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Low-energy 3He(α, α)3He elastic scattering and the 3He(α, γ )7Be reaction
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The cross sections of the 3He(α, α)3He and 3He(α, γ )7Be reactions are studied at low energies using a simple
two-body model in combination with a double-folding potential. At very low energies the capture cross section
is dominated by direct s-wave capture. However, at energies of several MeV the d-wave contribution increases,
and the theoretical capture cross section depends sensitively on the strength of the L = 2 potential. Whereas
the description of the L = 2 elastic phase shift requires a relatively weak potential strength, recently measured
capture data can be described only with a significantly enhanced L = 2 potential. A simultaneous description of
the new experimental capture data and the elastic phase shifts is not possible within this model. Because of the
dominating extranuclear capture, this conclusion holds in general for most theoretical models.
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I. INTRODUCTION

The 3He(α, γ )7Be capture reaction is a key reaction in
nuclear astrophysics. The flux of solar neutrinos at higher
energies depends on the branching between the 3He(3He,2p)α
and 3He(α, γ )7Be reactions, and in big-bang nucleosynthesis
7Li can be produced via the 3He(α, γ )7Be capture reaction and
subsequent electron capture of 7Be [1]. While the energy range
of big-bang nucleosynthesis is covered by experimental data,
the experiments are approaching the Gamow window around
E0 = 22 keV of the 3He(α, γ )7Be reaction in the sun but still
have not reached E0.

Very recently, it has been attempted successfully to extend
the measured energy range of the 3He(α, γ )7Be reaction to
higher energies up to about 3.2 MeV [2]. From these new
experimental data the energy dependence of the 3He(α, γ )7Be
capture reaction can be extracted and compared to theoretical
predictions. A better theoretical understanding of the energy
dependence will help to reduce the uncertainties of the
extrapolation of the cross section down to the Gamow window
at the temperature of the interior of our sun. Several further
experimental data sets exist at lower energies [3–17] that are
summarized in two recent compilations [18,19].

In addition to theoretical calculations shown in the exper-
imental articles [3–17], various theoretical studies have been
devoted to the analysis of the 3He(α, γ )7Be capture cross
section [20–39]. Additionally, a review on the status of the
3He(α, γ )7Be reaction is given in Ref. [40].

Theoretical models can be significantly constrained by
the request that elastic-scattering data have to be described
simultaneously with the capture data. Phase shifts have
been derived from elastic-scattering angular distributions in
Refs. [41–43], and angular distributions or excitation functions
at low energies are reported in Refs. [31,44–46].

It will be shown that the capture cross section of the
3He(α, γ )7Be reaction at low energies is dominated by E1
transitions from incoming s and d waves to bound p-states
in 7Be. Consequently, a precise description of the s-wave and
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d-wave phase shifts is a prerequisite for the calculation of the
3He(α, γ )7Be capture cross section.

This article is organized as follows. In Sec. II a brief
description of the direct capture model is provided. General
remarks on the applicability and reliability of this model and
other theoretical calculations are given in Sec. III. Results
for the 3He(α, α)3He elastic scattering and 3He(α, γ )7Be
capture cross sections are presented in Sec. IV, and theoretical
uncertainties are carefully analyzed. Conclusions are drawn in
Sec. V, and finally a brief summary is given in Sec. VI.

All energies E are given in the center-of-mass system
throughout this article except explicitly noted. Excitation
energies E∗ in 7Be are related to E by E∗ = E + Q with the
Q value of the 3He(α, γ )7Be reaction Q = 1586.6 keV [47].

II. THE DIRECT CAPTURE MODEL

The direct capture (DC) model is a simple but powerful
model to calculate capture cross sections between light nuclei.
The full formalism is given explicitly in Ref. [48], and
its application together with systematic folding potentials is
described in detail in our previous work on the 3He(α, α)3He
and 3He(α, γ )7Be reactions [31]. Here I repeat only some
essential features of the DC model that are important for the
following discussion.

The theoretical capture cross section σth is given by the
product of the DC cross section σDC and the spectroscopic
factor C2S of the final state:

σth = C2S × σDC. (2.1)

The DC cross section depends on the square of the overlap
between the scattering wave function χLi,Ji

(r), the bound-state
wave function uN,Lf ,Jf

(r), and the electromagnetic operator
OE1,E2,M1 of E1, E2, and M1 transitions:

σDC ∼
∣∣∣∣
∫

χLi,Ji
(r)OE1,E2,M1uN,Lf ,Jf

(r) dr

∣∣∣∣
2

, (2.2)

where Li, Ji and Lf , Jf are the angular momenta in the
initial scattering wave function χ (r) and the final bound-
state wave function u(r). N is the number of nodes in
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FIG. 1. Simplified level scheme of 7Be with the L = 1 and L = 3
cluster states. Excitation energies E∗ are given in keV. All data are
taken from Ref. [47].

