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.We extend our previous distorted-wave Born-approximation treatment of reactions of the
form A(d, p)B (in which B is an unbound state) to include the case where B is (a) dissolved
into a fine structure of resonances that may overlap strongly, and (b) unstable against emis-
sion of other particles in addition to the transferred particle n. We assume that the reaction
is strongly peripheral and goes through the n+A channel of B via the np interaction. We
discuss the cross section for an experiment in which only particle p is detected, while the
decay products of B are not observed or identified. For an isobaric-analog resonance we
find that the cross section is proportional to I'„cos2(5~+@), where I'„ is the n escape width,

5z is the nuclear background phase shift, and Q is the asymmetry phase. The cross section
is entirely determined by the gross-structure parameters of the resonance, and does not de-
pend on the nature of the fine structure. For the reaction Mo(d, n) to d&&2 (8.40-MeV), s~/2

(9.33-MeV), and d3&2 (9.91-MeV) analog states, we find that the effect of 5~+/ is negligible.

I. INTRODUCTION

In a previous paper' we described the distorted-
wave Born approximation (DWBA) for the reaction
A(d, Pn)A. We assumed that only the particle P
was detected, and that the reaction proceeded by
direct n transfer to an intermediate state 8, which
could decay only by n emission. ' For a given
angular momentum transfer /, j, the expression
derived for the DWBA cross section was'

do D%BA(d ps) 2 ~ E2

dEnkn Sln I5$j

(.":.)....
Here 5» is the phase shift for A +n elastic scatter-
ing» E»» =A 0„ /2 p. is the energy of relative motion
of A and n, and k„ is the corresponding wave num-
ber. The quantity (do~/dQ„), „, which depends
smoothly on E„, is the cross section that mould
result from a DWBA calculation in which the nor-
malized bound final state is replaced by a reso-
nant form factor that is asymptotically equal to
an irregular Coulomb function.

The aim of the present work is to generalize
this result to the family of reactions

(2)

in which the resonant state I3 has fine structure
and may decay into any possible fragments C and
c. An important special ease is where c = n and
C is an excited state of A. %e shall retain the
notation aIld conventions of Ref. 1. We again spe-
cialize our treatment to the case where only parti-

cle P is detected, and the decay products C and c
of 8 are neither identified nor observed. The
cross section of interest is therefore

do do(d, pc)
dQp dgp

Our approach will be as phenomenological as
possible; that is, me shall try to identify those
parameters of the resonance B that one might
hope to pin down by analyzing experimental re-
sults. However, me shall avoid any attempt to
relate the resonance parameters to more funda-
mental models of the nucleus. Phenomenological
theories of analog resonances usually describe
only the energy-averaged transition amplitude.
Because we wish to treat states B that have over-
lapping fine structure, me must find some may to
include the contribution of the fluctuations of the
transition amplitude about its average. %e must
also include the contributions of all open channels
c, as indicated in Eq. (2). Our final result, Eq.
(21), takes both effects into account, and yet is
very simple indeed. Thus the analysis of transfer
to analog states 18 placed on a firm basis and
remains simple enough for routine use.

Lipperheide' has given a plane-wave description
of the reaction which has some points of contact with
the present work. He shows that in the plane-wave
Born approximation the transfer cross section is
proportional to the so-called off-shell total cross
section for A +n scattering. This relation is ir-
retrievably destroyed mhen strong distortion ef-
fects are included. Our analysis, however, mill
exploit the strong peripherality that is typical of
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transfer reactions with good angular momentum
matching and with strong absorption in initial and
final channels. If the reaction is peripheral, only
on-shell information regarding the A +n scatter-
ing is of importance.

Levin' has given a distorted-wave description
of the reaction to a single isolated resonance,
including the possibility of alternate decay chan-
nels. However, he does not treat the fluctuation
contribution.

II. DVPBA FOR THE REACTION (d,pc)

Ta, p =&@aaxp lva+Vp —Vnplla&

+&4„x;~v„p+v, —vp(rg&. (5)

Here g; is a complete scattering state with d inci-
dent on A, and 4~, is a complete scattering state
with c incident on C. (In a single-nucleon transfer
reaction to a bound state, 4~, would be replaced
by the bound state of the final nucleus B.) The
proton distorted wave X~ is generated from the
optical potential V~. The total interaction of P
(or n) with all the particles of A is denoted by
Vp (or V„).

