Decays of ²⁶Na and ²⁷Na[†]

D. E. Alburger and D. R. Goosman Brookhaven National Laboratory, Upton, New York 11973

C. N. Davids*

Center for Nuclear Studies, University of Texas, Austin, Texas 78712, and Brookhaven National Laboratory, Upton, New York 11973 (Received 8 May 1973)

²⁶Na and ²⁷Na were produced in the ¹⁰B(¹⁸O, 2*p*)²⁶Na and ¹¹B(¹⁸O, 2*p*)²⁷Na reactions by bombarding pellets of boron with 42–MeV ¹⁸O ions. ²⁶Na was also studied using the ¹⁸O(¹³C, *pα*)–²⁶Na reaction at a ¹³C beam energy of 35 MeV. After transfer of the target in a rabbit the *β* and *γ* rays were measured with NE102 and Ge(Li) detectors. ²⁶Na decays with $T_{1/2} = 1.087 \pm 0.012$ sec and emits 10 *γ* rays involving 7 excited states of ²⁶Mg. From the end-point energy of *β* rays in coincidence with 1809-keV *γ* rays the mass excess of ²⁶Na is found to be -7004 ± 200 keV in agreement with the more accurate data of reaction *Q* values. ²⁷Na decays with $T_{1/2} = 280 \pm 20$ msec in agreement with a previous measurement. *γ* rays of 984.77±0.20 and 1698.5±0.5 keV are emitted with relative intensities of 86.0±2.9 and 14.0±2.3, respectively. The spin of ²⁷Na *β* rays in coincidence with 985-keV *γ* rays, compared with ²⁶Na *β* rays, the mass excess of ²⁷Na is not end-point energy of ²⁷Na is -5650±180 keV based on the ²⁶Na mass. This result is in fair agreement with a recent direct determination of the ²⁷Na mass.

I. INTRODUCTION

In a recent series of experiments¹⁻⁵ at Brookhaven several new $T_{g} = +\frac{5}{2}$ nuclides have been formed by heavy-ion compound reactions and their masses, half-lives, and decay schemes have been measured. The purposes of this work have been (1) to compare the spectroscopic observations with the predictions of various theoretical models. (2) to compare the masses of these nuclides with the predictions of theoretical mass formulations. and (3) to provide new input mass data which may lead to refinements of the mass formulas resulting in more reliable predictions of nuclear masses even further from the line of β stability. Among the 2s-1d shell members of the $T_{g} = +\frac{5}{2}$ sequence ²¹O, ²³F, ²⁵Ne, ²⁷Na, ²⁹Mg, ³¹Al, $\frac{5}{33}$ Si, and $\frac{35}{5}$ P, the previously unknown nuclides ³¹Al, ³³Si, and ³⁵P have been established and their decay properties studied.^{1-3,5} Details of the decay scheme of ²⁵Ne were obtained,⁴ this nuclide having been first identified elsewhere⁶ by means of different techniques.

As a continuation of this program we have undertaken an investigation⁷ of ²⁷Na. This activity, along with a number of other new isotopes of sodium, was reported by Klapisch *et al.*⁸ who bombarded U with high-energy protons and observed resultant sodium isotopes with an on-line mass spectrometer. A half-life of $295 \pm 10 \text{ msec}^9$ was obtained for ²⁷Na and its mass excess was determined¹⁰ to be $-5880 \pm 140 \text{ keV}$. β rays with an end-point energy of $7.6 \pm 0.5 \text{ MeV}$ were also reported,⁸ but there has been no other information of the ²⁷Na decay scheme.