the bound-state wave function that takes into account the
Wildermuth condition. The total number of oscillator quanta
Q = 2N + Lf = 3 for three nucleons in the 1p shell leads
to two cluster states in 7Be. There is a first state with one
node (N = 1) and angular momentum L = 1 and a second
state without node (N = 0) and L = 3. Both states are split
into dubletts because of the spin S = 1/2 of the 3He nucleus.
Both L = 1 states are located below the 3He-α threshold in
7Be, whereas the L = 3 states are located above the threshold
and may appear as resonances in the 3He(α, γ )7Be capture
reaction. Properties of the cluster states are given in Table I,
and a simplified level scheme of 7Be is shown in Fig. 1.
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FIG. 2. Bound-state wave functions u(r) for the L = 1, J π =
3/2− ground state and the L = 1, J π = 1/2− first excited state in
7Be in linear scale (upper) and u2(r) in logarithmic scale (lower). The
wave functions are very similar in the nuclear interior. The slope in
the exterior reflects the different binding energies (EB = −1587 keV
for the 3/2− ground state and EB = −1158 keV for the 1/2− first
excited state).
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FIG. 3. Overlap of the scattering wave function χ (r), electromag-
netic transition operator O, and bound-state wave function u(r) for
different transitions of the 3He(α, γ )7Be capture reaction. (Upper)
Nonresonant E1 s-wave capture to the 3/2− ground state and
1/2− first excited state at energies E = 0.1 and 3.0 MeV. (Middle)
Nonresonant E1 d-wave capture to the 3/2− ground state at E = 0.1
and 3.0 MeV. (Lower) Nonresonant and resonant E2 f -wave capture
to the 3/2− ground state at E = 0.1 and 3.0 MeV. Further discussion
see text.

The bound-state wave functions u(r) are shown for the
L = 1, J π = 3/2− ground state and the L = 1, J π = 1/2−
first excited state in 7Be in Fig. 2. Figure 3 shows the integrand
of Eq. (2.2), i.e., the overlap of the scattering wave function
χ (r), the electromagnetic operator O, and the bound-state
wave function u(r) for different transitions in the 3He(α, γ )7Be
capture reaction at a very low (100 keV) and at a higher energy

TABLE I. Partial level scheme of 7Be. Experimental data are
taken from Ref. [47]. The potential strength parameters are adjusted to
reproduce the energies of the bound and quasibound states (see text).

L J π E∗
exp

(keV)
Eexp = Ecalc

(keV)
�exp

(keV)
�calc

(keV)

1 3/2− 0 −1586.6a (T1/2 = 53.22 d) –
1 1/2− 429.1 ± 0.1 −1157.5a (τ = 192 ± 25 fs) –
3 7/2− 4570 ± 50 2983.4a 175 ± 7 145
3 5/2− 6730 ± 100 5143.4a ≈1200 ≈1100

aPotential adjusted.

065804-2



LOW-ENERGY 3He(α, α)3He . . . PHYSICAL REVIEW C 79, 065804 (2009)

(3 MeV). A detailed discussion will be given in the following
Sec. III.

The basic ingredient for the calculation of the DC integral
in Eq. (2.2) are the potentials for the entrance channel (elastic
scattering) and the exit channel (bound-state wave function).
As soon as the potentials are fixed, the DC integral is calculated
without further adjustment of parameters to experimental
capture data. The spectroscopic factor C2S of the bound
state is taken—exactly as in Ref. [31]—from theory in the
present study: C2S(3/2−) = 1.174 and C2S(1/2−) = 1.175
[49]. The spectroscopic factor is considered as an absolute
normalization for the calculated capture cross section, similar
to the procedure in Ref. [50]. It is beyond the scope of the
present article to discuss the relation between the asymptotic
normalization coefficient and the spectroscopic factor as, e.g.,
in Ref. [51] because the main conclusions of this work are not
affected.

The potential for the 3He-α system is the sum of the central
nuclear potential, the spin-orbit potential, and the Coulomb
potential. The real part of the central nuclear potential is
calculated from the double folding procedure [52,53] that is
scaled by a strength parameter λ that is about 1.4–1.8 in this
study. The underlying nuclear densities are derived from the
measured charge density distributions [54]. The imaginary part
of the nuclear potential can be set to zero because there are
no open channels below 4 MeV except the relatively weak
3He(α, γ )7Be capture. The spin-orbit potential is taken in
the usual Thomas form proportional to 1/r × dV/dr , again
scaled by a spin-orbit strength parameter λLS. Finally, the
Coulomb potential VC is calculated from the homogeneous
charged sphere model with a Coulomb radius RC identical
to the root-mean-square radius of the folding potential: RC =
rrms = 2.991 fm. Further details can be found in Ref. [31]. The
total potential is given by:

V (r) = λVF (r) + λLS
fm2

r

dVF (r)

dr
�L�S + VC(r), (2.3)

with the unscaled (λ = 1) folding potential VF (r). The
factor fm2 in the spin-orbit potential is added to obtain a
dimensionless strength parameter λLS. �L, �S, and �J = �L + �S
are the orbital, spin, and total angular momenta in units of h̄.

