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Onset of nuclear structure effects in near-barrier elastic scattering of weakly bound nuclei:
6He and 6Li compared
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The elastic scattering of the halo nucleus 6He from heavy targets at incident energies near the Coulomb barrier
displays a marked deviation from the standard Fresnel-type diffraction behavior. This deviation is due to the
strong Coulomb dipole breakup coupling produced by the Coulomb field of the heavy target, a specific feature of
the nuclear structure of 6He. We have performed Continuum Discretized Coupled Channels calculations for the
elastic scattering of 6He and 6Li from 58Ni, 120Sn, 144Sm, 181Ta and 208Pb targets in order to determine the range
of ZT where this nuclear-structure specific coupling effect becomes manifest. We find that the strong Coulomb
dipole breakup coupling effect is only clearly experimentally distinguishable for targets of ZT ≈ 80.
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The interaction of two composite nuclei may lead to strong
absorption in which the effects of coupling to non-elastic
channels are dominant [1]. When strong absorption occurs,
the scattering is primarily diffractive in nature and the elastic
scattering cross section angular distributions will be of one of
two types, characteristic of Fresnel or Fraunhofer diffraction,
depending on the incident energy. Fresnel-type diffraction
is observed at energies close to the Coulomb barrier when
the Coulomb field acts like a diverging lens. As the incident
energy is increased, the behavior of the angular distribution
transforms from Fresnel- to Fraunhofer-type scattering where
the Coulomb field is no longer effective as a diverging lens and
interference between waves diffracted around opposite edges
of the targets occurs, leading to the characteristic oscillatory
behavior.

While stable nuclei usually exhibit one or other of these
classical diffraction patterns in their elastic scattering angular
distributions, the elastic scattering of the 6He halo nucleus from
heavy targets at near-barrier energies shows a strong deviation
from the standard diffraction behavior. At these energies we
would expect the elastic scattering to display the characteristic
Fresnel-type diffraction pattern. However, a different structure
is observed, in that the usual Coulomb rainbow peak is
completely absent [2,3]. The 6Li nucleus shows a similar
anomalous scattering for heavy targets at near-barrier incident
energies but it is much weaker and considerably more difficult
to observe experimentally, being a reduction of the Coulomb
rainbow peak rather than a complete absence as for 6He,
requiring very precise measurement of the elastic scattering
angular distributions [4].

A similar deviation from the classical Fresnel diffraction
pattern was initially observed experimentally in the elastic
scattering of 18O + 184W [5], and was interpreted as arising
from the effect of strong Coulomb excitation of the first 2+
state in the 184W target. Strong Coulomb coupling effects are
also responsible for the effect seen in the near-barrier elastic
scattering of 6He from heavy targets. When the atomic number
of the target nucleus (ZT) is large, the breakup of the weakly

bound projectile is dominated by the Coulomb field. It is the
large Coulomb dipole (E1) breakup probability of 6He and
the strong coupling of this process to the elastic scattering that
causes the deviation for a 6He projectile from the classical
diffraction pattern. The elastic scattering of 6He from the
medium-mass 64Zn target does not show this effect [3,6],
and appears similar to that for 6Li from similar mass targets,
presumably due to the reduced importance of the Coulomb
breakup. For 6Li, the similar effect on the elastic scattering is
caused by the virtual quadrupole (E2) breakup coupling (E1
breakup is not allowed for the 6Li → α + d process) and is
consequently much weaker than for 6He (with both E1 and E2
breakup allowed) and only apparent in precise measurements
for heavy targets like 208Pb at near-barrier energies. The elastic
scattering of 6Li therefore provides a good benchmark for
comparison with 6He elastic scattering.

It is not possible at present to easily control the beam energy
of radioactive nuclei and thus optimize the experimental
visibility of any interesting features that may arise due to the
particular internal structure properties of these nuclei. For ex-
ample, one feature of halo nuclei is the possibility of low-lying
dipole strength, and this characteristic has been demonstrated
experimentally and theoretically in the scattering of 6He from
208Pb. The change observed in the elastic scattering is an
interference between nuclear and Coulomb contributions that
is highly dependent on the charge of the target nucleus and
the beam energy relative to the Coulomb barrier. While it is
not possible yet to predict all of the other types of behavior
that might occur in exotic nuclei, exploring the virtual dipole
effect as a function of bombarding energy and nuclear target
charge theoretically for 6He scattering can show the regime
where one should look generally for these new effects and
where the elastic scattering is sensitive to the details of the
projectile nuclear structure.

In this note, we investigate over what range of ZT the
Coulomb dipole breakup virtual coupling effect is sufficiently
important that the 6He elastic scattering shows a measurable
difference from the analogous 6Li scattering and is therefore
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sensitive to its specific nuclear structure properties. For this
purpose, we have calculated the elastic scattering of 6He and
6Li by different nuclei from 58Ni to 208Pb at energies near the
Coulomb barrier using the Continuum Discretized Coupled
Channels (CDCC) method. As the strong coupling effect is
linked to the specific nature of the 6He structure it is hoped that
this study will prove useful in planning future radioactive beam
experiments by helping to pinpoint the target and incident
energy ranges where such structure-dependent effects are most
clearly manifest.