The first term of Eq. (5) can be shown to vanish
identically. One has

V„+Vp —V'„p =0 -Ho~,

where

(H —E)4'g, xp =0, (Hoa -Z)la=0 ~

At large distances, 4&, X~ vanishes in the d chan-
nel, while Qa vanishes in all other channels.
Therefore, no surface term is introduced when
H is taken to act to the left. For the same reason,
the scalar product &4~, Xp ~ Qa& is finite. The re-
sult then follows immediately from the fact that
both wave functions belong to the same energy.

The second term of the exact Eq. (5) shows
clearly that all the rapid dependence of the ampli-
tude on E~ (the energy of B) is contained in 4 s, .
The distorted wave X~ does depend on E~, but
only slowly. The potentials and the function ga'

do not depend on E~ at all.

We neglect all effects due to the identity of parti-
cles. The exact transition amplitude for the reac-
tion (2) is

Ta, p =&%apl V~ Id a&.

Here g,p is the complete scattering state corre-
sponding to c+P incident on C (with incoming scat-
tered waves), while Pa is a plane wave represent-
ing 4 incident on A, and V; is the corresponding
("prior") interaction. By using the Gell-Mann-
Goldberger relation we can single out the inter-
action V„p, so that Eq. (4) becomes

In the second term of Eq. (5) we replace ga by
4„xa' (where 4„ is the target ground state and
X„' is a distorted elastic scattering deuteron wave
function) and neglect the contribution of Vp —Vp.
The result is

Ta,p =&@sexp IVnp I@~xa&. (6)

III. FORM FACTORS FOR COMPETING DECAYS OF B

The transition amplitude (6) can be evaluated by
integrating first with respect to 0„, the variables

DwsA

d, cp
.t-An, Cc

I

C

FIG. 1. Graphical representation of Eq. (6).

The remainder of our study will rely on Eq. (6),
which has also been derived by Levin. ' Figure 1
gives a graphical representation of this amplitude.
The broken lines represent the effects of the P
and d distortions. The three diagrams obtained
by omitting one or both of these are included in
Eq. (6). The vertex fa „p represents the breakup
of the deuteron into n and p. The vertex t„„~,
represents the intermediate state B, which is
formed in the A+n channel and decays in the C+c
channel.

In the case of unbound states, rescattering be-
tween n and P is a potentially important correc-
tion to the DWBA. This effect has recently been
estimated by Friedman. ' From his analysis, he
concludes that the correction to the cross section
might be as large as 80% in the typical case of
"O(d, P)"0 to the 5.08-MeV state. However,
most of his correction depends smoothly on en-
ergy, and only contributes to the subtracted back-
ground. Friedman overestimates the remaining
correction, which is proportional to the DWBA
cross section, because he does not take into ac-
count the fact that typically only a very small
range of P energies is accepted by the detectors,
and within this energy range P is moving much
faster than n, so that rescattering is unlikely.

We have not yet assumed that B is a narrow
resonance. Equation (6) includes a contribution
from the incident plane wave in 4~, , correspond-
ing (in the case c = n), to "direct breakup" as
defined by Noble. '
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contained in 4„. The result can be expressed in
terms of the form factor or channel wave function:

x'„(r„)=f ao„eye,.
Everywhere external to the target nucleus, the
form factor X'„can be expressed in terms of the
asymptotic scattering matrix elements as

&/2

Vckc
(8)

Here the nuclear scattering matrix element is
denoted by S„~. The symbols k„p.„and r„
respectively, represent the channel wave num-
ber, reduced mass, and radius, while 0'(H ) is
an outgoing (incoming) Coulomb wave function
defined by

Gc +~I'c
kcrc

where G, and I", are Coulomb functions as defined
by Messiah.

The form factor X„'(r„) is defined for 0 &r„&~.
It satisfies the equation

(z-Jf -v""')x'=(c ~v""'~4- )

where V„""'and V„'"' are, respectively, the nuclear
and Coulomb parts of V„. The right-hand side of
this equation vanishes for r„&R„+R„where R„
is the radius of the target and Rp ls the range of
the two-nucleon force. Therefore at r„=R~+R„
X„'is already equal to its asymptotic form (8). It
is worth noting that the rapidity of approach to the
external form is independent of the channel c, and
unaffected by the unbound nature of C ~,. If there
is strong absorption in the distorted waves and
good angular momentum matching, the main con-
tribution to the transition amplitude comes from
the nuclear surface. This is fortunate, because
this is just the region in which X'„becomes extern-
al. Therefore only the external form of X,„'meed
be well known.