²⁶Na is a known radioactivity having a half-life of 1.04 ± 0.03 sec¹¹ from earlier measurements and 1.07 ± 0.03 sec⁹ according to more recent work. Only one β -ray branch, to the 1809-keV first excited state of ²⁶Mg, has been reported in the literature, ¹¹ although there are many other states to which allowed β -ray branches could take place. When ²⁶Na was observed in some early experiments on the ${}^{18}O + {}^{13}C$ reaction we decided to check its half-life and search for β -ray branches not previously reported.⁷ During later work on ²⁷Na it became clear that a knowledge of the ²⁶Na decay scheme would help in providing a more accurate mass value for ²⁷Na. This is due to the proximity of the end-point energies of the ²⁷Na β rays feeding the 985-keV state of ²⁷Mg and the ²⁶Na β rays feeding the 1809-keV state of ²⁶Mg. Since the energy of the latter can be calculated on the basis of accurate reaction Q values it can be used as an internal calibrator when both ²⁶Na and ²⁷Na are produced simultaneously as in some of the present experiments. In order to use ²⁶Na most effectively as a calibrator the shape of the β -ray spectrum leading to the 1809-keV state must be well defined. This means that the contributions to the total spectrum of pulses in the NE102 scintillator in coincidence with 1809-keV γ rays due to β rays feeding higher states that γ cascade through the 1809-keV state (amounting to ~12% of all decays) must be subtracted out along with effects due to γ -ray summing. In turn these corrections

8

require a reasonably accurate knowledge of the $^{\rm 26}{\rm Na}$ decay scheme.

Another reason for making a study of ²⁶Na is that its mass as obtained from reaction Q values differs substantially from the mass based on one of two earlier β -ray measurements. Robinson, Lucas, and Johnson¹² obtained a total decay energy of 8.5 ± 0.3 MeV for ²⁶Na corresponding to a mass excess of -7700 ± 300 keV. According to later work by Klapisch *et al*.⁸ the measured β singles end point corresponds to a mass excess of -7200 ± 500 keV. In the first reported reaction Q-value measurement on ²⁶Na Ball et al.¹³ obtained a mass excess of -6853 ± 30 keV by the use of the ²⁶Mg-(⁷Li, ⁷Be)²⁶Na reaction. Their result has been confirmed in a study of the ${}^{26}Mg(t, {}^{3}He){}^{26}Na$ reaction by Flynn and Garrett¹⁴ who obtained a ²⁶Na mass excess of -6903 ± 20 keV. Although the relatively less accurate β -ray result of Klapisch *et al*. agrees both with the earlier β -ray measurement and with the reaction Q values there is a discrepancy of 800 keV between the latter and the earlier β -decay energy found by Robinson *et al*. Our own experimental result is in excellent agreement with the reaction Q values.

II. EXPERIMENTAL METHODS AND RESULTS

A. Half-Lives and Decay Schemes of ²⁶Na and ²⁷Na

Most of the experimental techniques used in this work have been described thoroughly in previous papers.¹⁻⁵ ²⁶Na was first observed during searches for ²⁹Mg which could be formed in the ¹⁸O(¹³C, 2*p*)-²⁹Mg reaction. Targets^{1, 3, 5} of Ta₂¹⁸O₅ were 'bombarded with 35-MeV ¹³C ions from one of the Brookhaven National Laboratory tandem Van de Graaff accelerators and the delayed γ -ray spec-

TABLE I. γ rays measured in the decay of ²⁶Na.

E_{γ} (keV)	Transition (keV)	I_{γ}^{a} (rel)
1002.9 ± 0.5^{a} 1129.7 ± 0.1^{b} 1412.3 ± 0.8^{a} 1808.65 ± 0.07^{b} 1896.7 ± 0.6^{a} 2133.0 ± 1.0^{a} 2509.8 ± 0.8^{a} 2523.3 ± 0.6^{a}	$3942 \rightarrow 2938$ $2938 \rightarrow 1809$ $4350 \rightarrow 2938$ $1809 \rightarrow 0$ $4835 \rightarrow 2938$ $3942 \rightarrow 1809$ $4320 \rightarrow 1809$ $4333 \rightarrow 1809$	$\begin{array}{c} 0.8 \pm 0.3 \\ 5.8 \pm 0.3 \\ 3.2 \pm 0.4 \\ 100.0 \\ 2.0 \pm 0.15 \\ 0.60 \pm 0.10 \\ 0.55 \pm 0.14 \\ 1.33 \pm 0.12 \end{array}$
2541.0 ± 0.6^{a} 2938.24 ± 0.13 ^b 2353 ^a 3092 ^a	$4350 \rightarrow 1809$ $2938 \rightarrow 0$ $5292 \rightarrow 2938$ $4901 \rightarrow 1809$	$2.46 \pm 0.16 \\ 0.61 \pm 0.10 \\ < 0.3 \\ < 0.3$