One main advantage of folding potentials is the small
number of adjustable parameters. The shape of the potential is
fixed by the folding procedure. Only the strength parameters λ

and λLS have to be adjusted to experimental data. Obviously,
the small number of adjustable parameters improves the
predictive power of the calculations.

The shape of the folding potential for 3He-α is almost
Gaussian. Consequently, the spin-orbit part has almost the
same shape, and the sum of central and spin-orbit potential
again has the same shape. In other words, the spin-orbit
potential slightly increases the potential for J = L + 1/2
waves and slightly decreases the potential for the J = L −
1/2 waves but keeps the shape of the folding potential.
Alternatively, the same effect can be obtained if the spin-orbit
potential is set to zero and instead the strength parameter of
the central potential becomes J dependent. This approach has
been followed, e.g., in Ref. [32]: there very similar results

to our previous work [31] were obtained using empirical
Gaussian potentials with a J -dependent depth V0.

III. GENERAL REMARKS

The nucleus 7Be and the 3He(α, α)3He elastic scattering and
3He(α, γ )7Be capture reactions are textbook examples for the
successful application of a simple two-body model because of
the strong internal binding energies of the two constituents
3He and 4He. Early calculations have been performed for
the 3He(α, γ )7Be reaction using hard-sphere phase shifts for
the entrance channel, thus considering external capture only.
Already these early calculations have successfully reproduced
the cross section of the 3He(α, γ )7Be capture reaction at low
energies [20–22]. Nowadays it must be the aim of theoretical
studies to reproduce simultaneously the 3He(α, α)3He elastic-
scattering cross sections and phase shifts, the 3He(α, γ )7Be
capture reaction, and electromagnetic properties of the 7Be
nucleus. Often also the mirror nucleus 7Li and the mirror
reaction 3H(α, γ )7Li are considered. The present study focuses
on the new results for the 3He(α, γ )7Be reaction [2]; the 7Li
mirror system was already studied in our earlier work [31].

Only very few radiation widths �γ or lifetimes τ have
been measured for the 7Be nucleus. The first excited 1/2−
state in 7Be decays by a M1 transition to the 7Be ground
state with a lifetime of τm = 192 ± 25 fs [47] corresponding
to B(M1, 3/2− → 1/2−) = 1.87 ± 0.25 µ2

N . Following the
formalism in Refs. [38,55,56], the reduced transition strength
B(M1, 3/2− → 1/2−) is given by

B(M1) = 1

4π
[2 µ(3He) − µNG]2|〈u3/2−|u1/2−〉|2 (3.1)

with the effective cluster-cluster orbital gyromagnetic factor
G = (Z1A

2
2 + Z2A

2
1)/[A1A2(A1 + A2)] = 0.5952 for 7Be =

3He ⊗ α and µ(3He) = −2.1276 µN [57]. As already pointed
out in Ref. [30], the overlap of the bound-state wave functions
|〈u3/2− |u1/2−〉|2 is close to unity because both wave functions
u(r) are very similar. This similarity is also obvious for the
wave functions in this study, see Fig. 2; here the overlap
deviates by less than one percent from unity. Consequently, the
reduced transition strength B(M1) is practically defined by the
factor 1

4π
[2 µ(3He) − µNG]2 = 1.873 µ2

N that is in excellent
agreement with the experimental result of 1.87 ± 0.25 µ2

N .
The excellent reproduction of the B(M1) transition strength
between the 3/2− ground state and the 1/2− first excited state
in 7Be is thus a more or less trivial result for any two-body
calculation with realistic bound-state wave functions.

The E2 contribution of this transition is orders of magnitude
smaller than the M1 transition because of the relatively
low transition energy of Eγ = 429 keV and the strong
E5

γ dependence of E2 transitions: one E2 Weisskopf unit
corresponds to a radiation width of about �γ (E2) ≈ 10 neV
that has to be compared to the experimental M1 width of
�γ = 3.4 meV.

No further experimental data for radiation widths in 7Be
exist in Ref. [47]. However, the recent experiment [2] has
measured the cross section of the 3He(α, γ )7Be reaction in the
7/2− resonance for the first time, and it was possible to derive
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the radiation width �γ,0 in [2]. It will be shown in Sec. IV B
that the DC model is able to reproduce the experimental value
within its relatively large experimental uncertainty. Contrary
to the above studied M1 transition, this result is not trivial
because it requires the overlap of the 7/2− scattering wave
function, the E2 operator, and the 3/2− ground-state wave
function (see Fig. 3, lower part).

Often, “direct capture” is also named “extranuclear capture”
or “nonresonant capture.” The origin of these somewhat
misleading names comes from the early calculations by Christy
and Duck [20] and Tombrello and coworkers [21,22]. A
good description of the experimental 3He(α, γ )7Be capture
cross section was obtained in Refs. [20–22] using hard-sphere
phase shifts for the nonresonant s and d waves (that are by
definition nonresonant). As can be seen from Fig. 3 (upper
and middle parts), the main contribution of the E1 transitions
from incoming s waves and d waves to the bound L = 1 states
comes indeed from the nuclear exterior, thus validating the
hard-sphere approximation for the s waves and d waves in
Refs. [20–22]. However, as can be seen from Fig. 3 (lower
part), the main contribution of the E2 transition from the
incoming f wave to the 3/2− ground state comes from the
exterior at the low energy of E = 100 keV, but is shifted to
the interior at E = 3.0 MeV that is in the 7/2− resonance.
Thus, the terminus “direct capture” is neither identical to
“extranuclear capture” nor to “nonresonant capture.” This has
also been illustrated for the 3+ resonance in the 2H(α, γ ) 6Li
reaction in Ref. [58].