It was shown in Ref. 1 that a form factor equal
to F„produces a very small DWBA amplitude.
This remains true even when the transferred parti-
cle is subject to strong Coulomb forces. Both for

"O(d, P) and for "Mo(d, n) we have found that the
E„amplitude is at most 4/o of the resonant ampli-
tude. Accordingly, it is an excellent approxima-
tion' to subtract a multiple of I'„ from X,'„, leaving
only the part, X'„, that is proportional to G„ in the
exterior. The resulting form factor is

k
2it nc fl (10)

IV. DVfBA CROSS SECTION

In order to derive the cross section, we can
directly apply Eq. (1) to the transition amplitude
(6) with the form factor (10). It is only necessary
to replace sin5» by t„*,(p„k„/g, k,)"'. For the cross
section corresponding to events in which B has an

energy E~ between E, and E„and the decay prod-
ucts of B are not observed or identified, the result

where X„' is equal to G„ in the exterior. Here the
nuclear transition amplitude t„. (analogous to e'
x sin5) is defined by

S„=5„.+2i t„
Equation (10) separates the form factor into a.

function X,„' with known scattering normalization
and a number that depends on the spectroscopy of
4~, . This separation is similar in spirit to what
is done in defining the spectroscopic factor of a
bound state. It is reasonable to hope that (just as
for bound-state form factors) &„' can be simply
calculated without introducing much error. A
suitable method is to solve the Schrodinger equa-
tion for a particle in a Woods-Saxon well with
realistic geometrical parameters and a depth
chosen to produce a resonance at the observed
energy. In the bound-state case, this procedure
is known as the "well-depth method. "

We emphasize that the DWBA cross section de-
pends on the nuclear transition amplitude t„„
since this is the quantity that appears in Eq. (10).
The total S matrix, 8""', is related to the nuclear
S matrix, S, by

~total i ac $ ~ oc~cc' e cc' e

where cr, is the Coulomb phase shift.

ls

(12)

Here (d&x, /dQ~)~„k is the (fictitious) cross section
that would be calculated by an ordinary DWBA
program using y„' (asymptotically equal to G„) in
place of a normalized bound-state form factor.

l and j are the angular momentum labels of chan-
nel n.

The slowly convergent radial integrals thai arise
in the calculation of (dc, /dO~)„, „can be evaluated
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by the contour-integration method described in
Ref. 1, The only remaining problems are the inte-
gration over E& and the summation over channels c.

V. TREATMENT OF FLUCTUATIONS AND

ALTERNATIVE DECAY CHANNELS

The interesting energy dependence of the inte-
grand of Eq. (12) is contained in the factor

I t,„(za)I'. When 8 is an analog resonance, this
factor is abnormally large in a range of E& near
the resonance energy. %ithin this range it may
fluctuate rapidly, because of the presence of fine-
structure resonances. Since conventional theo-
ries' of analog states show how to calculate only
the energy-averaged t,„, the problem of including
the fluctuation contribution must now be solved.

The summation over c can be used to simplify
Zq. (12). To do this, we must assume that the
form factors X,„' can be replaced by a single form
factor X„(independent of c). The g„' may, of
course, differ greatly in the nuclear interior,
but they are guaranteed by definition to be equal
outside the nuclear interaction region. The ap-
proximation will thus be a good one if the reac-
tion is strongly peripheral, that is, if the nuclear
interior makes only a small contribution to Eq. (6).
This approximation ought to be used as far as
possible, because it leads to major si.mplifieations
of procedure, as we see below.

The (dc, /dQ~)~„k can then be replaced by a single
quantity (do /dQ~)„, „, and it becomes possible to
carry out the summation over c by using the uni-
tarity of S„, which may be written

f(z) = dz'w(z') f(z+z'),
l/2

dz'W(E') =1,
-Ifz

where I is the averaging interval and W is a real
function. Consider an integral over a range (E„E,)
with F., -E,»I. Then xt xs easily shown that

dEIm Z = dorm E,
g~ Jtl~

provided that f(E, +E') =f(E, +E') for all E' such
that fz' I& —,I. This condition is satisfied if f
attains a constant background value near E, and

E„so that end-point effects can be neglected. If
this condition is reasonably well satisfied by the
integrand of Eq. (14), we may then use the result
(15) to justify the replacement of t„„by t„„in Eq.
(14). This solves the problem of including the
fluctuation contributions.