^a Present results.

^b γ -ray energy from E. A. Samworth, E. K. Warburton, and G. A. P. Engelbertink, Phys. Rev. C 5, 138 (1972).

trum was measured in a Ge(Li) detector. Since it was expected that ²⁹Mg might decay with a halflife of about 1 sec, the timing setup was also appropriate for ²⁶Na and, in fact, one of the strongest background activities was ²⁶Na formed in the ¹⁸O(¹³C, $p\alpha$)²⁶Na reaction.

By routing the Ge(Li) spectrum into four successive 1-sec time bins in the computer the ²⁶Na lines could be identified from their decay rate. The decay of the strongest ²⁶Na line at 1809 keV, suitably corrected for dead time, leads to a value of 1.087 ± 0.012 sec for the ²⁶Na half-life. The intensities of all of the ²⁶Na γ rays observed in this work are listed in Table I together with the transition assignments to be discussed later. Corrections for γ -ray efficiency versus energy were made using an efficiency function measured in the same geometry. Summing corrections have also been included. Limits on unobserved γ -ray transitions have been placed at the 85% confidence level in all of our work.

For the study of ²⁷Na the reaction ${}^{11}B({}^{18}O, 2p){}^{27}Na$ was used at an ¹⁸O beam energy of 42 MeV. Targets were made by compressing amorphous boron powder at 13 000 atm into pellets 4 mm diam and ~3 mm thick which were then sintered at high temperature making them hard and durable. The pellet was press-fitted into a Delrin rabbit. For the initial studies of ²⁷Na, boron enriched to 97% in ¹¹B was used to make the pellets. Tests of the yield of ²⁶Na produced in the ¹⁰B(¹⁸O, 2p)²⁶Na reaction were made with pellets enriched in ¹⁰B to 97%. It was found that the isotopic ratio of ^{10}B to ¹¹B in natural boron gave suitable relative intensities of ²⁶Na and ²⁷Na for purposes of β -ray comparison measurements, and hence in the remainder of the work the pellets were made with natural

FIG. 1. A portion of the γ -ray spectrum from a boron target irradiated with 42-MeV ¹⁸O ions showing one of the ²⁷Na lines and a γ -ray peak due to ²⁵Na decay.

boron.

A portion of the γ -ray spectrum from the irradiated boron pellet is shown in Fig. 1. Due to the neighboring ²⁵Na peak of 974.71 ± 0.12 keV arising from either the ¹¹B(¹⁸O, α)²⁵Na reaction or the ¹²C(¹⁸O, $p\alpha$)²⁵Na reaction on carbon contamination, the ²⁷Na γ -ray energy could be measured with an accuracy of ±0.2 keV. One other ²⁷Na γ -ray peak was observed at 1698.5 ± 0.5 keV. Comparisons of these γ -ray energies with the known levels of ²⁷Mg are shown in Table II which also includes relative intensities of these lines as well as upper limits on the intensities of γ rays following other possible β -ray branches of ²⁷Na.

