (2) gives

where the subscript h in the numerator is a reminder of the particular state 4„being considered. The no-
tation in the numerator requires some explanation. Specifically, 6~+ is a shorthand notation indicating
that the phonon state of angular momentum J2 must be exaxtly identical to the phonon state of angular mo-
mentum R, i.e., the parities, energies, wave functions, etc. of the two states must be the same. Similar-
ly 6~ ~ is zero unless the phonon state of angular momentum J, is exactly the same as the phonon state of

2 A

angular momentum J2. If cJy J2 then the angular momentum R must be even. The notation R means

(2R+ I)"', and (n'I'j'~ k~ nlj) is a radial matrix element. The multipole order X in the sum is determined

by 6I z, , the factor (I'j'~~ Y'~~~Ij) is a reduced matrix element, and ( j is a 6j symbol. We notethat the sin-
gle particle need not be the same in C„as in 4'~. Eliminating X from Eq. (8) we finally have

(9)

Equation (9) may be considered qualitatively as a sum of the square of overlap matrix elements between
the doorway and the hallway states, where each matrix element squared is weighted off the tail of the
I,orentzian nuclear spread of the hallway state. '

III. RESULTS

All possible combinations of one-particle-two-
phonon states of the type of Eq. (4) are considered
for the two nuclei in order to select the hallway
states that can contribute to the spreading m'idth

Eq. (9). The energy, spin, and parity of each
vibration are obtained from experiment. " The
vibrational amplitudes (I'~~,/2C~ )'" can be direct-
ly obtained from the transition strength G, {or P, )
which is extracted from the cross section for vi-
brational excitation in inelastic scattering experi-
ments. The transition strengths of the "very weak"

states in "6Pb have not been extracted from ex-
periment in the literature. For these states an
arbitrary small value of -0.5 is assumed for 6,
(this being the lowest observed value in 20'Pb).
We consider for the present purposes excitation
energies up to =4.6 MeV in both the target nuclei
~o6Pb and oBPb. The excited-level information is
given in Table I. We emphasize that microscopic
details are not known for many of the states listed
in Table I. It is therefore an assumption in our
model that these levels are all of the vibrational
type.

The single neutron states used are 2g„„ li»„,
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TABLE I. Available one-phonon states.

(MeV) ~

gvf b 6)
(W.u.) c

3d„, 1j$5/2 4sg/2 g7/2 and 3d,». For "'Pb 3P,/,
is also used. The energy of the 1j»I, neutron state
is not well known from (d, p) experiments. The
lowest '-,' "'Pb state at 1.44 MeV has a spectro-
scopic factor'» of only about 0.46 single-particle
units. The matrix element which involves the
1j / state must therefore be multiplied by the
square root of this number to calculate the corre-
sponding contribution to the spreading width Eq.
(9). However, hallways involving Ij»» are too

far removed from the doorway of interest to be of
importance. Proper Woods-Saxon potentials V(r)
with spin-orbit coupling were used to generate
neutron radial wave functions and the quantity k

[Eq. (6)] in both "'Pb and "'Pb. Radial integrals
were performed using the code ABACUS. "

The doorway state of interest is [in the notation
of Eq. (3)]

(e,) =
( 3g„,; ~'=1, 4'; —."M), (10)

where the 4' state is the one labeled 4'(1) in Table
I. In ~'Pb this resonance is theoretically' (experi-
mentally') at 361 keV (-430 keV) above threshold
while in ~o'Pb the resonance is theoretically' (ex-
perimentally') at 365 keV (500 keV) above thresh-
old.
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2.149
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~ Vibrational energy ~~~ jEq. (9)].Jg"The state 4+ (1) is the doorway constiuent. The var-
ious 5 states are so labeled for later reference.' The value {0.5) is arbitrarily assumed for those
"very weak" levels whose 6& value has not been extract-
ed from experiment in the literature. See text for de-
tails.

The listed value of 15 W.u. for 6& represents the
value used by the present authors in earlier work (Refs.
1 and 2), and also by Auerbach and Stein, Phys. Lett. ,
25B, 628 (1969).

209pb 207pb

FIG. 1. {a) Parts (1) and (2), respectively, present
the target 2o Pb and Pb excited states listed in Table I.
For ~Pb, spins and parities are labeled for those states
which are considered in constructing the relevant -2+

hallways (and doorways). (b) Parts (1) and (2) display
the (2ge/24+) doorway (thick line) and the available hall-
ways in the compound nuclei 2 9Pb and ~Pb, respec-
tively. A schematic representation of the effect of a
Lorentzian spreading of the doorway is shown.
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TABLE II. Percent contribution of hallways to I'& of the 'Pb, doorway 4z = (2@@2(34')f/g+,

E& =0.361 MeV (above neutron threshold).