IV. RESULTS

A. Elastic-scattering cross sections and phase shifts

As already pointed out above, the parameters of the
potential (i.e., the potential strength parameters λ and λLS) have
to be adjusted to experimental data. Elastic-scattering phase
shifts are typically used for this adjustment. Such phase shifts
have been derived from angular distributions and excitation
functions over a broad range of energies [41–43]; see Fig. 4.

The data of Spiger and Tombrello cover the energy range
slightly below the 7/2− resonance and range from about 2.5 to
10 MeV [41]. The data of Boykin et al. cover the energy range
from about 1.9 to 4 MeV. However, no numerical results are
given for the important d waves. Instead, it is pointed out that
“the values obtained at the various energies were scattered with
no discernible trend in a band between −4◦ and +4◦” [42].
The data from Hardy et al. start above the 7/2− resonance and
range from about 3.3 to 7.7 MeV [43].

The adjustment of the potential strength parameters λ and
λLS is done as follows. The procedure is almost identical to
the previous work [31] with a modification of the spin-orbit
potential. First, the strength parameter λ is adjusted to the
s-wave phase shift. This can be done unambiguously because
the s wave is not affected by the spin-orbit potential. An
excellent agreement with the experimental phase shifts is
obtained with λ(L = 0) = 1.452 (full black line in Fig. 4,
upper part). Additionally, the results are shown for a variation
of the strength parameter λ between 1.4 and 1.6 (green dashed,
red dotted, and blue narrow-dashed lines) that will be important
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FIG. 4. (Color online) Phase shifts for elastic 3He(α, α)3He
scattering. Experimental data are taken from Refs. [41–43]. Cal-
culations are performed using the potential strength parameters
λeven = 1.452, λeven

LS = 0, λodd = 1.830, and λodd
LS = −0.173 (standard

case, full black line). The parameter λeven is varied between 1.40 and
1.60 (λeven = 1.40: green dashed line; λeven = 1.50: red dotted line;
λeven = 1.60: blue narrow-dashed line), and the spin-orbit strength
of the odd partial waves has also been used for the even partial
waves (λeven = 1.452, λeven

LS = −0.173: magenta dash-dotted line).
For further discussion see text.
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for the analysis of the 3He(α, γ )7Be capture cross section in
Sec. IV B.

The parameter λ(L = 0) = 1.452 is also used for the
d-wave phase shifts. As can be seen from Fig. 4, there is
excellent agreement with the experimental d-wave phase shifts
over a broad energy range. There is no evidence for a different
behavior of the d3/2 and d5/2 phase shifts from the data in
Refs. [41–43]. Thus, the spin-orbit potential has to vanish for
the d waves, and λLS(L = 2) = 0. It is interesting to note that
any deviation of the potential strength from λ = 1.452 leads
to deviations of the calculated d-wave phase shifts from the
experimentally vanishing data. Combining the results for the
s wave and the d waves, the potential strength parameters for
even partial waves are λeven = 1.452 and λeven

LS = 0. A test with
the spin-orbit strength derived from the f waves (see below)
also shows clear disagreement to the experimental d-wave
phase shifts (magenta dash-dotted line in Fig. 4).

A noticeably higher value for the potential strength λ is
found for the odd partial waves. λodd and λodd

LS have been
adjusted to reproduce the energies of the f -wave resonances
(see Fig. 4). This leads to λodd = 1.830 and λodd

LS = −0.173.
Using these values, an excellent agreement for the f -wave
phase shifts is obtained in both nonresonant and resonant
energy regions. In particular, the resonance widths are properly
reproduced (see also Table I). Good agreement with the
experimental p-wave phase shifts is also obtained with the
above λodd and λodd

LS . The parameters λodd and λodd
LS were

not varied in the following study because any change of
these parameters shifts the f -wave resonances dramatically
in energy.

The new experimental 3He(α, γ )7Be capture data cover an
energy range that is at the lower end of the experimental phase
shift data of Refs. [41–43]. Fortunately, further experimental
angular distributions of 3He(α, α)3He elastic scattering are
available in Refs. [31,44,46] in the relevant energy range of the
new 3He(α, γ )7Be experiment [2]. These experimental angular
distributions are compared to the calculated cross sections
using the above determined parameters λeven = 1.452, λeven

LS =
0, λodd = 1.830, and λodd

LS = −0.173. The result is shown in
Fig. 5 (full black lines). Additionally, again the sensitivity on
the potential strength parameters λeven and λeven

LS is analyzed
(colored dashed and dotted lines in Fig. 5).