The decays of the two ²⁷Na lines were measured by routing the spectra of γ -ray singles and γ rays in coincidence with β rays >2 MeV into successive 0.3-sec time bins in a computer. The data for the 985-keV peak with background subtracted and corrections made for dead time are shown in Fig. 2. Because of a limitation of seven bins in the computer the singles counts were recorded for four periods of 0.3 sec each and the coincidences for three periods as shown in Fig. 2. The ²⁷Na halflife adopted from all of the data is 280 ± 20 msec. This agrees with the more accurate result of Klapisch et al., ⁹ i.e., 295 ± 10 msec. The decay of the 1699-keV line was consistent with the ²⁷Na half-life within the rather poor statistics of the measurements of this peak.

B. Masses of ²⁶Na and ²⁷Na

In order to determine the masses of ²⁶Na and ²⁷Na the spectra of β rays entering an NE102 detector were measured in coincidence with γ -ray peaks in the Ge(Li) spectrum. Because of the high energies expected for these β rays the NE102 detector was made 5.1 cm thick and 7.6 cm in diameter. Following the procedures used pre-viously¹⁻⁵ digital windows were set on peaks and

TABLE II. γ -ray energies and intensities measured in the decay of 27 Na and the β -ray branches derived.

Known ²⁷ Mg level (keV)	E_{γ} (keV)	I_{γ} (rel)	Ι _β (%)	log ₁₀ <i>f</i> t
984.7 ± 0.2 a	984.77 ± 0.20	86.0 ± 2.9	86.0 ± 2.9^{b}	4.1 ^b
1698.7 ± 0.4 ^a	1698.5 ± 0.5	14.0 ± 2.3	14.0 ± 2.3^{b}	4.7 ^b
1939.9 ± 0.4 ^c	955	<2.5	<3.5	>5.3
	1940	<2.7		
3109.2 ± 0.5 d	1169	<2.9	<2.9	>5.0
3476.3 ± 0.6 ^a	3476	<2.0	<2.0	>5.0

^a B. Skaali, Phys. Norv. 4, 45 (1970).

^b Derived by assuming that the β -ray transition intensity to the ground state is negligible.

^c Mean of a and Ref. 17.

^dReference 17.

backgrounds in the Ge(Li) spectrum so that the corrected coincident β -ray spectrum could be obtained for each peak alone. In these experiments there were β rays in coincidence with γ -ray peaks from the activities $^{28}\mathrm{A1}$ ($E_{\beta}=2863$ keV), $^{23}\mathrm{Ne}$ (E_{β} = 3939 keV), and ²⁰F (E_{β} = 5393 keV) which were present in good yields and served as internal calibrations for finding the end point of the ²⁶Na β rays leading to the 1809-keV state. The end-point energies derived from the Kurie plots (corrected for experimental resolution) of the calibration activities, further corrected for an energy loss of 100 keV due to absorption in the rabbit exit window and detector covering, fell on a straight line which was extrapolated to determine the end-point energy of the ²⁶Na Kurie plot. The resulting corrected value for the 26 Na end point was 7400 ± 200 keV where most of the error arises from the uncertainty in the extrapolation from the 20 F end point at 5393 keV and from linearity considerations. This result corresponds to a ²⁶Na mass excess of -7004 ± 200 keV which differs by 116 ± 200 keV from the value based on the reaction data discussed earlier.

In order to obtain the mass of ²⁷Na the β -ray spectrum in coincidence with 985-keV γ rays was

FIG. 2. Decay of the ²⁷Na 985-keV line in singles and in coincidence with β rays >2 MeV. From these data the half-life of ²⁷Na is 280±20 msec.