We performed CDCC calculations for ten different systems,
6He and 6Li + 58Ni, 120Sn, 144Sm, 181Ta and 208Pb in order to
find a critical ZT value where the 6He elastic scattering is
measurably different from that for 6Li. In order to remove
trivial effects due to the difference in charge between 6Li and
6He, calculations were compared for the same center of mass
energy relative to the Coulomb barrier, Ec.m. − VB, where the
Coulomb barrier height VB was calculated according to the
relation [7]:

VB = ZPZTe2

RP + RT
(1)

where R = 1.16 A1/3 + 1.2. While this relation overestimates
the Coulomb barrier due to its neglect of the nuclear potential
it should be adequate for our purposes. For each target,
calculations were performed at two energies, corresponding
to values of Ec.m. − VB of 1.005 and 5.534 MeV, equating to
incident laboratory frame energies of 11.0 and 16.0 MeV for
the 6He + 58Ni system.

Although 6He has a three-body α + n + n structure,
assuming an α + 2n cluster structure can give physically
meaningful results as the three-body wave function of the
6He ground state has a large di-neutron (2n) component,
which dominates the tail of the wave function [2,8]. Thus,
while the breakup of 6He is best described by four-body
models [9–13], their numerically demanding nature, combined
with the lack of a generally available code able to implement
such calculations make the use of standard three-body CDCC
calculations attractive in a study of this kind. Therefore, CDCC
calculations were performed using the modified two-body
di-neutron model of 6He proposed by Moro et al. [3],
where the binding energy of the di-neutron in the ground
state is increased to 1.6 MeV to give a wave function that
well matches that of more physically sophisticated three-body
models. This model describes very well the elastic scattering
of 6He for several targets covering the mass range studied
here and gives a coupling effect similar to that of four-
body CDCC calculations [3]. It is therefore adequate for
our purposes in providing a good description of the elastic
scattering of 6He, although it is not claimed to provide an
accurate picture of the breakup cross section itself, merely
its coupling effect on the elastic scattering. To calculate the
interaction potentials the single-folding technique [14] was
used and the necessary α + target, 2n + target optical potential
parameters were taken from Refs. [15] and [16], respectively,
the latter being a global deuteron potential as 2n scattering
potentials are obviously not available. The α + 2n binding

potential was of Woods-Saxon form with parameters R =
1.9 fm and a = 0.25 fm [17].

The 6Heα + 2n continuum was discretized into bins of
widths �k = 0.1 fm−1 and up to a maximum excitation energy
of ε = 7.7 MeV in α + 2n relative momentum (k) space. The
maximum value of k was chosen in each case so as to ensure
convergence of the results, i.e. it was checked that adding an
additional bin did not affect the result of the calculation. All
non-resonant cluster states corresponding to α + 2n relative
angular momenta L = 0, 1, 2, 3 were included as well as
the 1.8 MeV 2+ resonant state. The coupled equations were
integrated up to R = 80 fm and used 200 partial waves for the
projectile-target relative motion.

The 6Li calculations were similar to those described in
Ref. [18]. Again, the maximum value of k was chosen to
ensure convergence. The α + target and d + target potentials
were also taken from Refs. [15] and [16], respectively. All
calculations were performed using the code Fresco [19].

The results of the calculations are presented in Figs. 1 and 2,
those for 6He being denoted by the dashed curves and those for
6Li by the solid curves. To emphasize the angular region around
the Coulomb rainbow the cross section scales (expressed as a
ratio to the Rutherford cross section) are linear. To remove
any residual “geometric” differences the angular distributions
are plotted as a function of θc.m. − θg, where θg is the grazing
angle defined by the “quarter-point recipe”.

We immediately see that for a 58Ni target (ZT = 28) the
calculated 6Li and 6He angular distributions are absolutely
identical when plotted in this fashion; measurements of the
elastic scattering from targets in this mass region are clearly not
sensitive to the details of the nuclear structure of the projectile.
For a 120Sn target, while the calculated angular distributions are
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FIG. 1. (Color online) Angular distributions of differential cross
section (ratio to Rutherford cross section) for 6He (dashed curves)
and 6Li (solid curves) + 58Ni, 120Sn, and 144Sm elastic scattering. The
left-hand panels are for Ec.m. − VB = 1.005 MeV and the right-hand
panels for Ec.m. − VB = 5.534 MeV.
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FIG. 2. (Color online) Angular distributions of differential cross
section (ratio to Rutherford cross section) for 6He (dashed curves) and
6Li (solid curves) + 181Ta and 208Pb elastic scattering. The left-hand
panels are for Ec.m. − VB = 1.005 MeV and the right-hand panels for
Ec.m. − VB = 5.534 MeV.

slightly different at Ec.m. − VB = 1.005 MeV the difference is
too small to be measurable; at Ec.m. − VB = 5.534 MeV the
6He and 6Li angular distributions are again identical.