The conclusions from Fig. 5 are clear. As expected, an
excellent agreement between the experimental data and the
calculations is only obtained using the same parameters as
derived from the phase shifts of Refs. [41–43] in Fig. 4. From
the shown angular distributions the parameter λeven may vary
between 1.40 and 1.45; a careful inspection of the phase-shift
calculations in Fig. 4 shows that the low-energy s-wave phase
shifts of Ref. [42] and the overall energy dependence are best
described using λeven = 1.45; however, the data from Ref. [41]
are better desribed using λeven = 1.40 (green dashed line in
Fig. 4). Because of the better overall description of the s-wave
phase shifts and the excellent description of the d-wave phase
shifts I take λeven = 1.45, λeven

LS = 0 as the standard calculation
in the following, keeping λodd = 1.830 and λodd

LS = −0.173
fixed for the odd partial waves. An additional calculation
with λeven = 1.45, λeven

LS = −0.173 (instead of λeven
LS = 0) is

almost identical to the previous calculation in Ref. [31] except
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FIG. 5. (Color online) Angular distributions of 3He(α, α)3He
elastic scattering, normalized to Rutherford scattering. Experimental
data are taken from Refs. [31,44]. The line style and color coding
are identical to those described in the caption to Fig. 4; the dotted
black line at E = 2715 keV shows the artificial enhancement of the
contribution of the 7/2− resonance (see text).

minor technical modifications (e.g., larger integration range
and smaller step size).

A minor disagreement between the calculated angular
distribution and the experimental data can be seen at E =
2715 keV. This is not very surprising because this energy is at
the low-energy tail of the 7/2− resonance. The width of this
resonance is slightly underestimated: the calculated width is
�calc = 145 keV, which has to be compared to the experimental
width of �exp = 175 ± 7 keV (see also Table I). A much
better agreement is obtained if the resonance contribution is
artificially enhanced in the calculation by an increase of the
phase shift of the 7/2− partial wave by about 5◦ from 10◦ in
the standard calculation to 15◦ (dotted black line in Fig. 5).
The deviation is clearly not related to the potential strength
of the even partial waves that will be most important for the
analysis of the 3He(α, γ )7Be capture cross section in the next
Sec. IV B.
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Summarizing the above, an excellent agreement between all
experimental scattering data (phase shifts and angular distri-
butions) and the calculated values is obtained using the above
derived potential strength parameters λeven = 1.452, λeven

LS =
0, λodd = 1.830, and λodd

LS = −0.173 (standard case). The
results of all scattering experiments are consistent with each
other and can be well described using the present model.

The scattering wave functions can now be calculated
without further adjustment of parameters. Because of the
dominating external capture (see Fig. 3), good agreement
between the predicted and experimental capture cross sections
has to be expected. This will be further analyzed in the next
Sec. IV B.

B. The 3He (α, γ ) 7Be capture cross section

In addition to the scattering wave function χ (r), the
determination of the DC cross section in Eqs. (2.1) and (2.2)
requires the calculation of the bound-state wave function u(r).
Because of the contributions from the nuclear exterior (see
Fig. 3), it is essential that the calculated bound-state wave
function has the correct asymptotic behavior that is defined by
the binding energy. This leads to a slight readjustment of the
potential strength parameter λ for the bound states compared
to the above results for the scattering phase shifts. The results
are λ(3/2−) = 1.836 for the ground state of 7Be at E =
−1587 keV and λ(1/2−) = 1.799 for the first excited state
of 7Be at E = −1158 keV (E∗ = 429 keV). No spin-orbit
potential has been used here.

The remaining calculation of the DC cross section is
straightforward and does not require any adjustment to
experimental capture data. The results are shown in Fig. 6 with
a comparison to the available experimental data and in Fig. 7
in a broader energy range. The calculations take into account
all possible E1, E2, and M1 contributions from the incoming
scattering waves with L = 0–3. However, as has been shown in
several previous studies, the E1 contribution is dominating at
all energies. Only in the 7/2− and 5/2− resonances a noticeable
E2 contribution is found, and the M1 contribution remains
negligible over the whole energy range. A decomposition into
the various contributions has already been shown in Fig. 5
of Ref. [22], Fig. 8 of Ref. [23], Fig. 8 of Ref. [24], Fig. 2
of Ref. [26], Fig. 7 of Ref. [31], Fig. 2 of Ref. [32], Fig. 8 of
Ref. [35], and Fig. 5 of Ref. [38] and is thus not repeated here.

The standard calculation (using the potential strength
parameters from the adjustment to the experimental phase
shifts) shows an excellent agreement with the total S factor
and the branching ratio R = σ429/σ0 in the low-energy region
below 1 MeV. At higher energies the calculation agrees with
the old data of Parker and Kavanagh [4], but is significantly
lower than the recent experimental data of Ref. [2].