compared with the $^{26}\mathrm{Na}\;\beta$ rays in coincidence with 1809-keV γ rays. However, to make use of the entire ²⁶Na spectrum the corrections for contributions of inner β -ray groups and of γ -ray summing were calculated by a computer program on the basis of the proposed ²⁶Na decay scheme. Figure 3 shows the corrected ²⁶Na spectrum and the ²⁷Na spectrum. The curve drawn so as to give the best fit to the ²⁶Na data has been stretched by a factor of 1.060 to give the best fit to the ²⁷Na data as shown in the figure. By using the 26 Na β end-point energy from the accurate reaction Qvalue data the measurement leads to a ²⁷Na endpoint energy of 7950 ± 180 keV where the error is an estimate based mostly on the variation in the stretching factor that results in a noticeably poorer fit to the data. The height was allowed to vary so as to provide the best possible fit for each value of the stretching factor. The Kurie plot end points of ²⁶Na and ²⁷Na were also consistent with the ratio of 1.060, but since the Kurie plot analysis depends mainly on the points (having poor statistics) in the high-energy regions of the two spectra it was felt that the shape-fitting procedure comparing the entire spectrum was somewhat more reliable. We noted that changing the ²⁶Na correc-

FIG. 3. Lower curve: β -ray spectrum of ²⁶Na in coincidence with 1809-keV γ rays corrected for inner β -ray branches and γ -ray summing effects. Upper curve: β -ray spectrum of ²⁷Na in coincidence with 985-keV γ rays. The curve giving the best fit to the ²⁶Na spectrum has been stretched by a factor of 1.060 giving the best fit to the ²⁷Na data.

FIG. 4. Proposed decay scheme of ²⁶Na. The energies, spins, and parities of ²⁶Mg levels are from the literature. β - and γ -ray branches and the ²⁶Na half-life are from the present work. The total decay energy of ²⁶Na is based on the mean of two reaction Q-value measurements.

tions by 20% affects the calculated ²⁷Na mass by only 30 keV.

III. DISCUSSION

A decay scheme for ²⁶Na has been constructed based on the γ -ray data presented in Table I together with previously established information on the energy levels of ²⁶Mg. This is shown in Fig. 4 and β -ray branches are also listed in Table III. Spin and parity assignments of the ²⁶Mg levels in

²⁶ Mg level ^a (keV)	β-ray branch (%)	$\log_{10} ft$	
1808.7	87.9 ± 0.4	4.72 ± 0.02	
2938.4	<0.8	>6.5	
3941.7	1.33 ± 0.40	5.86 ± 0.11	
4319.8	0.54 ± 0.14	6.11 ± 0.10	
4333.1	1.54 ± 0.14	5.65 ± 0.04	
4350.4	5.6 ± 0.4	5.08 ± 0.03	
4834.9	2.9 ± 0.2	5.16 ± 0.03	
4901	<0.6	>5.8	
5292.1	<0.3	>5.9	

^a Energies of the first two excited states are from E. A. Samworth, E. K. Warburton, and G. A. P. Engelbertink, Phys. Rev. C <u>5</u>, 138 (1972). All others are from Ref. 15. Fig. 4 are those adopted by Selin and Hardell.¹⁵ Our result for the half-life of ²⁶Na is in agreement with previous work^{9, 11} but is more accurate. The log *ft* values of the observed β -ray branches are consistent with an assignment of $J^{\pi} = 3^+$ to ²⁶Na. Thus, the log *ft* of 6.11 for the branch to the 4320-keV 4⁺ state is too low for a second-forbidden transition if ²⁶Na were to have a spin of 2⁺. The absence of an observable β -ray branch to the 2⁺ second excited state at 2938 keV and the consequent lower limit of log *ft* >6.5 is puzzling since

²⁶Na spin assignment. In a recent unpublished report Klotz *et al.*¹⁶ find a ²⁶Na β -ray branch to the 4.90-MeV state of ²⁶Mg with a log *ft* of 5.4. According to Canada, Bent, and Haskett¹⁷ the 4.90-MeV state has $J^{\pi} = 4^+$ and thus if the branch of Klotz *et al.* were correct this would confirm the assignment of 3^+ to ²⁶Na. However, our upper limit on the β -ray branch to this state (log *ft* >5.8) is a factor of 2.5 lower than the preliminary result of Klotz *et al.*

this β -ray transition is certainly allowed for either

Table IV shows the γ -ray branching results obtained in this work for several of the ²⁶Mg levels compared with previous information.¹⁵ The agreement with earlier work seems to be reasonable.