If the cross section dc(d, pn)/dO~ were calcu-
lated neglecting both the fluctuation contribution
and the possibility of decay of B into channels
other than n, the result would contain I t„„I' in
place of Imt„„. The average contribution of fluc-
tuations and alternative decay modes is therefore
proportional to the difference

lmt„„- I t„„I' =-,'(1 —IS„„I')&0.

shifts for scattering of protons from the target.
Equation (14) permits the replacement of t„„by

an energy-averaged transition amplitude. To see
this, suppose that the energy average is denoted by
a bar and defined by

dzak„ imt„„(za)
p ly Sl p peak

(14)

The validity of Eq. (14) (and hence of the DWBA
without rescattering corrections) is apparently
supported by data presented by Fuehs et al."on
the reaction "N(d, p)"N to states in the continuum
between 2.3 and 3'.2 MeV above the neutron thresh-
old. They find that the transfer cross section
very closely follows the total cross section for
"N+n scattering, which is related to Imt„„ through
the optic, al theorem. It would be of interest to
investigate this relationship quantitatively by car-
rying out detailed DWBA calculations. A similar
experiment with proton transfer' could test the
truth of our claim that it is the nuclear transition
amplitude t„„that determines the transfer cross
section. In order to get unambiguous results,
one should select a case with large Coulomb phase

This quantity is related to the flux removed from
the direct elastic A +n channel. Part of this flux
is compound elastic (i.e., fluctuation) and part
is inelastic (i.e., due to alternative decay modes).

For an analog resonance, the averaging interval
J may be chosen large enough to smooth out the
fine structure, but small enough to reveal the
gross structure. Let us assume that only the
elastic A +n channel is open. Then the root-mean-
square magnitude of the fluctuations in the trans-
fer cross section is proportional to

~'- It..l'=l(1 —Is..l')

where &' is the energy average of
I t„„I'. There-

fore, the energy-averaged 8 matrix is sufficient
to determine the magnitude of the fluctuations.
Furthermore, the magnitude of the fluctuations
must have the same energy dependence in the
transfer cross section as in the A. +n total cross
section. Nevertheless, the presence of a non-
zero Coulomb phase shift may result in different
energy dependenees of the transfer cross section
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and the A +n total cross section.
By using Eq. (14) it is trivial to precipitate re-

sults for any particular case, by inserting the
appropriate form for Imt„„.

VI. APPLICATIONS TO RESONANCES

A. Isolated Resonance with Several Open Channels

For this case we can take the Breit-Wigner form:

Here E~ is the resonance energy, while l and I'„
are its total and partial widths. If (Zn E,)/F-and
(E, —Es)/I' are large, E, and E, may be replaced
by -~ and + . If the other factors in the integrand
of Eq. (14) vary little in an interval I, one may
replace them by their values for E~ =E~. With
t„„igven by Eq. (17), the integral in Eq. (14) be-
comes

If Eq. (1) is used to calcvlate dc(d, Pn)/dO~ with
the transition amplitude (17), the result is

dc(d, pn) p,„k„der I'„'
(18)

The interpretation of this result is that I'„/I' is
the probability that B decays through the n chan-
nel. Therefore the cross section for the (d, Pn)
reaction is I'„/I' times the cross section (18) for
the formation of B. It follows that the cross sec-
tion for formation of B depends on the partial
width I"„and not on the total width I'.

B. Proton Transfer to Analog Resonances

Here the transferred particle (which we have
hitherto denoted by n) is a proton. For a given
partial wave, de Toledo Piza and Kerman" give
the following parametrization of the proton elastic
scattering matrix, averaged over an intermediate
energy width I:

2i(6+i I)) ~ J. p
Spp =e —z

E~ -E~+2 i I (19)

(20)

where 5„=6 -cr, is the nuclear optical background
phase shift, and g describes the absorption. The
proton escape width is I'~ and the total width is I'.

As already emphasized in Sec. III, it is the nuclear
part of the scattering matrix that is relevant. This
1s

The asymmetry phase is P. All of these parame-
ters are assumed to be independent of energy.

We shall calculate the excess of the transfer
cross section (integrated over the experimentally
accepted energy range) over its value for the back-
ground scattering in the absence of the resonance.
We disregard the background term, since the cal-
culation of the cross section involves Imt„„, so
that the contributions of the two terms of Eq. (20)
simply add without interference. As for a single
isolated resonance, we may extend the limits of
integration to ~. The lemma (15) can be applied
to Eqs. (14) and (20) to yield

I"~ cos2(5„+Q).
do Pp kp dQ

n n Peak
(21)

This result is seen to depend only on the gross-
structure parameters of the resonance. Special
effects that might have been expected from the
presence of the fine structure are therefore ab-
sent. It is true that an improved dynamical theory
of the fine structure might result in modifications
to Eq. (19), with consequent changes in the form
of Eq. (21). Nevertheless, we emphasize that
Eq. (21) does not depend explicitly on the nature
of the fine structure.