The sensitivity of the 3He(α, γ )7Be capture cross section
on the underlying potential has been studied in the same way
as in the previous Sec. IV A by a variation of the λ and λLS

potential strength parameters. The results are also shown in
Figs. 6 and 7. In general, an increasing potential strength leads
to an increasing S factor. A detailed discussion will be given
in Sec. V.
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FIG. 6. (Color online) Astrophysical S factor and branching ratio
R = σ429/σ0 for the 3He(α, γ )7Be capture reaction. Experimental
data are taken from Ref. [2–17]. The line styles and color codes
are the same as those described in the captions to Figs. 4 and 5. The
vertical arrows on top indicate the energies of the angular distributions
in the previous Fig. 5 where the elastic-scattering cross sections are
well reproduced. These scattering data cover the energy range of the
recent 3He(α, γ )7Be capture data [2] (shown as open squares).

Before entering the detailed discussion of the shown
3He(α, γ )7Be capture cross sections, the presented results are
completed by an analysis of the two L = 3 resonances and a
study of the low-energy behavior of the astrophysical S factor.
For both resonances it is obvious that the total width � is
practically identical to the α particle width �α . As already
shown in Table I, the calculated widths �calc agree reasonably
well with the experimental results �exp. This is also obvious
from the correct description of the resonant behavior of the
L = 3 elastic phase shifts in Fig. 4.

The 7/2− resonance at 2983-keV decays by an E2 transition
to the 3/2− ground state of 7Be, whereas no E2 transition to
the first ecited 1/2− state is possible. A Breit-Wigner fit to the
calculated capture cross section in this resonance leads to a
radiation width �γ = �γ,0 = 37 meV and a resonance strength
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FIG. 7. (Color online) Same as Fig. 6, but with an extended energy
range up to 8 MeV. For better visibility of the calculated curves,
the experimental data have been omitted. The line styles and color
codes are the same as described in the captions to the Figs. 4, 5,
and 6.

ωγ = 150 meV. This prediction is in reasonable agreement
with the experimental result of ωγ = 330 ± 210 meV [2].

The 5/2− resonance at 5143 keV was not measured yet
in the 3He(α, γ )7Be reaction. The DC model predicts �γ,0 ≈
50 meV for the E2 transition to the 3/2− ground state and
�γ,429 ≈ 185 meV for the E2 transition to the first excited
1/2− state. This leads to �γ = �γ,0 + �γ,429 ≈ 235 meV
or a total resonance strength ωγ ≈ 0.7 eV. Because of the
huge width of this resonance, any determination of resonance
parameters has relatively large uncertainties. An additional
theoretical uncertainty is related to the opening of the 6Li-p
channel slightly above 4 MeV.

It is interesting to note that the different decay patterns of the
7/2− and 5/2− resonances are clearly visible in the branching
ratio R although the E2 contribution to the total cross section
is small compared to the dominating E1 transitions. Figure 7
clearly shows a smaller branching ratio in the 7/2− resonance
around 3 MeV that can only decay to the 3/2− ground state,
and a larger branching ratio in the 5/2− resonance around
5 MeV that predominantly decays to the 1/2− first excited
state.

The S factor at very low energies is extrapolated down
to S(0) using the following procedure. The calculated cross
sections are fitted using a second-order polynomial up to
500 keV. The results for S(0) and S ′(0)/S(0) are listed in
Table II for the different potentials shown in Figs. 4, 5, 6,
and 7. The standard case leads to S(0) = 0.53 keV b and
S ′(0)/S(0) = −0.73 MeV−1, in agreement with the compila-
tion of solar fusion cross sections by Adelberger et al. [18],

TABLE II. Extrapolated astrophysical S factor S(0) at zero en-
ergy and its normalized derivative S ′(0)/S(0) for different potentials.
The strength parameters λodd = 1.830 and λodd

LS = −0.173 have not
been varied. For comparison, the results of recent compilations
[18,19,40] are also listed.

λeven λeven
LS S(0)

(keV b)
S ′(0)/S(0)
(MeV−1)

Remarks

1.45 0.0 0.530 −0.731 Standard case
1.40 0.0 0.497 −0.791
1.50 0.0 0.557 −0.666
1.60 0.0 0.611 −0.536
1.45 −0.173 0.530 −0.733 Close to Ref. [31]
– – 0.53 ± 0.05 −0.57 Adelberger et al. [18]
– – 0.54 ± 0.09 −0.96 NACRE [19]
– – 0.580 ± 0.043 −0.92 Cyburt and

Davids [40]

who recommend S(0) = 0.53 ± 0.05 keV b and S ′(0)/S(0) =
−0.57 MeV−1, and the NACRE compilation [19], where
S(0) = 0.54 ± 0.09 keV b and S ′(0)/S(0) = −0.96 MeV−1

are given. The recent summary of Cyburt and Davids
[40] recommends a slightly higher value of S(0) = 0.580 ±
0.043 keV b and S ′(0)/S(0) = −0.92 ± 0.18 MeV−1. Vari-
ations of the order of about 10% for the slope of the
S factor at zero energy are found using the different potentials.
Such variations are also typical for the different theoretical
calculations in [20–39]. The adopted S ′(0)/S(0) [18,19,40]
show somewhat larger variations. The average of the three
compilations of S ′(0)/S(0) = −0.82 MeV−1 is in reasonable
agreement with the calculated S ′(0)/S(0) = −0.73 MeV−1 in
the standard case and in perfect agreement with the calculation
using λeven = 1.40, where S ′(0)/S(0) = −0.79 MeV−1 is
found. However, larger values λeven > 1.50 correspond to
lower S ′(0)/S(0).

