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Candidate multiple chiral doublets nucleus 106Rh in a triaxial relativistic
mean-field approach with time-odd fields
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The configuration-fixed constrained triaxial relativistic mean-field approach is extended by including time-odd
fields and applied to the study of the candidate multiple chiral doublets (MχD) nucleus 106Rh. The energy
contribution from time-odd fields and microscopical evaluation of center-of-mass correction as well as the
modification of triaxial deformation parameters β, γ due to the time-odd fields are investigated. The contributions
of the time-odd fields to the total energy are 0.1–0.3 MeV, and they modify slightly the β, γ values. However,
the previously predicted multiple chiral doublets still exist.
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Since the prediction of the existence of chirality in atomic
nuclei in 1997 [1] and later experimental observation of chiral
doublet bands in 2001 [2], nuclear chirality has become one
of the most interesting subjects in nuclear physics. Hitherto,
extensive studies have been performed to understand the
phenomena and explore their possible existence in A ∼ 100,
130, and 190 mass regions [3–7].

On the theoretical side, chiral doublet bands were first
predicted by the particle-rotor model (PRM) and tilted axis
cranking (TAC) model for triaxially deformed nuclei [1]. Later
on, numerous efforts were devoted to the development of TAC
methods [8–11] and PRM models [12–15] to describe chiral
rotation in atomic nuclei. It is shown that triaxial deformation
and high-j valence particles and valence holes are essential for
the formation of chirality in nuclei. Therefore, it will be very
interesting to search for nuclei with these characters within the
state-of-the-art nuclear structure models.

Relativistic mean-field (RMF) theory [16–20], which relies
on basic ideas of effective field theory and density functional
theory, has achieved great success in describing many nuclear
phenomena for both stable and exotic nuclei over the entire
nuclear chart. It thus provides us a microscopic way to
study nuclear structure properties including the energy and
deformation for not only the ground state but also the excited
state for a given valence nucleon configuration. In Ref. [21],
a configuration-fixed constrained triaxial RMF approach was
developed and applied to study the nuclear potential energy
surface (PES). An interesting phenomenon—the existence
of multiple chiral doublets (MχD), i.e., more than one pair
of chiral doublet bands in one single nucleus—has been
suggested in 106Rh and other odd-odd rhodium isotopes [22].
These predictions are based on the triaxial deformations
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of local minima and the corresponding proton and neutron
configurations. In these studies, the time-reversal invariance
was assumed from the beginning; that is, the time-odd fields
were neglected.

Actually, the unpaired valence neutron and proton will gen-
erate nucleon currents and break the time-reversal invariance
in a nuclear state. Such effects have been found to be of great
importance in reproducing the nuclear magnetic moment [23]
and inertia of moment [24] as well as the M1 transition rates
in magnetic rotation nuclei [11]. Therefore one has to examine
the existence of MχD in odd-odd rhodium isotopes with the
presence of time-odd fields.

In this work, the configuration-fixed constrained triaxial
RMF approach will be extended by including time-odd fields,
which is more suitable to studying the triaxial structure
properties of odd-mass and odd-odd nuclei. Taking 106Rh as
an example, the effect of time-odd fields on the total energy
and triaxial deformations β, γ as well as on configuration will
be examined.

The detailed description of the configuration-fixed con-
strained triaxial RMF approach with nucleon-nucleon inter-
acting via meson exchange can be found in Ref. [21] and
references therein. Only a brief outline, in particular with the
presence of time-odd fields, will be given here.

The starting point of the RMF theory is the standard
effective Lagrangian density constructed with the degrees
of freedom associated with nucleon field (ψ), two isoscalar
meson fields (σ and ωµ), the isovector meson field ( �ρµ),
and the photon field (Aµ). Under “mean-field” and “no-sea”
approximations, one can derive the corresponding energy
density functional, from which one finds immediately the
equation of motion for a single-nucleon orbit ψi(r) with the
help of the variational principle

{α · [ p − V (r)] + βm∗(r) + V0(r)}ψi(r) = εiψi(r), (1)
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where m∗(r) is defined as m∗(r) ≡ m + gσσ (r), with m

referring to the mass of the bare nucleon. The repulsive
vector potential V0(r), i.e., the time-like component of vector
potential, reads