The cosine factor of Eq. (21) reduces the cross
section and thereby takes account of the partial
cancellation that arises from the asymmetry of
the resonance. It is not related to the fluctuation
contribution. To see this, consider the case of
only one open channel, and suppose that the back-
ground 8 matrix and asymmetry phase can be ig-
nored. In a calculation in which the fluctuation
contribution is omitted (i.e., ~t„„~ is replaced by

~
t„„~'), the resulting cross section is easily seen

to be I'~/I' times Eq. (21). Therefore the fiuctua-
tion contribution enhances the cross section by a
factor I'/I'~. In effect, the fluctuation contribu-
tion restores the part of the cross section that
spreading removes.

It is remarkable that so simple a result as Eq.
(21) includes contributions from all possible decay
channels of B, and is valid even if B has strongly
overlapping fine structure. The basic reason for
this simple result is that the absorptive part of
t„„ takes account of the flux lost to other channels,
thereby eliminating the squares

~ f„,(' and their
attendant fluctuations, . This fact is familiar in
the statistical theory of reactions, particularly
in its application to total cross sections.

Other recent work on nucleon transfer to analog
states has been done by Agassi, Auerbach, and
Maolem" and by Kawai, Kerman, and McVoy. "
Both groups make assumptions about the individual
fine-structure resonances, and advocate calcula-
tion of dc(d, Pc)/dQ„ independently for each c.
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Neither group makes explicit use of the unitarity
of t„. The labor of such detailed calculations
seems justifiable only if the reaction is not strong-
ly peripheral. For strongly peripheral reactions
we believe that Eq. (21) yields a good approxima-
tion with trivial labor. Agassi et al. obtain for the
cross section

+e
P = (1-tan'y)

2

times the cross section for a single-particle reso-
nance. This disagrees with our Eq. (21).

The information provided by transfer to iso-
lated unbound states is essentially the same as
that provided by elastic scattering experiments,
as appears clearly in Eq. (1). In the present (more
general) case of transfer to a state with fine struc-
ture and several decay channels, the relevant in-
formation corresponds to a total-cross-section
experiment with poor energy resolution. However,
the information given by the transfer experiment
differs in two ways: First, it effectively mea-
sures the total cross section in the absence of the
Coulomb force, and second, the contribution of
different partial waves (for given I'„) increases
much more rapidly with /. These characteristics
make the transfer reaction a useful spectrscopic
tool. In practical analysis of transfer reactions
to analog states, the experimental transfer cross
section is compared with a DWBA calculation of
(do /dQ„) „,„ in order to deduce the width I'~ for
decay by emission of the transferred particle.
The spectroscopic factor for the parent state may
then be deduced from the value of 1~ by n1eans
of one of the standard theories of analog reso-
nances.

VII. EFFECT OF BACKGROUND AND ASYMMETRY

PHASES IN THE REACTION Mo(d, n)

analyzed by several authors. "" In all of these
analyses the background and asymmetry phases
were neglected. We now estimate the effect of
this neglect.

According to Auerbach et aL."the asymmetry
phase Q in this mass range is always small, typ-
ically less than 0.2 rad. The simple optical-mod-
el calculations of the form factors that were used
in Ref. 18 lead to the following values of the back-
ground phases: 5(d„,) =0.05', 5(s„,) =2', and

5(d, &,) =1'. Even for the s-wave case, where the
effect is largest, the correction factor cos2(5„+Q)
is quite unimportant. Therefore the conclusions
of Refs. 16-18 are unaffected.

The correction will be important, however,
whenever the background phase or the asymmetry
phase is large.

VIII. CONCLUSIONS

Practical application of the present simple anal-
ysis of the transfer reaction to a state B with fine
structure and with several open channels will
yield on-shell information about B—typically, the
width of B for escape of the transferred particle.
By an application of unitarity, we have exploited
the summation over the unobserved particles to
trivially include the fluctuation contribution to the
cross section. There is no need to be more sus-
picious of such analyses than of the more familiar
bound-state analyses, provided that (a) the reso-
nance width is small compared with its energy
[so that (do /dQ~)„, k may be regarded as slowly
varying], (b) the decay products of the resonance
more slowly compared with the detected particle
(so that rescattering is negligible), and (c) the
background and asymmetry phases in the reso-
nant partial wave are small.
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