The total decay energy adopted for ²⁶Na is 9325 \pm 20 keV representing the weighted mean derived from the two reaction *Q*-value measurements.^{13, 14} As mentioned earlier the present result on the decay energy of ²⁶Na corresponds to a mass excess of -7004 ± 200 keV. This differs by only 116 keV from the mass excess of -6888 ± 20 keV from the reaction *Q* values.

Figure 5 shows the decay scheme proposed for ²⁷Na and the β -ray branching information is also listed in Table II. The close agreement of our measured γ -ray energies with the known levels of ²⁷Mg and the agreement of our half-life with the result of Klapisch *et al.*⁹ leaves little doubt

TABLE IV. γ -ray branching of ²⁶Mg levels observed in the decay of ²⁶Na.

¹		Branch	
Initial state (keV)	Final state (keV)	Present (%)	Previous (%)
2938.4	1808.7	90.5 ± 1.6	89.8 ± 2.0^{a}
	0	9.5 ± 1.6	10.2 ± 2.0 ^a
3941.7	2938.4	57 ± 9	53 ^b
	1808.7	43 ± 9	47 ^b
4350.4	2938.4	57 ± 4	39 ^b
	1808.7	43 ± 4	61 ^b

^a E. A. Samworth, E. K. Warburton, and G. A. P. Engelbertink, Phys. Rev. C 5, 138 (1972).

^b Reference 15.

I log 10ft (%) /2+ (3/2+ 3476.3 2.0 >5.0 7/2+ (3/2+) 3109.2 <2.9 >5.0 5/21 1939.9 >5.3 :3.5 5/2* 1698.7 14 4.7 3/2 984.7 86 4.1 < 0 1/2 ²⁷Mg₁₅ FIG. 5. Proposed decay scheme of ²⁷Na. Energies, spins, and parities of the ²⁷Mg levels are based on the

spins, and parities of the ²⁷Mg levels are based on the values given in Ref. 17 and by B. Skaali, Phys. Norv. 4, 45 (1970). β -ray branches and the spin-parity of ²⁷Na are from the present work where it is assumed that the ground-state β -ray branching intensity can be neglected according to the evidence given in Ref. 8. The half-life and decay energy of ²⁷Na are weighted mean values based on Refs. 9 and 10 and on the present work.

that we are, in fact, observing radiations from the decay of ²⁷Na produced in the ¹¹B(¹⁸O, 2p)²⁷Na reaction. β -ray branches are observed to the first two excited states of ²⁷Mg which have spinparities of $\frac{3}{2}^+$ and $\frac{5}{2}^+$, respectively.¹¹ The β -ray branching intensity to the ground state is assumed to be small for the reasons discussed below.

Previous results obtained by Costa and Beck¹⁸ on the electromagnetic matrix elements in ²⁷Mg have been interpreted by them in terms of the Nilsson model. In particular the ground state is suggested to be the head of a $K = \frac{1}{2}^+$ band based

TABLE V. Experimental ratios of ft values in the decay of ²⁷Na compared to calculated ratios based on the Nilsson model.