V0(r) = gωω0(r) + gρτ3ρ0(r) + e
1 − τ3

2
A0(r), (2)

where gi(i = σ, ω, ρ) are the coupling strengths of the nucleon
with mesons. The time-odd fields V (r) are naturally given by
the space-like components of vector fields,

V (r) = gωω(r) + gρτ3ρ(r) + e
1 − τ3

2
A(r). (3)

The nonvanishing time-odd fields in Eq. (3) give rise
to splitting between pairwise time-reversal states ψi and
ψi (≡T̂ ψi), where T̂ is the time-reversal operator. Each Dirac
spinor ψi(r) is expanded in terms of a set of three-dimensional
harmonic oscillator (HO) bases in Cartesian coordinates with
12 major shells. The meson fields that provide the nuclear
mean-field potentials are expanded in terms of the same HO
basis as those of Dirac spinor but with 10 major shells. The
pairing correlations are greatly quenched by the unpaired
valence neutron and proton in 106Rh and thus neglected.
More details about the solution of the Dirac equation (1) with
time-odd fields can be found in Ref. [25].

A configuration-fixed quadrupole moment constraint cal-
culation through β2 was carried out to obtain the PES for each
configuration, where

β = 4π

3AR2
0

√
q2

20 + 2q2
22

and

γ = tan−1

(√
2
q22

q20

)
,

with

q20 =
√

5

16π
〈2z2 − x2 − y2〉

and

q22 =
√

15

32π
〈x2 − y2〉.

The same configuration is guaranteed during the procedure
of the constraint calculation with the help of “parallel trans-
port” [26], which enables one to decompose the whole PES
into several parts characterized by the quantum numbers of
corresponding configurations.

In Fig. 1, the energies are given as functions of deformation
β in configuration-fixed constrained time-odd triaxial RMF
calculations with PK1 set [27] for 106Rh. The minima in the
energy surfaces of each configuration are labeled with A, B,
C, D, E, and F, respectively. The PES plotted with dashed
line in Fig. 1 are obtained by the triaxial RMF calculation
without time-odd fields. Furthermore, the center-of-mass
(c.m.) correction energy is estimated phenomenologically with
E

phe.
c.m. = − 3

4 × 41A−1/3, which remains to be a constant for all
configurations. Here the c.m. correction energy is evaluated

FIG. 1. (Color online) Potential energy surfaces as functions of
deformation β in configuration-fixed constrained time-odd triaxial
RMF calculations with PK1 set (solid line). The minima in the energy
surfaces of each configuration are labeled A–F according to their
energies. The results obtained without the time-odd fields (dashed
line) are from Ref. [22].

microscopically by projection-after-variation in the first-order
approximation, i.e.,

Emic.
c.m. = − 1

2mA

〈
P2

c.m.

〉
, (4)

FIG. 2. (Color online) Energy from time-odd fields Eodd (upper
panel), the energy difference between microscopic and phenomeno-
logical c.m. correction �Ec.m. (middle panel), and the summation
of Eodd and �Ec.m. and the energy difference �Etot. between the
corresponding potential energy surfaces in Fig. 1 (lower panel) for
different configurations as functions of deformation parameter β.
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TABLE I. Total energies Etot., center-of-mass correction energy Ec.m., energy contribution from the time-odd fields Eodd,
triaxial deformation parameters β, γ as well as their corresponding valence nucleon configurations for A–F in the configuration-
fixed constrained triaxial RMF calculations with (without) time-odd fields. The values in parentheses are from Ref. [22].

State Configuration Etot. (MeV) Ec.m. (MeV) Eodd (MeV) β γ

A ν2d1
5/2 ⊗ π1g−3

9/2 −905.33 (−903.92) −7.64 (−6.50) −0.22 0.28 (0.27) 24.3◦ (24.7◦)

B ν1h1
11/2 ⊗ π1g−3

9/2 −905.06 (−903.82) −7.55 (−6.50) −0.11 0.25 (0.25) 23.1◦ (23.3◦)

C ν1h3
11/2 ⊗ π1g−3

9/2 −904.72 (−903.28) −7.69 (−6.50) −0.16 0.30 (0.30) 22.4◦ (22.9◦)