The magnitude of the structure-specific coupling effect for
6He elastic scattering of course increases with increasing target
charge, it being a consequence of strong Coulomb dipole
coupling; thus for the 144Sm target (ZT = 62) a complete lack
of a Coulomb rainbow is clearly observed for Ec.m. − VB =
1.005 MeV, although any reasonable measurement would still
be unable to detect any difference from the corresponding
6Li angular distribution. The 144Sm target also provides a
good example of the dependence of the coupling effect on
incident energy, as the calculated angular distribution for for
Ec.m. − VB = 5.534 MeV is virtually identical to the 6Li one.
For a given target, as the incident energy is increased the
coupling effect weakens and the Coulomb rainbow gradually
manifests itself. This is a well-known general feature of
Fresnel-type scattering for heavy ions; for 6He scattering
from a heavy target the effect is somewhat different as the
Coulomb breakup coupling dominates at energies just above
the Coulomb barrier to such an extent that the Coulomb
rainbow is not merely absent but completely effaced.

In Fig. 2 the angular distributions for 181Ta (ZT = 73) and
208Pb (ZT = 82) targets show clear differences between 6He
and 6Li at both values of Ec.m. − VB. However, for the 181Ta
target the difference at Ec.m. − VB = 1.005 MeV would be
barely detectable in a measurement to a precision of ±1% for
the the 6Li elastic scattering and ±2% for the 6He measurement
(both achievable in a reasonable time scale with currently
available beam intensities and detector arrays). The use of
a Ta target is largely hypothetical in any case, as all the stable
isotopes of this element have very low-lying excited states that
make the measurement of pure elastic scattering impossible,
even with stable beams. This problem also occurs for the other
elements in the Z = 70 region, ruling out their practical use
as targets in this type of study; we included a 181Ta target
in our study for the sake of completeness to check whether a
(hypothetical) ideal target with a charge of around 70 would be
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FIG. 3. (Color online) Experimental angular distributions of the
differential cross section (ratio to Rutherford cross section) for 6He
(unfilled circles) and 6Li (filled circles) elastic scattering from 208Pb
at incident energies of 22.0 MeV [20] and 33.0 MeV [4], respectively.
Solid and dashed curves denote CDCC calculations for 6Li and 6He
projectiles, respectively.

sufficient to enable clear experimental separation of projectile
structure-specific coupling effects in the elastic scattering.

With a 208Pb target we finally see a clearly measurable
difference between the 6He and 6Li elastic scattering angular
distributions for Ec.m. − VB = 1.005 MeV; at Ec.m. − VB =
5.534 MeV the difference would just be detectable for mea-
surements with a precision of ±1% and ±2% for 6Li and 6He,
respectively. Values of Ec.m. − VB = 1.005 MeV correspond
to incident 6Li and 6He energies of 33.06 MeV and 22.38 MeV,
respectively for a 208Pb target. Measured elastic scattering
angular distributions for 6Li and 6He + 208Pb are available
in the literature for incident energies of 33.0 MeV [4] and
22.0 MeV [20], enabling us to test the reliability of our
calculations and the conclusions to be drawn therefrom. We
plot them as a function of θc.m. − θg in Fig. 3, together with
the relevant CDCC calculations. Not only do they confirm
the results of our calculations, but also the practicability
of measuring the elastic scattering to sufficient precision
to observe the predicted effect. The agreement between
calculations and data is not perfect due to the use of global
optical potentials as input in order to have a consistent set of
results for several targets; slight adjustment of the potential
well depths or the use of fitted potentials would enable perfect
fits to be obtained. However, in the context of this work only
qualitative agreement is required.

In summary, it has been shown by means of CDCC
calculations that the large Coulomb dipole coupling effect
observed in the elastic scattering of 6He from 197Au and 208Pb
targets at energies close to the Coulomb barrier [3] is only
clearly evident, in the sense that the angular distribution is
unambiguously experimentally distinguishable from that for
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6Li, for targets with ZT ≈ 80. Furthermore, the incident energy
must be close to the top of the nominal Coulomb barrier, that
is to say a few MeV above the experimentally determined
barrier (in the sense of the energy at which the measured elastic
scattering cross section becomes equal to that for Rutherford
scattering over the entire angular range).

The calculations presented here are specific to 6He scatter-
ing. However, it is now well established that 6He has a strong
low-lying electric dipole strength in the α + n + n continuum,
see e.g. [21], and that coupling to this strength is responsible
for the characteristic appearance of the elastic scattering of
6He from heavy targets [2,3]. Low-lying continuum dipole
strength is a property that is shared, or thought to be
shared, with several other weakly-bound light radioactive
nuclei, e.g., 11Li and 11Be. While detailed comparison with
models of the nuclei in question remains difficult due to
the many-body nature of the problem (although progress

is being made in this direction, see e.g. [9–13,22,23]) it
should be possible to make qualitative conclusions concerning
the relative strengths of these couplings by a comparison
of the relevant near-barrier elastic scattering measurements.
Extrapolation of the calculations presented here leads to the
conclusion that future experiments to measure the elastic scat-
tering of such nuclei should concentrate on heavy (ZT ≈ 80)
targets—preferably 208Pb or similar—at energies a few MeV
above the Coulomb barrier for the systems concerned in
order to maximize the structure dependence of the coupling
effects.
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