			$\frac{ft (985)}{ft (level)}$	
²⁷ Mg level (keV)	J^{π}	K assumed	Calculated	Experimental
0	$\frac{1}{2}^{+}$	$\frac{1}{2}$	1.25	•••
985	37	$\frac{1}{2}$	1.00	1.00
1699	<u>5</u> 2	$\frac{1}{2}$	0.25	0.256 ± 0.058

3/2⁺, 5/2⁺ 27 11 Na 16

292 msec

8800

FIG. 6. Comparisons of the masses of $T_x = +\frac{5}{2}$ nuclides with predictions of the Garvey-Kelson t relation. For ²⁷Na the present result and that of Klapisch *et al.* (Ref. 10) are both shown. The points for ²⁵Ne, ³¹Al, ³³Si, and ³⁵P are from Refs. 1–5. ²¹O is due to A. G.Artukh, G. F. Gridnev, V. L. Mikheev, V. V. Volkov, and J. Wilczynski, Nucl. Phys. <u>A192</u>, 170 (1972) and ²⁹Mg is from a measurement of the ²⁶Mg(¹¹B, ⁸B)²⁹Mg reaction by D. K. Scott, C. U. Cardinal, P. S. Fisher, P. Hudson, and N. Anyas-Weiss, in *Atomic Masses and Fundamental Constants 4*, edited by J. H. Sanders and A. H. Wapstra (Plenum, New York, 1972), p. 54.

upon Nilsson orbit No. 9. The $\frac{3}{2}$ ⁺ member of this band is assigned to the 985-keV level and the $\frac{5}{2}$ member to either the 1699- or 1940-keV levels. ^{27}Na decays to $\frac{3}{2}^+$ and $\frac{5}{2}^+$ levels of ^{27}Mg and hence it must have $J^{\pi} = \frac{3}{2}^+$ or $\frac{5}{2}^+$. In the unmixed Nilsson model this would correspond to $J = \frac{3}{2}^{+} = K$ with a deformation between -1.8 and +6. Deformations of <-1.8 are excluded since this would require $J = \frac{1}{2}^{+}$ for ²⁷Na. Since the ²⁷Na \rightarrow ²⁷Mg decay would be a $K = \frac{3}{2}$ to $K = \frac{1}{2}$ band transition, the ratios of ft values to members of the same ^{27}Mg band are given simply by the ratios of the squares of the appropriate Clebsch-Gordan coefficients, and the calculations are independent of deformation. The predicted ft value ratios are shown in Table V. The calculation assumes that the $K = \frac{1}{2}$, $J = \frac{5}{2}$ member is the 1699-keV level, since our results show no evidence for β decay to the 1940-keV level.

As may be seen in Table V the calculation predicts that the strongest ²⁷Na β -ray branch should be to the ground state of ²⁷Mg. We have no measure of this branch, but the β -ray singles endpoint energy of 7.6±0.5 MeV reported by Klapisch *et al.*⁸ corresponds to the decay of ²⁷Na to states in ²⁷Mg with a minimum excitation energy of 1.2 ±0.5 MeV, which would rule out any strong groundstate β branch. This would invalidate the model discussed above.

The simple shell model predicts that $J^{\pi} = \frac{5}{2}^{+}$ for ²⁷Na, and that the ground-state β -ray branch should be zero. There are no detailed mixed shell-model calculations available as yet for this decay and it is hoped that the present results might stimulate such efforts.

Our result for the mass excess of ²⁷Na, -5650 ±180 keV, is in fair agreement with that of Klapisch *et al.*, ¹⁰-5880±140 keV. The difference of 230 keV lies within the sum of the errors. Both results are included in Fig. 6 which compares the measured masses of $T_z = +\frac{5}{2}$ nuclides with predictions derived in Ref. 5 using the Garvey-Kelson *t* relationship.¹⁹ Deviations from the predicted masses are generally ≤ 600 keV. We now have evidence²⁰ that the value for ²⁹Mg shown in Fig. 6 is considerably in error.