Hallway configuration

[(jp 4') ~21

E& % contribution b

(MeV) ~ to r&

r,
(keV)

Theory [Eq. (9)t
r„

(keV)
250 500 750

Experiment
(Ref. 13)

[(3P«, 4') 5;] ~

[(3pg/2(34 ) S52 j
[(3P«,e 4+) g5;~
[(2ge/24 ) '2+]
[(3Pg/2 @4')54 l

[(3P«,S4') 85,-]

0.404
0.638
1.032
1.164
1.188
1.404

18
11
5

43
3

20

139 174 207 -190

' Above neutron threshold.
"Corresponding I"z~ result for I"

&
——500 keV.

The subscript for the various 5 levels refers to the levels listed in Table I. Thus 5~

means 5 (1), 52 means 5 (2), etc.

Figure 1(a) shows the energies and spins of the
vibrations in 'o Pb and o Pb. In Fig. 1(b) are also
presented the 1p-two-phonon states in compound
nuclei ' 'Pb and "'Pb. For "'Pb all the hallway
states are positioned far away in energy and the
lowest-energy hallway state I(2g„,4')82'] is
at 4.4 MeV. Clearly this and other hallway states
are too far away to contribute to I"„. In our model
therefore we assign I', =0 for "'Pb. This is con-
sistent with the experimental determination of
I'~~ « I'~~(=58 keV) of Newson. " In contrast the
'O'Pb hallways extend from about 400 keV to 7.5
MeV. Of these hallways only those that are be-
tween about 0 and 1.4 MeV (1 MeV above E,) neu-
tron energy are important in evaluating the spread-
ing width. The effect of I.orentzian distribution is

schematically shown in the lower right part of Fig.
1(b). A total of six hallway states are included
within the I orentzian tail and only these are con-
sidered in calculating expression (9). The calcu-
lated widths [Eq. (9)] are given in Table II (col-
umns 4-6) along with the experimentally deter-
mined value (column 7). The six basic hallway
states referred to earlier are enumerated in col-
umn 1 and their energies E„are given in column 2.
Since the width I'„ is not known, we have per-
formed the calculations for the reasonable values
of 0.25, 0.50, and 0.75 MeV. (As a comparison
the value of I'„usually taken for 3p-2h states is
less than 1 MeV, 0.5 MeV being the number most
often quoted. )"
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FIG. 2. Histogram plots of P I~(h) as fun'ction of
hallway energy for three different values of 1"„=250,
500, and 750 keV are shown. The hatched bar repre-
sents the 2+ doorway. The number for each histogram
at the saturation level represents the corresponding
spreading width I'sr =g I'si(h).

FIG. 3. Calculated matrix elements squared for pos-
sible hallway states vs energy. The hatched bar repre-
sents the doorway. Dots on one of the vertical bars in-
dicate degenerate levels with different intermediate an-
gular momenta.
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IV. DISCUSSION AND CONCLUSIONS

We can see from Table II that for '"Pb the
spreading width is in excellent agreement with
experiment. We note that there is also somewhat
of a dependence on I'„and hence the Lorentzian
distribution. This is clearly demonstrated in Fig.
2 where the actual contribution due to each of the
hallway configurations is plotted in the form of a
histogram. We note that the following hallways
contribute most to the calculated spreading width:
[(3P, , 4' ) 5, ], [(2g q,

4' ) IR 2' ], and [(3P,q,
4' )

5, ]. The first is important due to its proximity
to the doorway and the other two have large ma-
trix elements in addition to being near the door-
way. The results for 1~ corresponding to the
larger values 500 and 750 keV have better agree-
ment than 250 keV.

The mixing in '"Pb may be expected because the
target '~Pb has two holes in its ground state. The
target '"Pb on the other hand is doubly magic.
The "Pb low-lying states have been explained by
True" in terms of two neutron hole configurations.

There are over 100 other 1p-two-phonon hall-
ways in ' Pb [cf. Fig. 1(b)j but these are too far
away to be of use. These hallways could, however,
contribute to the spreading of higher-energy door-
ways (cf. Ref. 2) than the one considered here.

The nucleus "'Pb has 27 hallway states above 4.4
MeV. States based on the strong 3 vibration, e.g.
[(Ij»»84') 83 ], occur at too high energies to be
important. In Fig. 1(b) we note that the density of
hallway states in '"Pb is much greater than in'"Ib.

The squares of the calculated matrix elements
for each hallway configuration are displayed in
Fig. 3. The hatched bar represents 4 „. One of
the bars has more than one dot to indicate degen-
erate levels having different intermediate angular
momenta. The experimentally observed fine struc-
ture in 'O'Pb lies between 0.0- and 1-MeV neu-
tron energy whereas the 1p-two-phonon states
range from about 0.4-1.4 MeV [cf. Figs. 1(a) and
3] above threshold. The hallway configuration
[(2g9»IR4+)2+] has a large matrix element be-
cause of its similarity to 4„.

In conclusion, the particle-vibration model ac-
counts for the drastic difference in the spreading
of the ' 'Pb and ' Pb —,

" doorways. In particular
the particle-two-phonon description for the hall-
way states allows for a quantitative evaluation of
the spreading widths for '"Pb.
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