Using the standard case potential, S(0) = 0.53 keV b is
predicted from the present study. This prediction depends
on the theoretical spectroscopic factors C2S of the bound-
state wave functions. From the excellent agreement between
the experimental and calculated capture cross sections and
branching ratios at low energies (see Fig. 6) it is obvious
that the chosen theoretical spectroscopic factors [49] are
correct within about 10%. Any minor readjustment of these
spectroscopic factors will affect the the calculated capture
cross sections linearly at all energies but will not affect
the calculated energy dependence of the 3He(α, γ )7Be capture
cross section. Also the normalized slope S ′(0)/S(0) will
not be affected by a readjustment of the spectroscopic
factors.

The chosen DC model does not require effective charges
and uses q = +2e for the involved 3He and 4He nuclei.
An additional introduction of effective charges in the model
may affect the absolute values of the DC cross sections.
Because of the dominating E1 contribution to the capture cross
section, the introduction of effective charges does not affect
the calculated energy dependence in a significant way. Similar
to the statements on the spectroscopic factor in the previous
paragraph, effective charges do also not affect the normalized
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slope S ′(0)/S(0) of the astrophysical S factor. Although
effective charges cannot be determined from scattering phase
shifts, it is obvious from the excellent agreement between the
experimental and calculated cross sections at low energies that
the effective charges cannot deviate strongly from the used
real charges.

V. DISCUSSION AND CONCLUSIONS

It has been shown in the previous Secs. IV A and IV B
that the standard calculation with the parameters λeven =
1.45, λeven

LS = 0, λodd = 1.83, and λodd
LS = −0.173 is able to

describe elastic-scattering phase shifts for 3He(α, α)3He re-
action in the full energy range up to about 8 MeV and the
3He(α, γ )7Be capture cross sections to the 7Be ground state
and first excited state at low energies. At higher energies the
calculation agrees with the old data [4] but disagrees with
the new data [2]. In the following discussion the theoretical
uncertainties will be analyzed, and the question will be
answered whether the new data of [2] can be described within
the present model. Most of the considerations will also be
valid for other models because of the dominating external
contributions to the 3He(α, γ )7Be capture cross section. The
discussion will focus on the dominating E1 contributions from
the incoming s wave and d wave.

The analysis of elastic scattering clearly shows that the
s-wave and d-wave phase shifts can be reproduced using
only the potential strength of the standard calculation (see
Figs. 4 and 5). For the s-wave λeven = 1.40–1.45 is the
acceptable range. The d-wave phase shifts that remain close
to zero up to about 8 MeV can only be described with λ values
very close to λeven = 1.45. A value of λeven > 1.50 can clearly
be excluded. This is further strengthened by the analysis of the
slope S ′(0)/S(0) at low energies; see Table II.

The integrand of the DC integral in Eq. (2.2), i.e., the
overlap between scattering wave function χ (r), electromag-
netic operator OE1, and bound-state wave function u(r), is
shown for the standard calculation in Fig. 3. The upper part
shows the E1 transition from the s wave to the ground state
and first excited state, and the middle part shows the E1
transition from the d wave to the ground state in 7Be. As
usual, the integrand is shifted toward the exterior for lower
energies. But it has to be pointed out that all curves are clearly
dominated by contributions from far outside the nucleus at both
considered energies E = 100 keV and 3 MeV; i.e., also at the
high energy E = 3 MeV the external contribution dominates.
Thus, the result of the DC calculation is essentially defined
by the behavior of the scattering wave function χ (r) and
the bound-state wave function u(r) at radii between 5 and
35 fm that is much larger than the size of 7Be. Any calculation
with realistic nuclear potentials should provide a more or
less similar capture cross section if the potential is able to
reproduce the elastic phase shifts. This is particularly true for
the calculated energy dependence.

The absolute value of the bound-state wave function u(r) in
the external region depends indirectly on the chosen potential
shape. The slope of the external part of the bound-state wave
function u(r) is well defined by the binding energy, but the

normalization of the bound-state wave function u(r)∫ ∞

0
u2(r) dr = 1 (5.1)

has its main contribution from smaller radii r < 5 fm, i.e., from
the nuclear interior and surface (see Fig. 2). In line with the
considerations in Ref. [50], the chosen spectroscopic factors
C2S ≈ 1.2 for the ground state and first excited state in 7Be
simply mean here that the bound-state wave functions u(r) in
the nuclear exterior have to be scaled by a factor

√
C2S ≈ 1.1

to bring the calculated DC cross section into agreement with
the experimental data at low energies. The choice of a different
potential leads to a different shape of the wave function u(r)
and its asymptotic behavior that can be compensated by a
different spectroscopic factor. Finally, the theoretical cross
section, in particular its energy dependence, will remain almost
unaffected, provided that the phase shifts are well reproduced.