Note added. Details of the work of Klotz et al. (Ref. 16) on the decay of ²⁶Na have now been published.²¹ Our ²⁶Na decay scheme is generally consistent with theirs except for the β -ray branch to the 4350-keV level of ²⁶Mg. We find this branch to be 5.6% per decay while Klotz et al. quote 2.7%with an additional feeding of this level of 2% per decay due to γ rays from levels at 5.72 and 6.12 MeV. Due to the strong ²⁸Al activity present in our sources we would not have been able to detect the underlying peak due to the 6.12 - 4.35 transition. Since this γ -ray line would account for much of the difference in our respective results it is probable that Klotz et al. are more nearly correct on the β -ray branching intensity to the 4350-keV state, as well as on the existence of the weak β branches to the 5.72- and 6.12-MeV levels. If the β -ray branches of Klotz *et al.* to the 4.35-, 5.72-, and 6.12-MeV levels were to be adopted, the effect on our mass excess derived for ²⁷Na would be less than 20 keV.

- †Research carried out under the auspices of the U.S. Atomic Energy Commission.
- *Alfred P. Sloan Foundation Fellow.
- ¹D. R. Goosman and D. E. Alburger, Phys. Rev. C <u>5</u>, 1252 (1972).
- ²D. R. Goosman and D. E. Alburger, Phys. Rev. C <u>6</u>, 820 (1972).
- ³D. R. Goosman and D. E. Alburger, Phys. Rev. C <u>6</u>, 825 (1972).
- ⁴D. R. Goosman, D. E Alburger, and J. C. Hardy, Phys. Rev. C <u>7</u>, 1133 (1973).
- ⁵D. R. Goosman and D. E. Alburger, Phys. Rev. C <u>7</u>, 2409 (1973).
- ⁶A. P. Kabachenko, I. B. Kyznetzov, K. Sivek-Vilchinka,

E. A. Skakun, and N. I. Tarantin, Joint Institute for Nuclear Science, Dubna Report No. D7-5769, 1971 (unpublished), p. 204.

- ⁷A report of the present results on both ²⁷Na and ²⁶Na was presented at the Washington Meeting of the American Physical Society, Bull. Am. Phys. Soc. <u>18</u>, 678 (1973).
- ⁸R. Klapisch, C. Thibault-Philippe, C. Détraz, J. Chaumont, R. Bernas, and E. Beck, Phys. Rev. Lett. <u>23</u>, 652 (1969).
- ⁹R. Klapisch, C. Thibault, A. M. Poskanzer, R. Prieels, C. Rigaud, and E. Roeckl, Phys. Rev. Lett. <u>29</u>, 1254 (1972).
- ¹⁰R. Klapisch, R. Prieels, C. Thibault, A. M. Poskanzer, C. Rigaud, and E. Roeckl, Phys. Rev. Lett. 31, 118 (1973).
- ¹¹P. M. Endt and C. Van der Leun, Nucl. Phys. <u>A105</u>, 1 (1967).
- ¹²E. L. Robinson, B. T. Lucas, and O. E. Johnson, Phys.

Rev. 122, 202 (1961).

- ¹³G. C. Ball, W. G. Davies, J. S. Forster, and J. C. Hardy, Phys. Rev. Lett. 28, 1069 (1972).
- 14 E. R. Flynn and J. D. Garrett, to be published.
- ¹⁵E. Selin and R. Hardell, Nucl. Phys. A139, 375 (1969).
- ¹⁶G. Klotz, J. P. Gonidec, P. Baumann, and G. Walter, in Centre de Recherches Nucléaires Annual Report for 1972, Strasbourg, France (unpublished).
- ¹⁷T. R. Canada, R. D. Bent, and J. A. Haskett, Phys. Rev. 187, 1369 (1969).
- ¹⁸G. Costa and F. A. Beck, Nucl. Phys. A181, 132 (1972).
- ¹⁹G. T. Garvey, W. J. Gerace, R. L. Jaffe, I. Talmi, and I. Kelson, Rev. Mod. Phys. Suppl. 41, S1 (1969).
- ²⁰D. R. Goosman, C. N. Davids, and D. E. Alburger, Phys. Rev. (to be published).
- ²¹G. Klotz, J. P. Conidec, P. Baumann, and G. Walter, Nucl. Phys. <u>A205</u>, 90 (1973).