D ν1h5
11/2 ⊗ π2p−1

3/2 −904.33 (−902.79) −7.73 (−6.50) −0.25 0.42 (0.42) 3.9◦ (4.0◦)

E ν1g−1
7/2 ⊗ π2p−1

3/2 −904.21 (−902.68) −7.69 (−6.50) −0.27 0.41 (0.41) 8.5◦ (8.8◦)

F ν1g−1
7/2 ⊗ π1g1

7/2 −904.07 (−902.69) −7.68 (−6.50) −0.12 0.37 (0.36) 11.8◦ (11.9◦)

where Pc.m. = ∑A
i pi and A is the mass number. It is found

that the time-odd fields and microscopic c.m. correction do
not change significantly the topological structure of the whole
PES but lower it by about 1.5 MeV. As a result, the energy of
the ground state is modified from −903.92 to −905.33 MeV,
which is much closer to the experimental value of
−906.72 MeV [28].

In Fig. 2, we plot the energy contribution from the time-
odd fields Eodd [≡ − gω

2

∫
d3rω(r) · jN (r), with the nucleon

current given by jN = ∑
i ψ

†
i αψi], the c.m. correction energy

difference �Ec.m. = Emic.
c.m. − E

phe.
c.m., and total energy difference

�Etot between the present calculation and those in Ref. [22]
as functions of deformation parameter β. All Eodd,�Ec.m.,

and �Etot change moderately as functions of β for a given
configuration. Furthermore, the main contribution to �Etot,
i.e., the shift of whole PES in Fig. 1, is due to �Ec.m..
The time-odd fields make the nucleus more bound, and their
contributions to the energy range around 0.1–0.3 MeV. The
lower panel in Fig. 2 tells us that the time-odd fields will modify
the time-even mean fields and lead to ∼0.1 MeV contribution
to the total energy for all the configurations.

In Fig. 3, we plot the triaxial deformation parameters γ as
functions of β in configuration-fixed constrained triaxial RMF
calculations for 106Rh without and with the time-odd fields.

FIG. 3. (Color online) Triaxial deformation parameters γ as
functions of β in configuration-fixed constrained triaxial RMF
calculations for 106Rh without (left) and with (right) the time-odd
fields. The results in the left panel are from Ref. [22].

The shaded area represents the favorable triaxial deformation
for chirality. It shows that triaxial deformation parameters β

and γ are not sensitive to the time-odd fields. In both cases, the
valence nucleon configurations A, B, and C have the favorable
triaxial deformation for chirality.

To label the configuration A, B, and C, the main spherical
component for the wave function of the valence nucleon
was obtained by expanding the Dirac spinor in terms of
the spherical HO basis with the quantum number |nljm〉.
It is found that the influence of the time-odd fields for the
composition of the Dirac spinor is negligible.

The total energies Etot., center-of-mass correction energy
Ec.m., energy contribution from the time-odd fields Eodd,
triaxial deformation parameters β, γ as well as their cor-
responding valence nucleon configurations for A–F in the
configuration-fixed constrained triaxial RMF calculations with
(without) time-odd fields are presented in Table I. It shows
that the time-odd fields may reduce the triaxial deformation
parameter γ by 0.5◦. Using the structure information for
the configuration νh1

11/2 ⊗ πg−3
9/2 as inputs in a triaxial rotor

coupled with the quasiparticle model [14,15], the energy
spectra and the electromagnetic transition ratios for a pair
of negative-parity doublet bands in 106Rh are well reproduced
in Ref. [29].

In summary, the configuration-fixed constrained triaxial rel-
ativistic mean-field approach has been extended by including
time-odd fields and applied to studying the candidate MχD
nucleus 106Rh. The energy contributions from time-odd fields
and center-of-mass correction have been studied in detail. It
has been found that the time-odd fields contribute 0.1–0.3 MeV
to the total energy and slightly modify the triaxial deformation
parameters β, γ . This confirms the previous prediction of
the possible existence of MχD in the configuration-fixed
triaxial RMF approach without time-odd fields. As one pair
of doublet bands with νh1

11/2 ⊗ πg−3
9/2 configuration has been

observed experimentally, it will be very interesting to search
for the candidate chiral doublet bands with configuration
νh3

11/2 ⊗ πg−3
9/2 and verify the prediction of MχD.
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