Nevertheless, an attempt has been made to reproduce the
new 3He(α, γ )7Be capture data [2] within the present model.
In general, an increasing nuclear potential strength decreases
the Coulomb barrier and thus increases the calculated capture
cross section. A value of λeven ≈ 1.6 is required to reproduce
the larger cross-section data of Ref. [2]. The calculated
capture cross section at low energies is increased by about
15% compared to the standard case that is slightly higher
than the allowed range of the precision experiments at
low energies. This larger potential strength also leads to a
strong disagreement with the scattering data. In particular,
the elastic-scattering angular distributions in Fig. 5 cannot
be described with the increased value of λeven = 1.6. These
angular distributions have been measured in an energy range
that covers the energy range of the recent 3He(α, γ )7Be capture
data [2] (indicated by the arrows on top of Fig. 6). Taking into
account the above considerations on the radial behavior of
the overlap integral in Eq. (2.2), it can be excluded that the
DC model is able to reproduce simultaneously 3He(α, α)3He
elastic scattering [31,41–44] and 3He(α, γ )7Be capture [2] at
energies around 2–3 MeV.

It is interesting to note that the branching ratio R = σ429/σ0

is practically not affected by the variation of the potential
strength of the s and d waves because both transitions are
increased in the same way when λeven is increased from its
standard value of 1.45 to about 1.6 to fit the higher capture
data of Ref. [2]. However, the branching ratio R is significantly
affected by the spin-orbit potential of the d wave. Using the
spin-orbit potential strength from the odd partial waves also for
the even partial waves (λeven

LS = −0.173 instead of the standard
case λeven

LS = 0), the effective strength of the potential for the
d5/2 (d3/2) wave is increased (decreased). As pointed out above,
an increased potential strength leads to increased capture cross
sections. Because there is only an E1 transition from the d5/2

wave to the 3/2− ground state, but no E1 transition to the 1/2−
first excited state, the ground state contribution is enhanced,
and thus the branching ratio R decreases at higher energies
(see Figs. 6 and 7). However, at low energies the dominating
contribution to the capture cross section comes from the
s-wave which is not affected by the spin-orbit potential, and the
branching ratio R at very low energies is practically identical
to the standard case.

065804-8



LOW-ENERGY 3He(α, α)3He . . . PHYSICAL REVIEW C 79, 065804 (2009)

It is difficult to find an explanation for the discrepancy
between the calculated 3He(α, γ )7Be capture cross sections
and the recent experimental data [2]. Experimental scattering
data have been obtained in a series of independent experiments
[31,41–46] that agree well with each other. The determination
of the scattering wave function in the DC integral in Eq. (2.2)
is thus very well defined. Although the requested accuracy
of a few percentages for astrophysical modeling has not
yet been achieved for the 3He(α, γ )7Be capture reaction, all
experimental capture data at low energies agree within each
other at a 10–15% level. The spectroscopic factors—taken as
normalization factors in Eq. (2.2)—are thus also well defined
at this level. The same level of accuracy should then be
expected for the energy range of the new 3He(α, γ )7Be capture
data [2] up to about 3 MeV. Instead, the standard calculation
underestimates the new capture data by about 30–40%. It has
to be pointed out that a wrong normalization of the new data
[2] is also very unlikely because the experiment has studied
the 3He(α, γ )7Be capture reaction very carefully using three
different independent techniques (recoil detection, γ detection,
and activation) that agree very well with each other at the level
of a few percentages. Of course, an independent confirmation
of the new data in Ref. [2] is nevertheless highly desireable, in
particular, because of the discrepancy between the old data in
Ref. [4] and the new data in Ref. [2].

The only remaining explanation is that the DC model itself
is not appropriate for the description of the 3He(α, γ )7Be
capture reaction. However, even “exotic” theoretical solutions
like other electromagnetic transitions (except E1, E2, and
M1) or further unobserved bound states in 7Be can be
excluded at the requested level of 30–40% from the agreement

of the different experimental techniques in Ref. [2]. And
because of the dominating exteral contributions to the DC
cross section, any theoretical calculation that reproduces the
scattering phase shifts should provide a similar theoretical
energy dependence and thus underestimate the new capture
data for the 3He(α, γ )7Be reaction in Ref. [2] in a similar way.

VI. SUMMARY

The 3He(α, α)3He elastic-scattering and 3He(α, γ )7Be cap-
ture cross sections have been studied within the DC model
together with folding potentials. It is shown that the elastic-
scattering phase shifts are well reproduced over a broad energy
range. Whereas the low-energy capture data are well described
simultaneously with the phase shifts, there is a significant
underestimation of the recent capture data [2] but agreement
with the old data of Ref. [4]. As the DC calculation is very well
constrained by experimental-scattering data over the whole
energy range studied in Ref. [2], it is difficult to find an
explanation for the discrepancy between the calculated and the
recently measured capture cross section of the 3He(α, γ )7Be
reaction. Further experimental and theoretical effort is needed
to resolve this surprising problem.
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